Calculus

Problem 15101

Find the slope of the tangent line for f(x)=1+(x21)3f(x)=\sqrt{1+(x^{2}-1)^{3}} at x=2x=2.

See Solution

Problem 15102

Find the marginal revenue from the demand function p=15ln(q+1)p=\frac{15}{\ln (q+1)}. Calculate drdq=\frac{d r}{d q}=\square.

See Solution

Problem 15103

Differentiate the function y=(9x)xy=(9 x)^{x}.

See Solution

Problem 15104

Find the slope of the tangent line at x=2x=-2 for h(x)=(3x4)2xh(x)=\frac{(3x-4)^{2}}{x}.

See Solution

Problem 15105

Find the critical numbers of the function f(x)=x24xf(x)=x^{2} \sqrt{4-x} on the interval [1,4][1,4].

See Solution

Problem 15106

Find the derivative of the function h(x)=7x7h(x)=7^{x^{7}}. What is h(x)=h^{\prime}(x)=\square?

See Solution

Problem 15107

Find the rate of change of pressure P(x)=104e0.00012xP(x)=10^{4} e^{-0.00012 x} at x=1020x=1020 m and x=1240x=1240 m, rounded to two decimals.

See Solution

Problem 15108

Find the slope of the tangent line to h(x)=f(2x2x)h(x)=f(2x^{2}-x) at x=1x=-1 for f(x)=12x+3.5f(x)=\frac{1}{2}x+3.5.

See Solution

Problem 15109

Find the marginal-cost function from the average cost cˉ=3250eq650q\bar{c}=\frac{3250 e^{\frac{q}{650}}}{q} for q=325q=325 and q=650q=650.

See Solution

Problem 15110

Find the number of tractors xx that minimizes the cost given by C(x)=1100060x+0.1x2C(x)=11000-60x+0.1x^{2}.

See Solution

Problem 15111

Find the rate of change of price pp with respect to quantity qq for p=e0.004qp=e^{-0.004 q} at q=400q=400.

See Solution

Problem 15112

A cylinder's radius increases at 7 ft/min. Volume is constant at 554 ft³. Find height change rate when radius is 88 ft. Use V=πr2hV=\pi r^{2} h. Round to three decimal places.

See Solution

Problem 15113

Find the general antiderivative of f(x)=33x2f(x)=33 x^{2} and verify by differentiation. What is f(x)dx=\int f(x) d x =?

See Solution

Problem 15114

Find the antiderivative of f(x)=5x3/5f(x)=5 x^{-3/5} and verify by differentiating. f(x)dx=\int f(x) dx =

See Solution

Problem 15115

Find the marginal-cost function for cˉ=9500eq950q\bar{c}=\frac{9500 e^{\frac{q}{950}}}{q} at q=475q=475 and q=950q=950.

See Solution

Problem 15116

Find the antiderivative of f(x)=29x+17x2f(x)=29 x+17 x^{-2} and verify by differentiating. Use CC for the constant. f(x)dx=\int f(x) dx =

See Solution

Problem 15117

Find ff^{\prime} and ff given f(x)=cos(x)f^{\prime \prime}(x)=\cos(x), f(π2)=15f^{\prime}(\frac{\pi}{2})=15, f(π2)=6f(\frac{\pi}{2})=6.

See Solution

Problem 15118

Show that the function f(x)=2x2+3x+5f(x)=2x^2+3x+5 takes a specific value using the Intermediate Value Theorem in a given interval.

See Solution

Problem 15119

Determine where the function f(x)=x+5x23x40f(x)=\frac{x+5}{x^{2}-3x-40} is increasing or decreasing.

See Solution

Problem 15120

Calculate the limit of 2x+h1+h2x2h2+xh3\frac{2x+h}{1}+\frac{h^{2}}{x^{2}h^{2}+xh^{3}} as hh approaches 0.

See Solution

Problem 15121

Find the marginal-cost function and its values for cˉ=6500eq650q\bar{c}=\frac{6500 e^{\frac{q}{650}}}{q} at q=325q=325 and q=650q=650.

See Solution

Problem 15122

A hammer falls for 7 seconds under gravity 9.8 m/s2-9.8 \mathrm{~m/s}^{2}. Find the distance fallen, s(7)s(7). Round to one decimal place.

See Solution

Problem 15123

A 3600kg3600-\mathrm{kg} rocket's velocity v(m)v(m) changes as mass mm decreases. Find v(2809)v(2809) given dvdm=40 m1/2\frac{d v}{d m}=-40 \mathrm{~m}^{-1 / 2} and v(3600)=0v(3600)=0. v(2809)=v(2809) = m/s\mathrm{m} / \mathrm{s}

See Solution

Problem 15124

Calculate the limit: limh0x2+2xh+h2+1x+hx21xh\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+\frac{1}{x+h}-x^{2}-\frac{1}{x}}{h}.

See Solution

Problem 15125

For the demand equation p=10503qp=1050-3 q, show demand is elastic and total revenue increases for 0<q<1750<q<175, and inelastic with decreasing revenue for 175<q<350175<q<350. Find η\eta using η=pqdqdp\eta=\frac{p}{q} \cdot \frac{d q}{d p} and simplify.

See Solution

Problem 15126

Evaluate f(x)=2x2+3x+5f(x)=2 x^{2}+3 x+5 using the Intermediate Value Theorem on the interval [1,4][1,4].

See Solution

Problem 15127

Find the limit: limh0((x+h)2+1x+h)(x2+1x)h\lim _{h \rightarrow 0} \frac{\left((x+h)^{2}+\frac{1}{x+h}\right)-\left(x^{2}+\frac{1}{x}\right)}{h}.

See Solution

Problem 15128

Differentiate y=11ln(x24x+53)y=11 \ln \left(x^{2} \sqrt[3]{4 x+5}\right).

See Solution

Problem 15129

Find the limit: limh0((x+h)2+1x+h)(x2+1x)2h\lim _{h \rightarrow 0} \frac{\left((x+h)^{2}+\frac{1}{x+h}\right)-\left(x^{2}+\frac{1}{x}\right)^{2}}{h}

See Solution

Problem 15130

Find constants c1c_{1} and c2c_{2} so that F(x)=c1xex+c2exF(x)=c_{1} x e^{-x}+c_{2} e^{-x} is an antiderivative of f(x)=5xexf(x)=5 x e^{-x}.

See Solution

Problem 15131

Find the marginal-cost function and its values for q=450q=450 and q=900q=900 given cˉ=9000eq900q\bar{c}=\frac{9000 e^{\frac{q}{900}}}{q}.

See Solution

Problem 15132

Evaluate the integral 224x24x2x2+y22(x2+y2)dzdydx\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2}(x^{2}+y^{2}) \, dz \, dy \, dx. Use cylindrical coordinates.

See Solution

Problem 15133

Find the derivative of f(x)=(3x52x2+1)(3x3)f(x)=(3x^{5}-2x^{2}+1)(3-x^{3}) using the product rule.

See Solution

Problem 15134

Find the mass of a 2138-gram radioactive sample after 2 hours with a decay rate of 11%11\% per hour. Round to the nearest tenth.

See Solution

Problem 15135

Find the derivative of f(x)=(3x52x2+1)(3x3)f(x)=(3x^{5}-2x^{2}+1)(3-x^{3}).

See Solution

Problem 15136

Find the indefinite integral x3(3x2)2dx\int \frac{x-3}{(3 x-2)^{2}} d x using the substitution u=3x2u=3 x-2.

See Solution

Problem 15137

Evaluate the integral: 11614(xy+yx)dydx\int_{1}^{16} \int_{1}^{4}\left(\frac{x}{y}+\frac{y}{x}\right) d y d x

See Solution

Problem 15138

Find the limit: limx1+[3log2(x+1)]\lim _{x \rightarrow-1^{+}}\left[3-\log _{2}(x+1)\right].

See Solution

Problem 15139

Calculez la dérivée de f(x)=ex+ln(x3+1)f(x)=e^{-\sqrt{x}}+\ln(x^{3}+1) (30 points). Justifiez votre réponse.

See Solution

Problem 15140

Find the saddle point of the function where f=6(x2)(x+1)f' = 6(x-2)(x+1).

See Solution

Problem 15141

Find the derivative of 5x2e4y2=65 x^{2}-e^{4 y^{2}}=-6 with respect to xx.

See Solution

Problem 15142

How long does it take a marble to fall 1420 feet using h(t)=16t2+1420h(t)=-16 t^{2}+1420? Ignore air resistance.

See Solution

Problem 15143

Find the derivative of lnxe3y=2y2\ln x e^{3 y} = 2 y^{2} with respect to xx.

See Solution

Problem 15144

Find the partial derivative of xsin2y=ycos2xx \sin 2y = y \cos 2x with respect to xx at (π4,π2)\left(\frac{\pi}{4}, \frac{\pi}{2}\right).

See Solution

Problem 15145

Find the consumer surplus when the demand function is p(x)=110000.048x2p(x)=11000-0.048 x^{2} and price is set at 8000.

See Solution

Problem 15146

Find the linearization L(x)L(x) of f(x)=ln(x2)f(x)=\ln(x^2) at x=ex=e, estimate f(3)f(3), and explain the approximation's validity.

See Solution

Problem 15147

Find the consumers' surplus when the price is set at 400 for the demand function p(x)=1200(110000)x3p(x)=1200-\left(\frac{1}{10000}\right) x^{3}.

See Solution

Problem 15148

Find the marginal-cost function and its values for cˉ=8000eq800q\bar{c}=\frac{8000 e^{\frac{q}{800}}}{q} at q=400q=400 and q=800q=800.

See Solution

Problem 15149

Determine the restrictions of f(x)=x4(x1)2(x+1)3f(x)=\frac{x-4}{(x-1)^{2}(x+1)^{3}} for asymptotes and similar functions near them.

See Solution

Problem 15150

Use the Ratio Test on the series n=1n22n\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}} to determine convergence or divergence. Show your work.

See Solution

Problem 15151

Find the average cost per ton for mining 1000 tons, and the marginal cost at this production level using C(x)=4200+5.40x0.001x2+0.000002x3C(x)=4200+5.40 x-0.001 x^{2}+0.000002 x^{3}.

See Solution

Problem 15152

Find the sum of the series: n=1(3)nn3\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n^{3}}.

See Solution

Problem 15153

Determine if the series converge or diverge using the Ratio Test or another method. Show all work.
1. n=1n22n\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}
2. n=1(3)nn3\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n^{3}}

See Solution

Problem 15154

Determine convergence/divergence of these series using the Ratio Test or another method. Show all work.
1. n=1n22n\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}
2. n=0(3)nn!\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!}
3. n=1(3)nn3\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n^{3}}

See Solution

Problem 15155

Evaluate the series: n=1(1)n1n5+n\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{5+n}.

See Solution

Problem 15156

Calculate the series: n=1(1)n1n5+n\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{5+n}.

See Solution

Problem 15157

Determine convergence or divergence of these series using the Ratio Test or an alternate method. Show your work.
1. n=1n22n\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}
2. n=1(3)nn3\sum_{n=1}^{\infty} \frac{(-3)^{n}}{n^{3}}
3. n=0(3)nn!\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!}

See Solution

Problem 15158

Calculate the sum: n=1en(n+2)!\sum_{n=1}^{\infty} e^{-n}(n+2)!

See Solution

Problem 15159

Determine the long term behavior of f(x)=5xx+9f(x) = \frac{5x}{x + 9} and identify any horizontal asymptote.

See Solution

Problem 15160

Given the demand equation q=55p+ln(9p3)q=\frac{55}{p}+\ln \left(9-p^{3}\right), find:
(a) Elasticity at p=2p=2 and classify it. (b) Estimate quantity change with a 2% price drop from \$2.00 to \$1.96. (c) Will revenue increase or decrease? Explain.

See Solution

Problem 15161

The cost function for mining xx tons is C(x)=4200+5.40x0.001x2+0.000002x3C(x) = 4200 + 5.40x - 0.001x^2 + 0.000002x^3.
(a) Find average cost for 1000 tons. (b) Find marginal cost for 1000 tons. (c) Explain average cost change if production exceeds 1000 tons.

See Solution

Problem 15162

Find the long-term behavior of f(x)=2x2+7x26x3+5f(x)=\frac{2 x^{2}+7 x-2}{6 x^{3}+5}. Does it have a horizontal asymptote? What is its equation?

See Solution

Problem 15163

Find the long-term behavior of f(x)=5x4+3x28xx3+2f(x)=\frac{5 x^{4}+3 x^{2}-8 x}{x^{3}+2}. Does it have a horizontal asymptote?

See Solution

Problem 15164

Analyze the function f(x)=5x4+3x28xx3+2f(x)=\frac{5 x^{4}+3 x^{2}-8 x}{x^{3}+2} for long term behavior and check for horizontal asymptotes.

See Solution

Problem 15165

Determine convergence or divergence of these series using the Ratio Test or an alternate method:
1. n=1n22n\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}
2. n=0(3)nn!\sum_{n=0}^{\infty} \frac{(-3)^{n}}{n!}
3. n=1(1)n1n5+n\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{5+n}
4. n=1en(n+2)\sum_{n=1}^{\infty} e^{-n}(n+2)

Show all work.

See Solution

Problem 15166

Find the long-term behavior of f(x)=(2x3)(x7)x(x+2)(x2)2f(x)=\frac{(2 x-3)(x-7)}{x(x+2)(x-2)^{2}} and state if there's a horizontal asymptote.

See Solution

Problem 15167

Expand f(z)=1z(1z)2f(z)=\frac{1}{z(1-z)^{2}} in a Laurent series for z>1|z|>1 with terms ak(zz0)ka_{k}(z-z_{0})^{k} for 5k5-5 \leq k \leq 5.

See Solution

Problem 15168

Find f(x)f'(x) if f(x)=2x3t4dtf(x)=\int_{-2}^{x^{3}} t^{4} dt.

See Solution

Problem 15169

Approximate the area under the curve y=x3y=x^{3} from x=0x=0 to x=2x=2 using 4 Right Endpoint subdivisions.

See Solution

Problem 15170

Find the displacement and total distance of an object moving with velocity v(t)=t2+2t3v(t)=t^{2}+2t-3 from t=0t=0 to t=7t=7.

See Solution

Problem 15171

Evaluate the definite integrals of the function: 02f(x)dx=3\int_{0}^{2} f(x) dx = -3 and 27f(x)dx=8\int_{2}^{7} f(x) dx = 8.

See Solution

Problem 15172

Which term completes: Near a function's vertical asymptotes, values become very large positive or negative. A. undefined B. large C. rational D. small

See Solution

Problem 15173

Analyze the end behavior of f(x)=(23)x2f(x)=\left(\frac{2}{3}\right)^{x}-2. What happens as x±x \to \pm \infty?

See Solution

Problem 15174

Find the antiderivative of f(x)=1x1x2f(x)=\frac{1}{x}-\frac{1}{x^{2}}.

See Solution

Problem 15175

Find the derivative of (t24)2+(2t14)2+(2t13)2(t^{2}-4)^{2}+(2 t-14)^{2}+(2 t-13)^{2}.

See Solution

Problem 15176

Berechnen Sie das Integral: 132dx\int_{1}^{3} 2 \, dx mit dem Hauptsatz der Differential- und Integralrechnung.

See Solution

Problem 15177

Determine the tangent plane equation for z=ex(siny+1)z=e^{x}(\sin y+1) at point P(0,π2,2)P\left(0, \frac{\pi}{2}, 2\right).

See Solution

Problem 15178

A ball is thrown down from a 58.0 m58.0 \mathrm{~m} tower at 11.0 m/s11.0 \mathrm{~m/s}. Find its speed before hitting the ground. m/s\mathrm{m/s}

See Solution

Problem 15179

Differentiate 2xy+3=02xy + 3 = 0 to find dydx\frac{dy}{dx}.

See Solution

Problem 15180

Differentiate x2y3+x3y4=11x^{2} y^{3} + x^{3} y^{4} = 11 implicitly to find dydx\frac{dy}{dx}.

See Solution

Problem 15181

Differentiate y5=x3y^{5}=x^{3} implicitly to find dydx\frac{dy}{dx}.

See Solution

Problem 15182

Evaluate the integral 12kx3dx\int_{1}^{2} k x^{3} d x and express it as [14kx4]12\left[\frac{1}{4} k x^{4}\right]_{1}^{2}.

See Solution

Problem 15183

Welche Bedingung müssen die Koeffizienten a und bb der Funktion f(x)=ax6+bx4f(x)=a x^{6}+b x^{4} erfüllen, damit ff zwei Wendestellen hat?

See Solution

Problem 15184

A 17-ft ladder leans against a wall. If the base moves away at 0.5ft/s0.5 \mathrm{ft/s}, how fast does the top slide down after 12s?

See Solution

Problem 15185

Find the limit of f(3+h)f(3)h\frac{f(3+h)-f(3)}{h} for f(x)=2x2f(x)=-2x^{2}.

See Solution

Problem 15186

Bestimme die Ableitung von f(x)=x2f(x) = x^{2}.

See Solution

Problem 15187

Find the limit of f(2+h)f(2)h\frac{f(2+h)-f(2)}{h} for f(x)=0.5x2f(x)=0.5x^2.

See Solution

Problem 15188

Bestimme die x-Werte für waagrechte Tangenten der Funktion f(x)=0,25x4x3+4f(x)=0,25 x^{4}-x^{3}+4 und analysiere die Steigung.

See Solution

Problem 15189

Bestimme die Bedingungen für a,b,c\mathrm{a}, \mathrm{b}, \mathrm{c}, damit die Ableitung von f(x)=ax3+bx2+cx+df(x)=a x^{3}+b x^{2}+c x+d 0, 1 oder 2 Nullstellen hat. Finde a\mathrm{a}, damit 6 eine lokale Extremstelle von f(x)=x3(ax)f(x)=x^{3}(a-x) ist und zeichne den Graphen. Wo ist f(x)<0f(x)<0?

See Solution

Problem 15190

Find the function f(x)f(x) if f(x)=5x6f^{\prime}(x)=-5 x^{-6}.

See Solution

Problem 15191

Skateboard in Halfpipe: Geschwindigkeit f(x)=4x(x2)(x3)f(x)=4 x \cdot(x-2) \cdot(x-3), bestimme die Stammfunktion von 0 bis 3 s und deren Bedeutung.

See Solution

Problem 15192

Calculate the derivative of f(x)f(x) at aa using the limit: limxaf(x)f(a)xa\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}.

See Solution

Problem 15193

Find the sum to infinity of the series 2+12+98+2732+2+\frac{1}{2}+\frac{9}{8}+\frac{27}{32}+\ldots

See Solution

Problem 15194

Eine Ampel regelt den Verkehr. Gegeben ist die Beschleunigung f(x)=0,00002x(x60)(x90)f(x)=0,00002 x \cdot(x-60) \cdot(x-90) für 0x900 \leq x \leq 90.
a. Beschreibe die Fahrt des Autos. b. Berechne die Stammfunktion von f(x)f(x) im Intervall [0,90][0, 90]. c. Was bedeutet dieser Wert?

See Solution

Problem 15195

Bestimme die Ableitungen für die Funktionen: a) f(x)=x3f(x)=x^{3}, b) f(x)=ax8f(x)=a x^{8}, c) f(x)=x6+3ax28xf(x)=x^{6}+3 a x^{2}-8 x, d) f(x)=7bx7f(x)=7 b x^{7}, e) f(x)=9x2+12f(x)=9 x^{2}+12.

See Solution

Problem 15196

Eine Ampel regelt den Verkehr. Gegeben ist die Beschleunigung f(x)=0,00002x(x60)(x90)f(x)=0,00002 x \cdot(x-60) \cdot(x-90).
a. Beschreibe die Fahrt des Autos. b. Berechne die Stammfunktion von 0 bis 90 Sekunden. c. Was bedeutet dieser Wert?

See Solution

Problem 15197

Finde die Punkte, wo die Tangente von ff parallel zu y=3x+4y=3x+4 ist. a) f(x)=x3f(x)=x^{3} b) f(x)=x2f(x)=x^{2} c) f(x)=x32f(x)=x^{\frac{3}{2}} d) f(x)=x6f(x)=x^{6}

See Solution

Problem 15198

Find zx\frac{\partial z}{\partial x} for the implicit function defined by F(x,y,z)=x3ey+zysin(xz)F(x, y, z)=x^{3} e^{y+z}-y \sin (x-z).

See Solution

Problem 15199

Bestimme die Ableitung von 2x3-\sqrt{2} \cdot x^{3}.

See Solution

Problem 15200

Berechne die Ableitung der Funktion f(x)=x5f(x)=x^{5}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord