Calculus

Problem 18601

Finde die Stammfunktion von f(x)=x2+2xx5f(x)=\frac{x^{2}+2 x}{x^{5}}.

See Solution

Problem 18602

Gegeben ist die Funktion fa(x)=18x4a12x3+2xf_{a}(x)=\frac{1}{8} x^{4}-\frac{a}{12} x^{3}+2 x.
a. Verhalten von f0f_{0} für x+x \rightarrow+\infty und xx \rightarrow-\infty? b. Nachweis und Koordinaten des lokalen Tiefpunkts von G0G_{0}. c. Tangentengleichung t0t_{0} an G0G_{0} im Schnitt mit der yy-Achse und deren Allgemeingültigkeit. d. Gibt es ein aa, sodass y=2x54y=2 x-54 Tangente an GaG_{a} bei (6,fa(6))(6, f_{a}(6)) ist? e. Warum ist (0,f0(0))(0, f_{0}(0)) kein Wendepunkt von G0G_{0}?

See Solution

Problem 18603

Estimate y(0.6)y(0.6) using Multistep Euler's method with step size 0.1 for y=y+xyy' = y + xy, y(0)=1y(0) = 1.

See Solution

Problem 18604

A particle starts at the origin at t=1t=1 with velocity v(t)=21t2tv(t)=21 t^{2}-t. Write the differential equation and find s(t)s(t). dsdt= \frac{d s}{d t}= s(t)= s(t)=

See Solution

Problem 18605

Calculate the integral from π\pi to 4π3\frac{4\pi}{3} of sec(θ)tan(θ)dθ\sec(\theta) \tan(\theta) \, d\theta.

See Solution

Problem 18606

Find f(2)f^{\prime}(2) given 40+4f(x)+x2(f(x))3=040 + 4 f(x) + x^{2}(f(x))^{3} = 0 and f(2)=2f(2) = -2.

See Solution

Problem 18607

Find the tangent slope mtanm_{\tan } for f(x)=3x+7f(x)=\sqrt{3x+7} at P(3,4)P(3,4) and the tangent line equation y=y=\square.

See Solution

Problem 18608

Gegeben ist die Funktion f(x)=12x2+2x+52f(x)=-\frac{1}{2} x^{2}+2 x+\frac{5}{2}.
a) Zeichne den Graphen von ff für 2x5-2 \leq x \leq 5.
b) Berechne die mittlere Steigung von ff im Intervall I=[1,1]I=[-1,1] und die lokale Steigung bei x0=0x_0=0.
c) Überprüfe, ob die mittlere und lokale Steigung übereinstimmen.

See Solution

Problem 18609

Berechnen Sie die unbestimmten Integrale mit der linearen Substitutionsregel: a) (2x+1)2dx\int(2 x+1)^{2} d x b) (12x+1)2dx\int\left(\frac{1}{2} x+1\right)^{2} d x c) 1(3x+2)2dx\int \frac{1}{(3 x+2)^{2}} d x d) 22x+1dx\int 2 \sqrt{2 x+1} d x

See Solution

Problem 18610

Calculate the indefinite integral: 12x3dx=\int 12 x^{3} dx = \square

See Solution

Problem 18611

Find the indefinite integral of 6x126 x^{\frac{1}{2}}: 6x12dx=\int 6 x^{\frac{1}{2}} d x=\square

See Solution

Problem 18612

Evaluate the integral: 2dx=\int 2 \, dx = \square

See Solution

Problem 18613

Calculate the indefinite integral: x11dx=\int x^{-11} d x = \square

See Solution

Problem 18614

Evaluate the integral: x7dx=\int x^{7} dx = \square

See Solution

Problem 18615

Evaluate 37f(x)dx\int_{3}^{7} f(x) d x, 34f(x)dx\int_{3}^{4} f(x) d x, and 47g(x)dx\int_{4}^{7} g(x) d x.

See Solution

Problem 18616

A family has 160 feet of fencing for a garden with one side already fenced. Find dimensions for max area, then max area value.

See Solution

Problem 18617

Calculate the integral from 0 to 2π2\pi of sin(x)\sin(x) with respect to xx.

See Solution

Problem 18618

Given 24f(x)dx=4\int_{2}^{4} f(x) d x=-4, 27f(x)dx=2\int_{2}^{7} f(x) d x=-2, and 27g(x)dx=8\int_{2}^{7} g(x) d x=8, find:
1. 72g(x)dx=\int_{7}^{2} g(x) d x=\square
2. 274g(x)dx=\int_{2}^{7} 4 g(x) d x=\square
3. 27[g(x)f(x)]dx=\int_{2}^{7}[g(x)-f(x)] d x=\square
4. 27[9g(x)f(x)]dx=\int_{2}^{7}[9 g(x)-f(x)] d x=\square

See Solution

Problem 18619

Evaluate the integral: 3xdx=\int \frac{3}{x} d x=\square

See Solution

Problem 18620

Evaluate the limit:
limuπ47tanu7cotuuπ4. \lim _{u \rightarrow \frac{\pi}{4}} \frac{7 \tan u - 7 \cot u}{u - \frac{\pi}{4}}.
Use l'Hôpital's Rule if needed. What is the limit's value?

See Solution

Problem 18621

Evaluate the integral: 2xdx=\int \frac{2}{x} d x=\square

See Solution

Problem 18622

Calculate the indefinite integral and verify by differentiation: 16eudu=\int 16 e^{u} d u=\square.

See Solution

Problem 18623

Evaluate the integral: 4xdx=\int \frac{4}{\sqrt{x}} dx = \square

See Solution

Problem 18624

Evaluate the integral 16x7dx=(\int \frac{1}{6 x^{7}} d x=\square( Type an exact answer.)

See Solution

Problem 18625

Bestimmen Sie die Grenzwerte limxf(x)\lim _{x \rightarrow-\infty} f(x) und limx+f(x)\lim _{x \rightarrow+\infty} f(x) für die Funktionen: a) f(x)=2x3+xf(x)=2 x^{3}+x, b) f(x)=x5x3f(x)=x-5 x^{3}, c) f(x)=x4+2x2f(x)=-x^{4}+2 x^{2}.

See Solution

Problem 18626

Find the indefinite integral: 16x6dx=(\int \frac{1}{6 x^{6}} d x=\square( Type an exact answer.)

See Solution

Problem 18627

Is the statement true? If nn is an integer, then xn+1n+1\frac{x^{n+1}}{n+1} is an antiderivative of xnx^{n}. Choose A, B, C, or D.

See Solution

Problem 18628

Find the limit: limx18x4+4x3+6x+2x+1\lim _{x \rightarrow-1} \frac{8 x^{4}+4 x^{3}+6 x+2}{x+1} using l'Hôpital's Rule if applicable.

See Solution

Problem 18629

Evaluate the integral: 19x7dx=(\int \frac{1}{9 x^{7}} d x=\square( Type an exact answer.)

See Solution

Problem 18630

Rewrite the limit using l'Hôpital's Rule: limuπ47tanu7cotuuπ4=limuπ4()\lim _{u \rightarrow \frac{\pi}{4}} \frac{7 \tan u-7 \cot u}{u-\frac{\pi}{4}}=\lim _{u \rightarrow \frac{\pi}{4}}(\square)

See Solution

Problem 18631

Evaluate the limit: limuπ47tanu7cotuuπ4\lim _{u \rightarrow \frac{\pi}{4}} \frac{7 \tan u-7 \cot u}{u-\frac{\pi}{4}} using l'Hôpital's Rule.

See Solution

Problem 18632

Evaluate the integral: 9+uudu=\int \frac{9+u}{u} d u = \square

See Solution

Problem 18633

Calculate the indefinite integral and verify by differentiating: (3ez+4)dz=\int(3 e^{z}+4) dz = \square

See Solution

Problem 18634

Evaluate the integral: (5x44x4)dx=\int\left(5 x^{4}-\frac{4}{x^{4}}\right) d x=\square

See Solution

Problem 18635

Find the antiderivative C(x)C(x) of C(x)=3x24xC'(x)=3 x^{2}-4 x with C(0)=1,000C(0)=1,000. What is C(x)=C(x)=\square?

See Solution

Problem 18636

Find ff where f(x)=9xf^{\prime}(x)=\frac{9}{\sqrt{x}} and f(9)=60f(9)=60. What is f(x)=f(x)=\square?

See Solution

Problem 18637

Find points cc where the Mean Value Theorem applies for f(x)=x3f(x)=x^{3} on [16,16][-16,16]. Conclusion holds for c=\mathrm{c}=\square.

See Solution

Problem 18638

Find the antiderivative of 4x2+8x114 x^{-2}+8 x^{-1}-1 with the condition y(1)=5y(1)=5. What is y(x)=y(x)=\square?

See Solution

Problem 18639

Find ff where f(x)=4xf'(x)=\frac{4}{\sqrt{x}} and f(9)=39f(9)=39. What is f(x)=f(x)=\square?

See Solution

Problem 18640

Find the slope of the tangent line to f(x)=13+2xf(x)=\frac{1}{3+2x} at P=(1,15)P=(1,\frac{1}{5}) and its equation. Options: A, B, C, D.

See Solution

Problem 18641

Find the antiderivative of dxdt=4et8\frac{\mathrm{dx}}{\mathrm{dt}}=4 e^{\mathrm{t}}-8 with x(0)=1\mathrm{x}(0)=1. What is x(t)=x(t)=\square?

See Solution

Problem 18642

Find the curve equation passing through (3,4) with slope dydx=3x7\frac{d y}{d x}=3 x-7. What is y(x)=y(x)=\square?

See Solution

Problem 18643

Find the absolute extreme values of f(x)=2x3+27x2108xf(x)=-2x^{3}+27x^{2}-108x on [2,7][2,7]. Where are the max/min values?

See Solution

Problem 18644

Evaluate the integral 1/21(x36)dx\int_{1/2}^{1} (x^{-3} - 6) \, dx using the Fundamental Theorem of Calculus. Find (x36)dx=\int (x^{-3} - 6) \, dx = \square.

See Solution

Problem 18645

Find the second derivative yy^{\prime \prime} of the function y=sinx6xy=\frac{\sin x}{6 x}.

See Solution

Problem 18646

Find the antiderivative FF of f(x)=x53x41f(x)=x^{5}-3 x^{-4}-1 such that F(1)=1F(1)=1. What is F(x)=F(x)=\square?

See Solution

Problem 18647

Find the limits: a. limx8+6x8\lim _{x \rightarrow 8^{+}} \frac{6}{x-8}, b. limx86x8\lim _{x \rightarrow 8^{-}} \frac{6}{x-8}, c. limx86x8\lim _{x \rightarrow 8} \frac{6}{x-8}.

See Solution

Problem 18648

Find f(x)f^{\prime}(x) from f(x)=4x3f^{\prime \prime}(x)=4x-3, given f(3)=2f^{\prime}(-3)=-2 and f(3)=6f(-3)=-6. Also, find f(3)f(3).

See Solution

Problem 18649

Gegeben ist die Funktion fa(x)=18x4a12x3+2xf_{a}(x)=\frac{1}{8} x^{4}-\frac{a}{12} x^{3}+2 x. Untersuchen Sie das Verhalten von f0f_{0} und die Eigenschaften von G0G_{0}.

See Solution

Problem 18650

Find the mean slope of f(x)=36x2f(x)=3-6 x^{2} on [5,7][-5,7] and the value of cc where f(c)f'(c) equals this slope.

See Solution

Problem 18651

Bestimmen Sie die Punkte mit waagerechter Tangente für die Funktionen: a) f(x)=xexf(x)=x \cdot e^{x}, b) f(x)=x2e2xf(x)=x^{2} \cdot e^{2 x}, c) f(x)=(x2)exf(x)=(x-2) \cdot e^{-x}.

See Solution

Problem 18652

Prove the (n+1)th(n+1)^{th} derivative of f(x)g(x)f(x)g(x) using Pascal's triangle coefficients bkb_k for row n+1n+1.

See Solution

Problem 18653

Approximate 0121+x2dx\int_{0}^{1} \frac{2}{1+x^{2}} dx using the trapezium rule (5 strips) and 03021+x2dx\int_{0}^{30} \frac{2}{1+x^{2}} dx using Simpson's rule (6 strips). Discuss one advantage and disadvantage of Simpson's rule.

See Solution

Problem 18654

A cell culture starts with 1200 cells and grows as p(t)=1200+23t3p(t)=1200+23 t^{3}. Find p(t)p^{\prime}(t), its units, and when it's least/greatest on [0,3][0,3].

See Solution

Problem 18655

Find f(2)f(2) for the function with f(x)=5x+10sin(x)f^{\prime \prime}(x)=5 x+10 \sin (x), given f(0)=3f(0)=3 and f(0)=3f^{\prime}(0)=3.

See Solution

Problem 18656

Gegeben ist die Funktion fa(x)=18x4a12x3+2xf_{a}(x)=\frac{1}{8} x^{4}-\frac{a}{12} x^{3}+2 x. Untersuchen Sie das Verhalten, lokale Tiefpunkte und Tangenten.

See Solution

Problem 18657

Graph f(x)=x+4xf(x)=x+\frac{4}{x} and the secant line through (1,5)(1,5) and (8,8.5)(8,8.5). Find cc for the Mean Value Theorem on [1,8][1,8]: c=c=

See Solution

Problem 18658

Bestimmen Sie die Abmessungen eines rechteckigen Gatters mit 50 m Draht, das aus zwei unterschiedlich großen Rechtecken besteht, um die Fläche zu maximieren.

See Solution

Problem 18659

Find the maxima, minima, and intervals of increase/decrease for the function y=4x321x290x+25y=4 x^{3}-21 x^{2}-90 x+25. Then sketch the graph.

See Solution

Problem 18660

Find the position of a particle at time t=14t=14 given a(t)=24t+18a(t)=24t+18, s(0)=2s(0)=2, and v(0)=10v(0)=10.

See Solution

Problem 18661

Find the average slope of f(x)=1xf(x)=\frac{1}{x} on [3,11][3,11] and values of cc in (3,11)(3,11) where f(c)f^{\prime}(c) equals this slope.

See Solution

Problem 18662

Find cc using the Mean Value Theorem for f(x)=6x2+11x+11f(x)=6 x^{2}+11 x+11 on [9,12][9,12]. If not applicable, enter DNE.

See Solution

Problem 18663

Check if the Mean Value Theorem applies to f(x)=10ln(x)+2f(x)=10 \ln (x)+2 on [1,20][1,20]. If yes, find cc in [1,20][1,20].

See Solution

Problem 18664

Find the mean slope of f(x)=4x+6f(x)=4 \sqrt{x}+6 on [3,7][3,7] and values of cc where f(c)f^{\prime}(c) equals this slope.

See Solution

Problem 18665

Évaluez les intégrales suivantes : a) x1+4xdx\int x \sqrt{1+4 x} d x, b) 1+2x1+16x2dx\int \frac{1+2 x}{1+16 x^{2}} d x, c) (4t+2)et2+tdx\int(4 t+2) e^{t^{2}+t} d x, d) exex+exdx\int \frac{e^{x}}{e^{x}+e^{-x}} d x, e) x22xdx\int x^{2} 2^{x} d x, f) x2e4xdx\int x^{2} e^{4 x} d x, g) 3t3sin(t2)dt\int 3 t^{3} \sin \left(t^{2}\right) d t, h) x2(lnx)2dx\int x^{2}(\ln x)^{2} d x. Trouvez le profit maximal d'un appareil acheté à 2500 avec RR et CC données par dRdt=100(183t)\frac{d R}{d t}=100(18-3 \sqrt{t}) et dCdt=100(2+t)\frac{d C}{d t}=100(2+\sqrt{t}).

See Solution

Problem 18666

Évaluez ces intégrales : a) x1+4xdx\int x \sqrt{1+4 x} d x, b) 1+2x1+16x2dx\int \frac{1+2 x}{1+16 x^{2}} d x, c) (4t+2)et2+tdx\int(4 t+2) e^{t^{2}+t} d x, d) exex+exdx\int \frac{e^{x}}{e^{x}+e^{-x}} d x, e) x22xdx\int x^{2} 2^{x} d x, f) x2e4xdx\int x^{2} e^{4 x} d x, g) 3t3sin(t2)dt\int 3 t^{3} \sin \left(t^{2}\right) d t, h) x2(lnx)2dx\int x^{2}(\ln x)^{2} d x.

See Solution

Problem 18667

Finde die Stammfunktionen für die folgenden Funktionen: a) f(x)=x32x+1f(x)=x^{3}-2x+1 b) f(x)=x+sin(x)f(x)=x+\sin(x) c) f(x)=3xf(x)=3\sqrt{x} d) f(x)=4x6f(x)=4x^{6} e) f(x)=3asin(x)f(x)=3a\cdot\sin(x) f) f(x)=1xf(x)=\frac{1}{\sqrt{x}} und für Training 2: a) f(x)=x+xf(x)=\sqrt{x}+x b) f(x)=(x1)(x3)f(x)=(x-1)(x-3) c) f(x)=3x24x+5f(x)=3x^{2}-4x+5 d) f(x)=(x+2)2f(x)=(x+2)^{2} e) f(x)=ax(4x2)f(x)=ax\cdot(4x-2) f) f(x)=(xa)2f(x)=(x-a)^{2}.

See Solution

Problem 18668

A turkey cools from 185F185^{\circ} \mathrm{F} to 77F77^{\circ} \mathrm{F}. Find its temp after 45 min and time to reach 100F100^{\circ} \mathrm{F}.

See Solution

Problem 18669

Estimate the time for the world population to double and triple given it was 7.1 billion in 2013 with a growth rate of 1.1%1.1\% per year.

See Solution

Problem 18670

Trouver les dimensions d'un enclos rectangulaire de 100m de clôture, divisé en deux, pour maximiser l'aire AA.

See Solution

Problem 18671

Check if the Mean Value Theorem applies to f(x)=6x2+11x+11f(x)=6x^2+11x+11 on [9,12][9,12]. If yes, find cc. If no, enter DNE.

See Solution

Problem 18672

Sketch the graph of relation ff with these limits: limx2+f=3\lim _{x \rightarrow 2^{+}} f=3, limx2f=5\lim _{x \rightarrow 2^{-}} f=5, f(2)=4f(2)=4, limx1+f=\lim _{x \rightarrow 1^{+}} f=\infty, limx0f=\lim _{x \rightarrow 0^{-}} f=-\infty, limx3+f=2\lim _{x \rightarrow-3^{+}} f=-2, limx3f=1\lim _{x \rightarrow-3^{-}} f=1, f(3)=4f(-3)=-4, limxf=2\lim _{x \rightarrow \infty} f=2, limxf=2\lim _{x \rightarrow-\infty} f=2. Is ff a function? Justify your answer!

See Solution

Problem 18673

Determine which two of the following series converge:
1. n=1(n22n+1)n\sum_{n=1}^{\infty}\left(\frac{n^{2}}{2 n+1}\right)^{n}
2. n=1(1+1n2)n3\sum_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)^{n^{3}}
3. n=1(n1n+1)n2+n\sum_{n=1}^{\infty}\left(\frac{n-1}{n+1}\right)^{n^{2}+n}
4. n=13nn3\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}}
5. n=1n!(2n)!\sum_{n=1}^{\infty} \frac{n !}{(2 n) !}
6. n=1n3+1n10+n3\sum_{n=1}^{\infty} \frac{n^{3}+1}{\sqrt[3]{n^{10}+n}}
7. n=1135(2n1)n!\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n !}

See Solution

Problem 18674

Solve these differential equations and find CC if there's an initial value: 1a) dydx=x2yy+x21\frac{d y}{d x}=x^{2} y-y+x^{2}-1 1b) x+3y2x2+1dydx=0,y(0)=1x+3 y^{2} \sqrt{x^{2}+1} \frac{d y}{d x}=0, \quad y(0)=1
2a) 2xy2y=x22 x y^{\prime}-2 y=x^{2} 2b) x2y+2xy=ln(x),y(1)=2x^{2} y^{\prime}+2 x y=\ln (x), \quad y(1)=2.

See Solution

Problem 18675

Find the projected population in 2039 given a 3% growth rate (a) and a reduced 2% growth rate (b) from 150 million in 2011.

See Solution

Problem 18676

Berechnen Sie die folgenden Integrale mit dem Hauptsatz der Differenzial- und Integralrechnung: a) 124x3\int_{1}^{2} 4 x^{3}, b) 11(9x21)\int_{-1}^{1}\left(9 x^{2}-1\right), c) 0π2sin(x)\int_{0}^{\frac{\pi}{2}} \sin (x), d) 131x2\int_{1}^{3} \frac{1}{x^{2}}, e) 04x(x1)\int_{0}^{4} x(x-1), f) 1251x\int_{1}^{25} \frac{1}{\sqrt{x}}.

See Solution

Problem 18677

Find the tangent line equation for y=5ln(x37)y=5 \ln (x^{3}-7) at point (2,0)(2,0). y=y=

See Solution

Problem 18678

Find the tangent line equation for y=14xexy=14 x e^{x} at (0,0)(0,0) in the form y=mx+by=m x+b. Determine mm and bb.

See Solution

Problem 18679

Calculate the integral 02πf(x)dx\int_{0}^{2 \pi} f(x) d x for f(x)=sin(x)f(x)=\sin(x) for xπx \leq \pi and f(x)=8sin(x)f(x)=-8\sin(x) for x>πx > \pi.

See Solution

Problem 18680

Find the point on the graph of y=ln(x2+1)y=\ln(x^2+1) where the tangent line is perpendicular to y=5xy=5-x. Report as (x,y)(x, y).

See Solution

Problem 18681

Find A(1.5)A(1.5), A(3)A(3), A(1.5)A^{\prime}(1.5), and A(3)A^{\prime}(3) for A(x)=0xf(t)dtA(x)=\int_{0}^{x} f(t) dt where f(x)=2f(x)=2 for 0x<20 \leq x < 2 and f(x)=xf(x)=x for 2x42 \leq x \leq 4.

See Solution

Problem 18682

Find the differential dyd y for y=ln(1+x4)y=\ln(1+x^4) in terms of xx and dxdx. Enter dxdx as dx\mathrm{dx}. dy= d y=

See Solution

Problem 18683

Find the linearization of f(x)=1+5xf(x)=\sqrt{1+5 x} at a=0a=0: L(x)=A+BxL(x)=A+B x. Calculate AA and BB.

See Solution

Problem 18684

Approximate f(3.9)f^{\prime}(3.9) given f(3.9)=4.6f(3.9)=4.6 and f(4.2)=2.3f(4.2)=-2.3. f(3.9)II f^{\prime}(3.9) \approx I \quad I

See Solution

Problem 18685

Find the general antiderivative of f(x)=4x+4xf(x)=\frac{4}{\sqrt{x}}+4 \sqrt{x}, denoted as F(x)=F(x)=\square (use C for constant).

See Solution

Problem 18686

Find the general antiderivative of f(r)=7r57r5f(r)=\frac{7}{r^{5}}-7 r^{5}. The result is F(r)=F(r)=\square with constant C\mathrm{C}.

See Solution

Problem 18687

Find the linearization L(x)L(x) of f(x)=ln(x)f(x)=\ln(x) at a=1a=1. What is L(x)=L(x)=\square?

See Solution

Problem 18688

Find the general antiderivative of f(x)=(3x+4)2f(x)=(3 x+4)^{2}. Let F(x)=F(x)=\square (use C\mathrm{C} as the constant).

See Solution

Problem 18689

Find the differential dydy for the function y=x64xy=x^{6}-4\sqrt{x} in terms of xx and dxdx.

See Solution

Problem 18690

Approximate 49.4\sqrt{49.4} using local linearization with f(x)=xf(x)=\sqrt{x} at x=49x=49. Find L49(49.4)L_{49}(49.4).

See Solution

Problem 18691

Find dyd y for y=tan(3x+7)y=\tan(3x+7) at x=1x=1 with dx=0.2d x=0.2 and dx=0.4d x=0.4.

See Solution

Problem 18692

Rewrite the integral using uu and dudu, then evaluate: 12xex2dx,u=x2\int 12 x e^{-x^{2}} dx, \quad u=-x^{2}. What is the result?

See Solution

Problem 18693

Find the limit: limx1x+32x34x+3\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x^{3}-4 x+3}.

See Solution

Problem 18694

Rewrite the integral using uu and dudu, then evaluate:
x(x+1)11dx,u=x+1 \int x(x+1)^{11} dx, \quad u=x+1
Find:
x(x+1)11dx= \int x(x+1)^{11} dx=

See Solution

Problem 18695

Berechnen Sie die lokale Änderungsrate von ff an x0x_{0} durch Grenzwertrechnung: a) f(x)=0,5x2,x0=2f(x)=0,5 x^{2}, x_{0}=2 b) f(x)=1x2,x0=2f(x)=1-x^{2}, x_{0}=2 c) f(x)=2x+1;x0=3f(x)=2 x+1; x_{0}=3

See Solution

Problem 18696

Find the Taylor series for f(x)=10xf(x) = \frac{10}{x} centered at a=4a = -4.

See Solution

Problem 18697

Find the limit: limx1x+32x34x+3\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x^{3}-4 x+3}.

See Solution

Problem 18698

Find the limit: limx0sin5x2x=\lim _{x \rightarrow 0} \frac{\sin 5 x}{2 x}=

See Solution

Problem 18699

Find the general antiderivative of f(x)=5x13+4x13+7f(x)=5 x^{\frac{1}{3}}+4 x^{-\frac{1}{3}}+7. What is F(x)=F(x)=\square (use CC)?

See Solution

Problem 18700

Find the general antiderivative of f(x)=5x13+4x13+7f(x)=5 x^{\frac{1}{3}}+4 x^{-\frac{1}{3}}+7. Express as F(x)=F(x)=\square (use C for constant).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord