Calculus

Problem 19801

Find the dimensions of a box with volume 296352 cm3296352 \mathrm{~cm}^{3} that minimizes surface area.
1. Surface area formula in terms of xx: A(x)= A(x)=
2. Derivative A(x)A^{\prime}(x): A(x)= A^{\prime}(x)=
3. Solve A(x)=0A^{\prime}(x)=0: A(x)=0 when x= A^{\prime}(x)=0 \text{ when } x=
4. Second derivative A(x)A^{\prime \prime}(x): A(x)= A^{\prime \prime}(x)=
Evaluate A(x)A^{\prime \prime}(x) at the xx-value found earlier.

See Solution

Problem 19802

Find the average cost of producing 500 units given the marginal cost function dcdq=0.003q20.6q+90\frac{d c}{d q}=0.003 q^{2}-0.6 q+90 and fixed costs of \9000.Averagecostat9000. Average cost at q=500$ is \$\square.

See Solution

Problem 19803

Evaluate the surface integral: SvdS=0π/202π8sin(φ)cos2(φ)dθdφ\iint_{S} \mathbf{v} \cdot d \mathbf{S} = \int_{0}^{\pi / 2} \int_{0}^{2 \pi} 8 \sin (\varphi) \cos ^{2}(\varphi) d \theta d \varphi.

See Solution

Problem 19804

Calculate the integral: 14x3e14x2dx\int 14 x^{3} e^{14 x^{2}} d x

See Solution

Problem 19805

Use the Limit Comparison Test to check if the series n=12n1/55n3+7n+7\sum_{n=1}^{\infty} \frac{2 n^{1 / 5}}{\sqrt{5 n^{3}+7 n+7}} converges or diverges.

See Solution

Problem 19806

Calculate the surface integral SFdS\iint_{S} \mathbf{F} \cdot d \mathbf{S} using the divergence theorem for F(x,y,z)=x4ix3z2j+4xy2zk\mathbf{F}(x, y, z)=x^{4} \mathbf{i}-x^{3} z^{2} \mathbf{j}+4 x y^{2} z \mathbf{k}, where SS is bounded by x2+y2=1x^{2}+y^{2}=1, z=x+4z=x+4, and z=0z=0.

See Solution

Problem 19807

Find the derivative dyd y of the function y=e5x+1y=e^{5 \sqrt{x}+1}.

See Solution

Problem 19808

Find dy for the equation y = 2x√(12 - x³).

See Solution

Problem 19809

Find the derivative dydx\frac{d y}{d x} for the function y=tan1(ln(2x3))y=\tan^{-1}(\ln(2x^3)).

See Solution

Problem 19810

How much longer does it take for Alexa's \8,000at8,000 at 3 \frac{5}{8} \%continuousinteresttodoublecomparedtoMaliks$8,000at continuous interest to double compared to Malik's \$8,000 at 3 \frac{3}{4} \%$ quarterly?

See Solution

Problem 19811

Calculate the integral: 06(18s2+216(1s)3e6+1)ds\int_{0}^{6}\left(18 s^{2}+\frac{216(1-s)}{3}-e^{6}+1\right) d s.

See Solution

Problem 19812

Find the value of aa that makes the function g(x)={ax if x<0x215x if x0g(x)=\left\{\begin{array}{ll} a x & \text { if } x<0 \\ x^{2}-15 x & \text { if } x \geq 0 \end{array}\right. differentiable for all xx.

See Solution

Problem 19813

Calculate the integral of the function (4t+2)et2+t(4t + 2)e^{t^2 + t} with respect to tt: (4t+2)et2+tdt\int(4 t + 2)e^{t^{2}+t} dt.

See Solution

Problem 19814

How long to triple an investment with continuous compounding at 15%15\%?

See Solution

Problem 19815

Evaluate the double integral: 0606(er+r2(1s)+rs2)drds\int_{0}^{6} \int_{0}^{6}\left(-e^{r}+r^{2}(1-s)+r s^{2}\right) d r d s

See Solution

Problem 19816

Find the 971st derivative of cosx\cos x.

See Solution

Problem 19817

Find dydt\frac{d y}{d t} given x2+2y2+2y=16x^{2}+2 y^{2}+2 y=16, dxdt=5\frac{d x}{d t}=5, x=2x=2, and y=3y=-3.

See Solution

Problem 19818

Evaluate the surface integral Sx2yzdS\iint_{S} x^{2} y z d S for the plane z=1+4x+2yz=1+4x+2y over the rectangle 0x40 \leq x \leq 4, 0y20 \leq y \leq 2.

See Solution

Problem 19819

Given a fluid flow in R3\mathbb{R}^{3} with velocity qˉ(x,y,z,t)=yt2,xetsin(yt),cos(2x)\bar{q}(x, y, z, t)=\left\langle\sqrt{y} t^{2}, x e^{-t} \sin (y t), \cos (2 x)\right\rangle, find:
A. Acceleration in the Eulerian frame. B. Acceleration in the Lagrangian frame. C. Acceleration in the Eulerian frame at (0.5,0.5,0.5,0.5)(0.5, 0.5, 0.5, 0.5). D. Acceleration in the Lagrangian frame at (0.5,0.5,0.5,0.5)(0.5, 0.5, 0.5, 0.5). E. Lagrangian acceleration behavior as tt increases with (0.5,0.5,0.5)(0.5, 0.5, 0.5).

See Solution

Problem 19820

Find the derivative of y=3x27x+10y=3 x^{2}-7 x+10. Options: A. 6x76 x-7 B. 6x+106 x+10 C. 7x-7 x D. 3x+103 x+10

See Solution

Problem 19821

Evaluate the surface integral SFdS\iint_{S} \mathbf{F} \cdot d \mathbf{S} for F(x,y,z)=x4ix3z2j+4xy2zk\mathbf{F}(x, y, z)=x^{4} \mathbf{i}-x^{3} z^{2} \mathbf{j}+4 x y^{2} z \mathbf{k} over the surface bounded by x2+y2=1x^{2}+y^{2}=1, z=x+4z=x+4, and z=0z=0.

See Solution

Problem 19822

Find the velocity and acceleration of the particle at t=3t=3 sec, given s=7+6ts=\sqrt{7+6t}.

See Solution

Problem 19823

Find the general antiderivative of f(x)=3x2+12f(x)=3 x^{2}+\frac{1}{2} and the particular one with F(1)=1F(1)=1.

See Solution

Problem 19824

Find the area under f(x)=x2exf(x)=x^{2} e^{x} from 00 to 66 using right endpoints as a limit: A=limni=1n(x)A=\lim_{n \rightarrow \infty} \sum_{i=1}^{n} \left(\square_{x}\right).

See Solution

Problem 19825

Find the area under f(x)=x2exf(x)=x^{2} e^{x} from 00 to 66 using right endpoints as a limit: A=limni=1n(x)A=\lim_{n \to \infty} \sum_{i=1}^{n}(\square_{x}).

See Solution

Problem 19826

A lighthouse is 600 m600 \mathrm{~m} from shore, rotating its beam 4 times/min. Find the speed of the beam at point QQ (350 m350 \mathrm{~m} from PP).
Let xx be distance from PP to the beam and θ\theta be the angle. Relate xx and θ\theta.
Find the related rates equation: dxdt=(dθdt \frac{d x}{d t}=\left(\square \frac{d \theta}{d t}\right.
Calculate speed at point QQ and round to the nearest integer.

See Solution

Problem 19827

Find a region with area equal to the limit: limni=1n3n1+3in\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}.

See Solution

Problem 19828

Find the general antiderivative of h(x)=3x510x4+x2+7h(x)=3 x^{5}-10 x^{4}+x^{2}+7.

See Solution

Problem 19829

How long will it take for a drink cooling from 182F182^{\circ} \mathrm{F} to 93F93^{\circ} \mathrm{F} at 72F72^{\circ} \mathrm{F}?

See Solution

Problem 19830

Find the antiderivative of v(x)=3(x+6)(2x+1)v(x)=3(x+6)(2 x+1) and check your answer by differentiating it.

See Solution

Problem 19831

Find the sum of the series: i=1(25)(47)i1\sum_{i=1}^{\infty}\left(-\frac{2}{5}\right) \cdot\left(-\frac{4}{7}\right)^{i-1}.

See Solution

Problem 19832

Trouver la dérivée de la fonction g(x)=ln(1+cosx)g(x)=\ln (1+\cos x) pour x]π,π[x \in]-\pi, \pi[.

See Solution

Problem 19833

Analyze the series S=n=1(1)n+1(n1)n(n+3)S=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n-1)}{n(n+3)} for absolute or conditional convergence.

See Solution

Problem 19834

Find integers bb such that the series n=1(1)nnb(2n)!(n+1)!\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{b}(2 n) !}{(n+1) !} converges. Specify tests used.

See Solution

Problem 19835

Find integers bb such that the series n=1(1)nnb(2n)!(n+1)!\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{b} (2n)!}{(n+1)!} converges. Specify the tests used.

See Solution

Problem 19836

Determine if the series n=1(3n54n+2)n\sum_{n=1}^{\infty}\left(\frac{3 n-5}{4 n+2}\right)^{n} converges or diverges, and state the tests used.

See Solution

Problem 19837

Find the limit: limx(x+4x+49)=\lim _{x \rightarrow \infty}(\sqrt{x+4}-\sqrt{x+49})=\square (Hint: Use the conjugate.)

See Solution

Problem 19838

Calculate the average rate of change of the function g(x)=9x35g(x)=9 x^{3}-5 over the interval [3,3][-3,3].

See Solution

Problem 19839

Find the derivative f(1)f'(1) for the function f(x)=cos(ln(x5))f(x)=\cos(\ln(x^5)).

See Solution

Problem 19840

Find the limit: limx(x2+3xx22x)\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+3 x}-\sqrt{x^{2}-2 x}\right). Simplify your answer.

See Solution

Problem 19841

Find the tangent line equation for y=16xy=16 \sqrt{x} at (16, 64). Sketch both the curve and the tangent line. The equation is \square.

See Solution

Problem 19842

Evaluate the triple integral: 0π0π62secφ6ρ2sinφdρdφdθ\int_{0}^{\pi} \int_{0}^{\frac{\pi}{6}} \int_{2 \sec \varphi}^{6} \rho^{2} \sin \varphi d \rho d \varphi d \theta.

See Solution

Problem 19843

Find the derivative of the integral: ddx14/xcos2(t)dt\frac{d}{d x} \int_{1}^{4 / x} \cos ^{2}(t) d t.

See Solution

Problem 19844

Find the domain of y=9ex3+exy=\frac{9-e^{x}}{3+e^{x}} and use limits to determine the asymptotes. Domain: ($, ).

See Solution

Problem 19845

Find the slope of the graph of f(x)=x2+1f(x)=x^{2}+1 at the point (2,5)(-2,5) and the tangent line equation. m=m=\square

See Solution

Problem 19846

Find the tangent line equation for the curve y=6x3y=6x^3 at the point (1,6). Sketch both the curve and line.

See Solution

Problem 19847

Find the area between the curves y=x25x+3y=x^{2}-5x+3 and y=x2+5x5y=-x^{2}+5x-5 for xx in [0,4][0,4].

See Solution

Problem 19848

Find the function formula for the integral: 4x2(t+7)dt=\int_{4}^{x^{2}}(t+7) dt =

See Solution

Problem 19849

Find the slope of g(x)=3xx2g(x)=\frac{3 x}{x-2} at (4,6)(4,6) and the tangent line equation at that point.

See Solution

Problem 19850

Find the slope of f(x)=2xf(x)=\sqrt{2 x} at (2,2) and the equation of the tangent line at that point.

See Solution

Problem 19851

Find the slope of f(x)=3xf(x)=\sqrt{3x} at (3,3) and the equation of the tangent line at that point.

See Solution

Problem 19852

Find the slope of the curve y=1x3y=\frac{1}{x-3} at x=5x=5. The slope is \square.

See Solution

Problem 19853

Find the point (x,y)(x, y) where the graph of y=9x2+6x2y=9 x^{2}+6 x-2 has a horizontal tangent line.

See Solution

Problem 19854

Calculate the area between the curves y=x25x+3y=x^{2}-5x+3 and y=x2+5x5y=-x^{2}+5x-5 for xx in [0,4][0,4].

See Solution

Problem 19855

Find the area between R(t)=100+10tR(t)=100+10t and C(t)=61+5tC(t)=61+5t from t=0t=0 to t=5t=5. What does this area represent?

See Solution

Problem 19856

Find the slope of the curve y=9x2y=-9 x^{2} at the point (5,225)(-5,-225). What is the slope?

See Solution

Problem 19857

Use the Integral Test to check if the series n=11(3n1)2\sum_{n=1}^{\infty} \frac{1}{(3 n-1)^{2}} converges or diverges.

See Solution

Problem 19858

Graph y=5x25y=5 x^{\frac{2}{5}} and find where vertical tangents occur. Confirm with limit calculations: limh0f(x0+h)f(x0)h\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}.

See Solution

Problem 19859

Find the formula for the integral function: 2x(20t219t)dt\int_{-2}^{x}(20 t^{2}-19 t) dt.

See Solution

Problem 19860

Find the slope of f(x)=3x+7f(x)=\sqrt{3x+7} at (6,5)(6,5) and the tangent line equation. Slope is \square.

See Solution

Problem 19861

Find and simplify the difference quotient for f(x)=x2+5f(x)=x^{2}+5: f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}.

See Solution

Problem 19862

Find the derivative of p(θ)=7θp(\theta)=\sqrt{7 \theta} and calculate p(1)p^{\prime}(1), p(7)p^{\prime}(7), p(37)p^{\prime}\left(\frac{3}{7}\right).

See Solution

Problem 19863

Find the derivative dydx\frac{d y}{d x} for y=2x3y = -2 x^{3}. What is dydx=\frac{d y}{d x} = \square?

See Solution

Problem 19864

Find the derivative dydx\frac{dy}{dx} for y=5x3/2y = -5x^{3/2}. What is dydx=\frac{dy}{dx} = \square?

See Solution

Problem 19865

Differentiate f(x)=4x+5xf(x)=4x+\frac{5}{x} and find the slope of the tangent line at x=5x=5.

See Solution

Problem 19866

Calculate the area between the curves y=x24x+2y=x^{2}-4x+2 and y=x2+4x4y=-x^{2}+4x-4 from x=0x=0 to x=3x=3.

See Solution

Problem 19867

Calculate the derivative of f(x)=2+x2f(x)=2+x^{2} and find f(6)f^{\prime}(-6), f(0)f^{\prime}(0), f(4)f^{\prime}(4).

See Solution

Problem 19868

Differentiate w=g(z)=7+25zw=g(z)=7+\sqrt{25-z} and find the tangent line at (21,9)(21,9). Derivative is \square.

See Solution

Problem 19869

Find the derivative dsdt\frac{d s}{d t} for the function s=t6t+1s=\frac{t}{6 t+1}.

See Solution

Problem 19870

Find the derivative at θ=1\theta=1 for r=510θr=\frac{5}{\sqrt{10-\theta}}. What is drdθθ=1\left.\frac{d r}{d \theta}\right|_{\theta=1}?

See Solution

Problem 19871

计算曲线 y=sinxy=\sin x 在点 (π2,1)\left(\frac{\pi}{2}, 1\right) 的曲率。

See Solution

Problem 19872

Find the derivative of f(x)=2x+8f(x)=\frac{2}{x+8} using f(x)=limzxf(z)f(x)zxf^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}. f(x)=f^{\prime}(x)=\square

See Solution

Problem 19873

Analyze a "downward W shape" graph to find:
(a) Open intervals where the function increases. (b) Open intervals where the function decreases. (c) Open intervals where the function is constant.

See Solution

Problem 19874

Find the derivative of the function f(x)=1+3xf(x)=1+\sqrt{3 x} using f(x)=limzxf(z)f(x)zxf^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}.

See Solution

Problem 19875

Find the derivative of f(x)=2+3xf(x)=2+\sqrt{3x} using f(x)=limzxf(z)f(x)zxf^{\prime}(x)=\lim_{z \rightarrow x} \frac{f(z)-f(x)}{z-x}. f(x)=f^{\prime}(x)=\square

See Solution

Problem 19876

Is the function f(x)={3x1x0x2+5x1x<0f(x)=\begin{cases} 3x-1 & x \geq 0 \\ x^2+5x-1 & x<0 \end{cases} differentiable at x=0x=0?

See Solution

Problem 19877

Find the first and second derivatives of r=12s75s4r=\frac{1}{2 s}-\frac{7}{5 s^{4}}. What is drds\frac{d r}{d s}?

See Solution

Problem 19878

Find the first and second derivatives of y=4x33x+5exy=\frac{4 x^{3}}{3}-x+5 e^{x}. What is dydx\frac{d y}{d x}?

See Solution

Problem 19879

Find the integral of (32x)100(3-2x)^{100} with respect to xx: (32x)100 dx\int(3-2 x)^{100} \mathrm{~d} x.

See Solution

Problem 19880

Does f(x)=2x3+3x212x+4f(x)=2 x^{3}+3 x^{2}-12 x+4 have an absolute maximum on [0,2][0,2]? Justify your answer.

See Solution

Problem 19881

求不定积分: (1) e5xdx\int e^{5 x} d x (2) (32x)100 dx\int(3-2 x)^{100} \mathrm{~d} x

See Solution

Problem 19882

Find the first and second derivatives of s=4t33t4s=4 t^{3}-3 t^{4}. What is dsdt\frac{\mathrm{ds}}{\mathrm{dt}}?

See Solution

Problem 19883

Is the function f(x)={5x+tanx,x04x2,x<0f(x)=\left\{\begin{array}{ll} 5 x+\tan x, & x \geq 0 \\ 4 x^{2}, & x<0 \end{array}\right. differentiable at x=0x=0?

See Solution

Problem 19884

Find the derivative f(x)f'(x) of f(x)=x312f(x)=\frac{x^3}{12}. Graph f(x)f(x) and f(x)f'(x). Identify where ff' is positive, zero, or negative, and relate this to the intervals where f(x)f(x) increases or decreases.

See Solution

Problem 19885

Does f(x)=2x3+3x212x+4f(x)=2 x^{3}+3 x^{2}-12 x+4 have an absolute max on [0,2][0,2]? Also, find bb and cc for bf(x)cb \leq f(x) \leq c.

See Solution

Problem 19886

A cone with radius a=7 ma=7 \mathrm{~m} and height b=18 mb=18 \mathrm{~m} fills with water at 18 m3/min18 \mathrm{~m}^{3}/\mathrm{min}. Find the rise rate when water is 17 m17 \mathrm{~m} deep.

See Solution

Problem 19887

Find the derivative of the function f(x)=5x2+3xf(x)=\frac{5}{x^{2}+3 x}, denoted as f(x)f^{\prime}(x).

See Solution

Problem 19888

求不定积分:dx23x3\int \frac{\mathrm{d} x}{\sqrt[3]{2-3 x}}sintt dt\int \frac{\sin \sqrt{t}}{\sqrt{t}} \mathrm{~d} t

See Solution

Problem 19889

求不定积分: (8) tan10xsec2x dx\int \tan^{10} x \sec^{2} x \mathrm{~d} x; (10) dxex+ex\int \frac{\mathrm{d} x}{\mathrm{e}^{x}+\mathrm{e}^{-x}}; (12) x23x2 dx\int \frac{x}{\sqrt{2-3 x^{2}}} \mathrm{~d} x;

See Solution

Problem 19890

求不定积分:sin2xcos3x dx\int \sin 2 x \cos 3 x \mathrm{~d} x; tan3xsecx dx\int \tan ^{3} x \sec x \mathrm{~d} x; dxxlnxlnlnx\int \frac{\mathrm{d} x}{x \ln x \ln \ln x}.

See Solution

Problem 19891

求以下不定积分:
1. cos2(ωt+φ)sin(ωt+φ)dt\int \cos^{2}(\omega t+\varphi) \sin(\omega t+\varphi) \mathrm{d} t;
2. 2x11x2dx\int \frac{2x-1}{\sqrt{1-x^{2}}} \mathrm{d} x;
3. sinx+cosxsinxcosx3dx\int \frac{\sin x+\cos x}{\sqrt[3]{\sin x-\cos x}} \mathrm{d} x.

See Solution

Problem 19892

How long will it take for \$7000 to grow to \$50000 at a 10% annual interest rate, compounded continuously?

See Solution

Problem 19893

求不定积分:x2cosx dx\int x^{2} \cos x \mathrm{~d} x

See Solution

Problem 19894

Find the derivative of the function given by f(x)=(2x+1+x+1)f^{\prime}(x)=(2 \sqrt{x+1}+x+1)^{\prime}.

See Solution

Problem 19895

求不定积分: (26) sinxcosx1+sin4x dx\int \frac{\sin x \cos x}{1+\sin ^{4} x} \mathrm{~d} x; (28) dx(a2x2)3(a>0)\int \frac{\mathrm{d} x}{\sqrt{\left(a^{2}-x^{2}\right)^{3}}}(a>0); (30) x2(1+x2)2 dx\int \frac{x^{2}}{\left(1+x^{2}\right)^{2}} \mathrm{~d} x.

See Solution

Problem 19896

Calculate the integral: x2(lnx)2dx\int x^{2}(\ln x)^{2} d x.

See Solution

Problem 19897

Find the integrals: 1) x2lnxdx\int x^{2} \ln x \, dx and 2) arcsinxdx\int \arcsin x \, dx.

See Solution

Problem 19898

Find the derivative of f(x)=2x+1+x+1f(x) = 2 \sqrt{x+1} + x + 1.

See Solution

Problem 19899

计算以下不定积分:
2. x2cosx dx\int x^{2} \cos x \mathrm{~d} x
4. x2lnx dx\int x^{2} \ln x \mathrm{~d} x
6. arcsinx dx\int \arcsin x \mathrm{~d} x
8. xcosx2 dx\int x \cos \frac{x}{2} \mathrm{~d} x
10. xtan2x dx\int x \tan ^{2} x \mathrm{~d} x
12. xsinxcosx dx\int x \sin x \cos x \mathrm{~d} x
14. ex3 dx\int e^{\sqrt[3]{x}} \mathrm{~d} x
16. cos(lnx)dx\int \cos (\ln x) d x
18. ln(x+1+x2)dx\int \ln \left(x+\sqrt{1+x^{2}}\right) d x

See Solution

Problem 19900

Déterminez l'ensemble de définition de la fonction f(x)=49x2f(x) = \frac{4}{9 - x^{2}}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord