Calculus

Problem 5001

Find the derivative of the function y=3x2sinxy=3 x^{2} \sin x, i.e., compute dydx\frac{d y}{d x}.

See Solution

Problem 5002

Find h(2)h^{\prime}(2) given that h(x)=f(x)g(x)h(x)=f(x) \cdot g(x) and the values for ff and gg at x=2x=2.

See Solution

Problem 5003

Find the derivative of y=f(g(2x8))y=f\left(g\left(2 x^{8}\right)\right), where ff and gg are differentiable functions.

See Solution

Problem 5004

Find the derivative of y=f(x)y=\sqrt{f(x)}, given that ff is differentiable and nonnegative at xx.

See Solution

Problem 5005

Approximate the root of 2x3+3x+3=02 x^{3}+3 x+3=0 using Newton's method starting with x1=1x_{1}=-1. Find x2x_{2} and x3x_{3}.

See Solution

Problem 5006

Approximate the root of 4x7+6x4+4=04 x^{7}+6 x^{4}+4=0 using Newton's method with initial guess x1=1x_{1}=1. Find x2x_{2} and x3x_{3}.

See Solution

Problem 5007

For the function f(x)=x33x+4f(x)=x^{3}-3 x+4, write Newton's formula as x_n+1=x_n[f(x_n)f(x_n)]x \_ {n+1} = x \_ n - \left[\frac{f\left(x \_ n\right)}{f^{\prime}\left(x \_ n\right)}\right].

See Solution

Problem 5008

Find the x\mathrm{x} where the max of y=sinx3x2y=\sin x-3 x^{2} occurs. Use Newton's method, starting with x=0x=0. Give the second guess as a fraction.

See Solution

Problem 5009

Approximate a root of x3+x+3=0x^{3}+x+3=0 using Newton's method with x1=1x_{1}=-1. Find x2x_{2} and x3x_{3}.

See Solution

Problem 5010

Find the object's height function s=f(t)s=f(t) given f(2)=90f(2)=90 and f(2)=15f'(2)=15. Fill in: (a) f(f( )== (b) f(f^{\prime}( )==

See Solution

Problem 5011

Tumor size S=2tS=2^{t} (mm³).
(a) Find the change in size in 4 months.
(b) Calculate the average rate of change in 4 months.
(c) Estimate growth rate at t=4t=4.

See Solution

Problem 5012

Find approximate values for f(x)f^{\prime}(x) at x=0,4,8,12,16x = 0, 4, 8, 12, 16 using right or left-hand approximations.

See Solution

Problem 5013

Find the limit: limx3excos(πx3)\lim _{x \rightarrow 3} e^{x} \cos \left(\frac{\pi x}{3}\right).

See Solution

Problem 5014

Find approximate values for f(x)f^{\prime}(x) at x=0,2,4,6,8x = 0, 2, 4, 6, 8 using right-hand or left-hand approximations.

See Solution

Problem 5015

Find the limit: limx3+2x29x+9x29\lim _{x \rightarrow-3^{+}} \frac{2 x^{2}-9 x+9}{x^{2}-9}.

See Solution

Problem 5016

Find the limit: limx3+2x3x+3\lim _{x \rightarrow-3^{+}} \frac{2 x-3}{x+3}.

See Solution

Problem 5017

Find the limit as xx approaches 0 for the expression 3sin3x3x\frac{3 \sin 3 x}{3 x}.

See Solution

Problem 5018

Find the limit: limθ033cosθθ\lim _{\theta \rightarrow 0} \frac{3-3 \cos \theta}{\theta}.

See Solution

Problem 5019

Find the population size of a species modeled by P(t)=3401+9e0.1tP(t)=\frac{340}{1+9 e^{-0.1 t}} after 4 and 10 years.

See Solution

Problem 5020

How long does it take for a bacteria population to double with a growth rate of 5.6%5.6\% per hour? Round to the nearest hundredth.

See Solution

Problem 5021

A radioactive substance starts at 393 kg393 \mathrm{~kg} and decays at 17%17 \% daily. Find its mass after 4 days. Round to kg\square \mathrm{kg}.

See Solution

Problem 5022

Find the hourly growth rate of a bacteria population that grows from 3000 to 3131 in 2 hours. Express as a percentage. n%|n \%

See Solution

Problem 5023

Find the derivative f(x)f^{\prime}(x) of the function f(x)=4x4f(x)=4 \sqrt{x-4} using the limit definition.

See Solution

Problem 5024

Determine if the cereal consumption rate was higher in 2001 or 2009 using C(t)=0.0036t3+0.096t20.349t+13C(t)=-0.0036 t^{3}+0.096 t^{2}-0.349 t+13. Calculate C(11)C'(11) and C(19)C'(19).

See Solution

Problem 5025

Find the first and second derivatives of the function f(x)=3x3+5x2f(x)=-3 x^{3}+5 x-2 using the limit definition.

See Solution

Problem 5026

Given the position s=f(t)=6t3+4t+9s=f(t)=6 t^{3}+4 t+9, find:
(a) Velocity v(t)v(t),
(b) Velocity at t=3t=3 seconds,
(c) Acceleration a(t)a(t),
(d) Acceleration at t=3t=3 seconds.

See Solution

Problem 5027

Find the price elasticity of demand EE for tissues at p=$24p = \$ 24 using q=9,409194p+p2q=9,409-194 p+p^{2}. Round to three decimals.

See Solution

Problem 5028

Find the derivative of the function f(x)=4x75x6f(x)=4 x^{7}-5 x^{6}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 5029

A fried chicken franchise has a demand equation q=39p0.85q=\frac{39}{p^{0.85}}. Find the price elasticity E(p)E(p) at p=$4.00p=\$4.00. What is the % decrease in demand for a 1% price increase?

See Solution

Problem 5030

Find the price elasticity of demand EE for tissues at p=$24p=\$ 24 using q=9,409194p+p2q=9,409-194 p+p^{2}. Round to three decimals. Interpret EE.

See Solution

Problem 5031

A tank has 20 kg20 \mathrm{~kg} of salt in 5000 L5000 \mathrm{~L} of water. Brine with 0.03 kg/L0.03 \mathrm{~kg/L} enters at 25 L/min25 \mathrm{~L/min}. How much salt after 30 minutes?

See Solution

Problem 5032

Untersuchen Sie die Funktion f(x)=5xe12xf(x)=5x \cdot e^{-\frac{1}{2}x} durch Differenzieren oder Integrieren.

See Solution

Problem 5033

Berechnen Sie die Integrale: a) (2x+1)2dx\int(2 x+1)^{2} d x, b) 6e2x+4dx\int 6 e^{2 x+4} d x, c) 1(3x+2)2dx\int \frac{1}{(3 x+2)^{2}} d x, d) (2cos(πx))dx\int(2-\cos (\pi x)) d x.

See Solution

Problem 5034

Find the second derivative of V(h)=1000h130h2+4h3V^{\prime}(h)=1000 h-130 h^{2}+4 h^{3}.

See Solution

Problem 5035

Find the second derivative of v(h)=1000260h+12h2v^{\prime}(h)=1000-260 h+12 h^{2}.

See Solution

Problem 5036

Find the integral of (t2)2(t-2)^{2} with respect to tt.

See Solution

Problem 5037

Find the derivative of f(x)=5xe12xf(x) = 5x \cdot e^{-\frac{1}{2} x} and verify your steps.

See Solution

Problem 5038

Bestimme die unbestimmten Integrale: a) (x21)dx\int\left(x^{2}-1\right) d x, b) atdt\int a t d t, c) (x2+3x+1)dx\int\left(x^{2}+3 x+1\right) d x, d) (axb)dx\int(\sqrt{a}-x \sqrt{b}) d x, e) (x+1x2+1x3)dx\int\left(x+\frac{1}{x^{2}}+\frac{1}{x^{3}}\right) d x, f) (ab+b4)db\int\left(a b+b^{4}\right) d b, g) (t2)2dt\int(t-2)^{2} d t.

See Solution

Problem 5039

Soit f(x)=3x3xxf(x)=3x-3x\sqrt{x}. Calculez f(x)f^{\prime \prime}(x) et étudiez son signe. Montrez que ff est concave et interprétez graphiquement.

See Solution

Problem 5040

Calculate the antiderivative of the function f(x)=xnxf(x) = x^n - x.

See Solution

Problem 5041

Leite die Funktion ff einmal ab für: (a) f(x)=sin(3x+3)f(x)=\sin (3 x+3), (b) f(t)=2cos(πt2)f(t)=2 \cdot \cos (\pi t-2), (c) f(t)=cos(5t)f(t)=-\cos (5 t), (d) f(x)=4sin(πx)f(x)=-4 \cdot \sin (\pi-x), (e) f(t)=sin(t6)f(t)=\sin (t-6), (f) f(x)=cos(3x+π)f(x)=\cos (3 x+\pi).

See Solution

Problem 5042

a) Zeigen Sie, dass der Hochpunkt H(x00)H\left(x_{0} \mid 0\right) von ff ein Tiefpunkt von g(x)=x2f(x)g(x)=-x^{2} \cdot f(x) ist. b) Untersuchen Sie, ob der Sattelpunkt S(x00)S\left(x_{0} \mid 0\right) von ff auch ein Sattelpunkt von g(x)=xf(x)g(x)=x \cdot f(x) ist.

See Solution

Problem 5043

Wie verändert sich der Flächeninhalt unter ff im Intervall [0;a][0 ; a] zu [0;2a][0 ; 2a] für a>0a>0? a) f(x)=xf(x)=x b) f(x)=x2f(x)=x^{2} c) f(x)=2xf(x)=2x d) f(x)=x3f(x)=x^{3}

See Solution

Problem 5044

Berechnen Sie die Nullstellen der Funktionen und das Integral im Intervall der Nullstellen: a) f(x)=12x24x+152f(x)=\frac{1}{2} x^{2}-4 x+\frac{15}{2}, b) f(x)=x3+3x2f(x)=x^{3}+3 x^{2}, c) f(x)=(x2+4)(x24)f(x)=(x^{2}+4)(x^{2}-4).

See Solution

Problem 5045

Finde kRk \in \mathbb{R} für die folgenden Integrale: a) 0kxdx=8\int_{0}^{k} x \, dx=8 b) 0k(x+3)dx=8\int_{0}^{k}(x+3) \, dx=8 c) 0kdx=301dx\int_{0}^{k} \, dx=3 \int_{0}^{1} \, dx d) k0t2dt=2\int_{-k}^{0} t^{2} \, dt=2

See Solution

Problem 5046

Analyze the graph of f(x)=(x+7)2+5f(x)=-(x+7)^{2}+5. Is the rate of change of ff increasing or decreasing? Explain.

See Solution

Problem 5047

Crunchy Cookie Inc.'s profit model is P(x)=5000+1000x5x2P(x)=5000+1000x-5x^{2}.
a. Describe the profit change per extra dollar spent. b. Calculate the average profit change from x=50x=50 to x=100x=100 (units?). c. Calculate the average profit change from x=100x=100 to x=150x=150 (units?).

See Solution

Problem 5048

Crunchy Cookie Inc. profit model: P(x)=5000+1000x5x2P(x)=5000+1000 x-5 x^{2} (in thousands).
a. How does profit change with each extra dollar spent? b. Average profit change from x=50x=50 to x=100x=100: \250,000.c.Averageprofitchangefrom250,000. c. Average profit change from x=100to to x=150:$250,000.d.Predictaveragechangefrom: \$-250,000. d. Predict average change from x=150to to x=200$. e. Is every advertising dollar equally effective?

See Solution

Problem 5049

Berechne die Integrale: a) 4214xdx\int_{-4}^{2} \frac{1}{4} x d x und c) 12(1,5t+0,5)dt\int_{1}^{-2}(1,5 t+0,5) d t.

See Solution

Problem 5050

Gegeben ist die Funktion ff, die zweimal differenzierbar ist und für x>0x>0 gilt: f(x)>0f(x)>0, f(x)>0f'(x)>0, f(x)>0f''(x)>0. Untersuchen Sie die Eigenschaften von g(x)g(x) für A-D.

See Solution

Problem 5051

Prove that cos2xsin4xsin2xcos4xsin2xcos2x=tan2x\frac{\cos 2 x \sin 4 x-\sin 2 x \cos 4 x}{\sin ^{2} x-\cos ^{2} x}=-\tan 2 x and find (cos2xsin4xsin2xcos4xsin2xcos2x)2dx\int\left(\frac{\cos 2 x \sin 4 x-\sin 2 x \cos 4 x}{\sin ^{2} x-\cos ^{2} x}\right)^{2} d x.

See Solution

Problem 5052

Bestimme die Ableitung der Funktion y=φ(x)=12πe12x2y=\varphi(x)=\frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{1}{2} x^{2}} in Teilschritten.

See Solution

Problem 5053

Die Geschwindigkeit eines Flugkörpers in den ersten 7 Sekunden ist v(t)=0,1t2v(t)=0,1 t^{2}. Bestimme die Ableitungsfunktion und skizziere beide Graphen. Was bedeutet die momentane Änderungsrate?

See Solution

Problem 5054

Bestimme die Ableitung von u(x)=3xu(x) = \frac{3}{x}.

See Solution

Problem 5055

Bestimmen Sie die Ableitung von u(x)=3sin(x)u(x)=-3 \sin (x).

See Solution

Problem 5056

Gegeben ist eine differenzierbare Funktion g. Finde die Ableitungen von f1(x)=g(3x)f_{1}(x)=g(3 x), f2(x)=g(1x)f_{2}(x)=g(1-x) und f3(x)=g(1x)f_{3}(x)=g\left(\frac{1}{x}\right).

See Solution

Problem 5057

Erlösfunktion E(x)=x2+4xE(x)=-x^{2}+4x, Dб˘(E)=[0;4]D_{\text {б̆k }}(E)=[0;4]. a) Finde EE^{\prime}. b) Zeichne EE und EE^{\prime}. c) Erlösentwicklung beschreiben. d) Bedeutung der Änderungsrate. e) Verlauf von EE^{\prime} interpretieren. f) Berechne und interpretiere E(1)E^{\prime}(1) und E(4)E^{\prime}(4).

See Solution

Problem 5058

Evaluate the rate of change of f(x)=2x2+1f(x) = 2x^{2} + 1 over the interval 12x7212 \leq x \leq 72.

See Solution

Problem 5059

Berechne das Integral P(D)1,61,6φ(x)dxP(D) \approx \int_{-1,6}^{1,6} \varphi(x) dx mit acht Teilintervallen, wobei φ(x)=12πe12x2\varphi(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}.

See Solution

Problem 5060

Find the critical points of the function F(t)=13t34.5t2+18t+27F(t)=\frac{1}{3} t^{3}-4.5 t^{2}+18 t+27 and characterize them.

See Solution

Problem 5061

Find the extremum of the function g(z)=28(e3z+5e5z)6g(z)=-28\left(e^{3 z}+5 e^{-5 z}\right)^{6}. Round answers to two digits.

See Solution

Problem 5062

Identify which scenario (1, 2, or 3) matches the optimization problem: maxcRln(c+1)kc\max _{c} R \cdot \ln (c+1)-k \cdot c.

See Solution

Problem 5063

Find the derivative of the function n(x)=2x+1x2+1n(x)=\frac{2x+1}{x^2+1}.

See Solution

Problem 5064

Find the differential equation for tan(xy)=4x\tan (x-y)=4 x given dydx=ey\frac{d y}{d x}=e^{y}.

See Solution

Problem 5065

Find the derivative of g(t)=6t+2t2g(t)=6 \cdot \sqrt{t}+\frac{2}{t^{2}}.

See Solution

Problem 5066

Find the derivative of k(t)=(t24t+5)3k(t)=(t^{2}-4t+5)^{3}.

See Solution

Problem 5067

A ball is dropped from 64 m64 \mathrm{~m} and rebounds three-fourths of its previous fall. How far does it travel before stopping?

See Solution

Problem 5068

Find the derivative of h(x)=(x4+1)(x32x)h(x)=(x^{4}+1)(x^{3}-2x) using the product rule. Let f(x)=x4+1f(x)=x^{4}+1 and g(x)=x32xg(x)=x^{3}-2x.

See Solution

Problem 5069

Zeichnen Sie die Graphen der Funktionen und prüfen Sie deren Stetigkeit: a) H(x)=0H(x)=0 für x0x \leq 0, H(x)=1H(x)=1 für x>0x>0; b) sgn(x)\operatorname{sgn}(x); c) f(x)=2(x+2)3f(x)=\frac{2}{(x+2)^{3}}; d) f(x)=x21x+1f(x)=\frac{x^{2}-1}{x+1}.

See Solution

Problem 5070

Find the tangent line equation to the curve y=2ex+xy=2 e^{x}+x at the point (0,2)(0,2).

See Solution

Problem 5071

Bestimmen Sie den Grenzwert von f(x)=2x3+x2f(x)=-2 x^{3}+x^{2} für x±x \rightarrow \pm \infty.

See Solution

Problem 5072

Differentiate the function without simplifying: f(x)=x3/2+x3f(x)=x^{3/2}+x^{-3}.

See Solution

Problem 5073

Find the extreme values of z=(x17)2+(y14)2+90z=(x-17)^{2}+(y-14)^{2}+90 with x0x \geq 0, y0y \geq 0, and 14x+17y23814x+17y \leq 238.
Complete: fmin=f_{\min }=\square at (x,y)=(,)(x,y)=(\square, \square); fmax=f_{\max }=\square at (x,y)=(,)(x,y)=(\square, \square).

See Solution

Problem 5074

Berechne die Trapezstreifensumme T4T_{4} für f(x)=x2f(x)=x^{2} im Intervall [0;1][0; 1] und die Differenz zu AA. Vergleiche mit U4U_{4} und O4O_{4}.

See Solution

Problem 5075

Maximize F(x)=4.5x272x+12F(x) = 4.5 x^{2}-72 x+12 for 3x15-3 \leq x \leq 15. Find xx^{*} and F(x)F(x^{*}).

See Solution

Problem 5076

Compute the limit as θ\theta approaches 0: limθ0eθ+2,cosθ,1θ+16\lim _{\theta \rightarrow 0}\left\langle e^{\theta+2}, \cos \theta, \frac{1}{\sqrt{\theta+16}}\right\rangle

See Solution

Problem 5077

Find which pendulum configuration (A-D) has the maximum potential energy given by U(x)=l(1cosx)U(x)=l(1-\cos x).

See Solution

Problem 5078

Two isotopes decay with different half-lives: XX (0.25s) and YY (0.5s). Will XX outlast YY in quantity over time? Why?

See Solution

Problem 5079

Find the limit of the vector function as tt approaches -3: limt3ln(t+5)i+sin(πt2)j4k\lim_{t \to -3} \ln(t+5) \mathbf{i} + \sin\left(\frac{\pi t}{2}\right) \mathbf{j} - 4 \mathbf{k}.

See Solution

Problem 5080

Finde die Stammfunktion für die folgenden Funktionen: a) f(x)=(2x+8)3f(x)=(2 x+8)^{3}, b) f(x)=5(23x)7f(x)=5 \cdot(2-3 x)^{7}, c) f(x)=3(2x1)2f(x)=\frac{3}{(2 x-1)^{2}}, d) f(x)=(x4)3+1(x4)3f(x)=(x-4)^{3}+\frac{1}{(x-4)^{3}}, e) f(x)=1,5e2x+3f(x)=-1,5 e^{2 x+3}, f) f(x)=emx+nf(x)=e^{m \cdot x+n}, g) f(x)=1x+6f(x)=\frac{1}{\sqrt{x+6}}, h) f(t)=sin(at+b)f(t)=\sin (a \cdot t+b), i) f(t)=e4t3+cos(4t3)f(t)=e^{4 t-3}+\cos (4 t-3).

See Solution

Problem 5081

Find the 52nd52^{\text{nd}} derivative of sinx\sin x.

See Solution

Problem 5082

How much will \$800 grow in 4 years at a continuous compounding rate of 3.15%?

See Solution

Problem 5083

Find the amount of radon-222 after 10 days using A(t)=1.2(10)0.0788tA(t)=1.2(10)^{-0.0788 t} and time to reach 0.012 g0.012 \mathrm{~g}.

See Solution

Problem 5084

Leiten Sie die Funktion f(x)=ex+exf(x)=-e^{-x}+e^{x} ab.

See Solution

Problem 5085

Ableiten von f(x)=ex+exf(x)=-e^{-x}+e^{x}.

See Solution

Problem 5086

Find the derivative of f(x)=5x2ln(2x24x2)f(x)=-5 x^{2} \ln(2 x^{2}-4 x^{-2}). What is f(x)f'(x)?

See Solution

Problem 5087

Rewrite f(x)=9ln(15x)f(x)=9 \ln \left(\frac{15}{x}\right) using logarithm properties and find f(x)f^{\prime}(x).

See Solution

Problem 5088

Find the derivative of the function f(x)=14lnx+3x210f(x) = -14 \ln x + 3x^{2} - 10. What is f(x)f'(x)?

See Solution

Problem 5089

Find the derivative f(x)f^{\prime}(x) for the function f(x)=6xlnx2f(x)=6 x-\ln x^{2}.

See Solution

Problem 5090

Find the derivative f(x)f^{\prime}(x) for the function f(x)=lnx+ex5x2f(x)=\ln x+e^{x}-5 x^{2}.

See Solution

Problem 5091

Find the derivative of f(x)=x1(2x+3)2f(x)=x^{-1} \cdot(2x+3)^{2}.

See Solution

Problem 5092

Bestimme die Ableitung von f(x)=(5x4)5(14x)f(x)=(5-x^{4})^{5} \cdot(1-4 x).

See Solution

Problem 5093

A potato is launched from a 50-ft building with an initial speed of 75ft/s75 \, \mathrm{ft/s}. Find its velocity when it hits the ground.

See Solution

Problem 5094

Gegeben ist die Funktion f:x1xcos(x)f: x \mapsto \frac{1}{x} \cdot \cos (x). Bestimmen Sie die Definitionsmenge, Nullstellen und Grenzwert. Zeichnen Sie ff und g:x1xg: x \mapsto \frac{1}{x}. Untersuchen Sie die Funktion h:x1x+cos(x)h: x \mapsto \frac{1}{x}+\cos (x).

See Solution

Problem 5095

Find the velocity of a potato launched from a 50-ft building with initial speed 75ft/s75 \, \text{ft/s} using s(t)=16t2+75t+50s(t)=-16t^{2}+75t+50.

See Solution

Problem 5096

Find the derivative of the function f(x)=(AB)nxf(\underline{x})=(A B)^{n} \underline{x} for mm-by-mm matrices AA, BB and integer n>0n>0.

See Solution

Problem 5097

Find the rate of change of yy with respect to xx for the function F(x,y)=0F(x, y)=0 using implicit differentiation.

See Solution

Problem 5098

Berechnen Sie die Ableitung von f(x)=3xcos(2x2)f(x)=3x \cdot \cos(2x^{2}).

See Solution

Problem 5099

Berechne die Ableitungen der Funktionen: b) f(x)=(3x+4)2sin(x)f(x)=(3 x+4)^{2} \cdot \sin (x) e) f(x)=(54x)3x2f(x)=(5-4 x)^{3} \cdot x^{-2} h) f(x)=(2x1)x31f(x)=(2 x-1) \cdot \sqrt{x^{3}-1}

See Solution

Problem 5100

Find the partial derivative of f=f(x,y)f=f(x, y) with respect to vv where x=x(u,v)x=x(u, v) and y=y(u,v)y=y(u, v).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord