Calculus

Problem 30701

Leiten Sie die Funktion gkg_{k} zweimal ab: a) gk(x)=ekxg_{k}(x)=e^{k x} b) gk(x)=ke2xkg_{k}(x)=k e^{2 x}-k c) gk(x)=kx+ekxg_{k}(x)=k x+e^{k x} d) gk(x)=xekx+1g_{k}(x)=x e^{k x+1}

See Solution

Problem 30702

Estimate the derivative f(x)f^{\prime}(x) of the function f(x)=40.95xf(x)=4 \cdot 0.95^{x} using h=0.001h=0.001 for x=3.5,2,0.5x=-3.5, -2, 0.5.

See Solution

Problem 30703

Find the derivative f(x)f^{\prime}(x) of the function f(x)=14x+7f(x)=14x+7 and evaluate it at x=9x=-9.

See Solution

Problem 30704

Find the derivative of the function y=x3(3x)2y = x^{3}(3-x)^{2}.

See Solution

Problem 30705

Find the limit: limx2+x2+2x2(x2)2\lim _{x \rightarrow 2^{+}} \frac{\sqrt{x-2}+\sqrt{2 x}-2}{(x-2)^{2}}.

See Solution

Problem 30706

A 645 N645 \mathrm{~N} diver drops from 15 m. Find speed at 5 m above water and just before hitting the water.

See Solution

Problem 30707

Find the derivative of f(x)=5x2+5x+6f(x)=5 x^{2}+5 x+6 at x=4x=4 using the limit definition of the derivative.

See Solution

Problem 30708

Find the derivative f(5)f^{\prime}(5) if f(x)=6f(x) = 6.

See Solution

Problem 30709

Find the slope of the tangent line to f(x)=2x2f(x)=2 x^{2} at x=2x=2 using the limit definition of the derivative.

See Solution

Problem 30710

Solve the equation dydxx3+3xy2=3x3\frac{d y}{d x} x^{3}+3 x y^{2}=3 x^{3} for yy.

See Solution

Problem 30711

Find dydx\frac{d y}{d x} using implicit differentiation for the equation 4x2+2y2=184 x^{2}+2 y^{2}=18.

See Solution

Problem 30712

Differentiate the function: f(x)=(3x)4(2+x)5f(x) = (3-x)^{4}(2+x)^{5}.

See Solution

Problem 30713

Find the slope of the tangent line to y=3xy=\frac{3}{x} at (8,38)(8, \frac{3}{8}) and write its equation as y=mx+by=m x+b.

See Solution

Problem 30714

Find the slope of the tangent line to y=4xy=\frac{4}{x} at the point (5,45)\left(5, \frac{4}{5}\right).

See Solution

Problem 30715

For g(x)=x2+1g(x)=x^{2}+1, what is the rate of change? Explain your reasoning.

See Solution

Problem 30716

Find the derivative of f(x)=(1e3x)2f(x) = (1 - e^{-3x})^2.

See Solution

Problem 30717

Describe how to approximate the instantaneous rate of change at x=ax=a using average rates of change of a function.

See Solution

Problem 30718

Find the derivative f(x)f^{\prime}(x) of the function f(x)=2x2f(x)=\frac{2}{x^{2}} and evaluate it at x=4x=4.

See Solution

Problem 30719

Find the derivative f(x)f^{\prime}(x) for the function f(x)=(1+ex)2f(x)=(1+e^{x})^{2}.

See Solution

Problem 30720

Find the derivative of the function y=3x2x3y = \sqrt{\frac{3x - 2}{x - 3}}.

See Solution

Problem 30721

Find dydx\frac{d y}{d x} using implicit differentiation for cos(xy)=y2+7\cos (x y)=y^{2}+7.

See Solution

Problem 30722

Find the derivative of y=x22x y=\frac{x^{2}}{2-x} .

See Solution

Problem 30723

Find the function f(x)f(x) and the number aa from the limit: limh06(3+h)4486h\lim_{h \rightarrow 0} \frac{6(3+h)^{4}-486}{h}.

See Solution

Problem 30724

Find the derivative of the function f(x)=21e4xf(x) = \frac{2}{1-e^{-4x}}.

See Solution

Problem 30725

What does the limit f(4+h)f(4)h=8\frac{f(4+h)-f(4)}{h}=8 tell us about the graph of f(x)=x2f(x)=x^{2}? Explain with a graph.

See Solution

Problem 30726

What does the limit limh0f(4+h)f(4)h=8\lim_{h \rightarrow 0} \frac{f(4+h)-f(4)}{h} = 8 tell us about the graph of f(x)=x2f(x)=x^{2}? Explain with a graph.

See Solution

Problem 30727

Differentiate (1+lnx)2(1+\ln x)^{2}.

See Solution

Problem 30728

Find the derivative dydx\frac{dy}{dx} for the function y=ln(1+2x)y=\ln(1+2x).

See Solution

Problem 30729

Gegeben ist die Funktion ff mit f(x)=18x4f(x)=\frac{1}{8} x^{4}. Bestimme die Tangente und Normale an ff in den Punkten P(2,f(2))P(2, f(2)) und Q(1,f(1))Q(-1, f(-1)). Finde den Punkt, wo die Normale die Steigung m=16m=16 hat.

See Solution

Problem 30730

Find the derivative of the function f(x)=x2lnxf(x) = x^{2} \ln x.

See Solution

Problem 30731

Find the derivative of the function f(x)=12e4xf(x)=\sqrt{1-2 e^{4 x}}.

See Solution

Problem 30732

Differentiate the function x34x25x\frac{x^{3} \sqrt{4-x^{2}}}{5-\sqrt{x}}.

See Solution

Problem 30733

احسب مجال الدالة f(x)=2xln(2x)f(x) = \frac{2x}{\ln(2x)}، نقاط التقعر، ونقاط الانعطاف.

See Solution

Problem 30734

Find the maximum area of a rectangle under f(x)=9x2f(x)=9-x^{2} with vertices on the graph and xx-axis.

See Solution

Problem 30735

Find the local maxima of the function f(x)=x3+x2+2xf(x) = -x^3 + x^2 + 2x.

See Solution

Problem 30736

Find the maximum area of a rectangle under f(x)=9x2f(x)=9-x^{2} with vertices on the graph and xx-axis (in inches).

See Solution

Problem 30737

Find local minima of f(x)=x3+x2+2xf(x) = -x^{3} + x^{2} + 2x.

See Solution

Problem 30738

A proton (m=1.67×1027 kgm=1.67 \times 10^{-27} \mathrm{~kg}) enters an electric field (E=5000 N/CE=5000 \mathrm{~N}/\mathrm{C}) with initial speed v0=3×105 m/sv_0=3 \times 10^{5} \mathrm{~m/s} at α=30\alpha=30^\circ. Find the max vertical distance hmaxh_{\text{max}} it descends. Ignore gravity.

See Solution

Problem 30739

Solve f(x)=ln(x25x+6)=0f(x)=\ln(x^2-5x+6)=0 and find f(x)=ddxln(x25x+6)f'(x)=\frac{d}{dx}\ln(x^2-5x+6).

See Solution

Problem 30740

Find the limit: limn322n3n1+12n+5+43n\lim _{n \rightarrow \infty} \frac{3 \cdot 2^{2 n}-3^{n-1}+1}{2^{n+5}+4 \cdot 3^{n}}

See Solution

Problem 30741

Find the intervals where the function f(x)=x3+x2+2xf(x) = -x^3 + x^2 + 2x is decreasing.

See Solution

Problem 30742

Evaluate the integral 1x21+1xdx\int \frac{1}{x^{2}} \sqrt{1+\frac{1}{x}} d x using the substitution u=1+1xu=1+\frac{1}{x}.

See Solution

Problem 30743

Differentiate g(x)=log43(3x2)g(x)=\log_{43}(3x-2) to find g(x)g'(x).

See Solution

Problem 30744

Evaluate the integral Cy2dx+xydy\int_{C} y^{2} dx + xy dy over the path CC bounded by y=0y=0, y=xy=\sqrt{x}, and x=9x=9.

See Solution

Problem 30745

Gegeben ist f(x)=18x4f(x)=\frac{1}{8} x^{4}. Bestimme die Tangente und Normale an P(2f(2))P(2 \mid f(2)) und Q(1f(1))Q(-1 \mid f(-1)). Finde den Punkt, wo die Normale die Steigung m=16m=16 hat.

See Solution

Problem 30746

Differentiate g(x)=log47(7x3)g(x)=\log_{47}(7x-3). Find g(x)=g'(x)=

See Solution

Problem 30747

Find the critical points of f(x)=1(x+1)3f(x)=1-(x+1)^{3}, f=3(x+1)2f^{\prime}=-3(x+1)^{2}, f=6(x+1)f^{\prime \prime}=-6(x+1).

See Solution

Problem 30748

Find the integral of (53x)10(5-3 x)^{10} with respect to xx.

See Solution

Problem 30749

Differentiate y=log10xy=\log_{10} x. What is ddxlog10x=\frac{d}{d x} \log_{10} x=\square?

See Solution

Problem 30750

Evaluate the integral: sint1+costdt\int \sin t \sqrt{1+\cos t} \, dt.

See Solution

Problem 30751

Differentiate y=log12xy=\log_{12} x and find ddxlog12x=\frac{d}{dx} \log_{12} x=\square.

See Solution

Problem 30752

Find the derivative of A=680(1.651)tA=680(1.651)^{t}. What is A=A^{\prime}=? (Type an exact answer.)

See Solution

Problem 30753

Find the derivative of the function y=75xy=7 \cdot 5^{x}. What is y=y^{\prime}=?

See Solution

Problem 30754

Find values of aa and bb for f(x)=x3+ax2+bx1f(x)=x^{3}+a x^{2}+b x-1 with max at x=3x=-3 and min at x=1x=-1.

See Solution

Problem 30755

Differentiate the function g(t)=27tg(t) = 27^t. Find g(t)=g'(t) =.

See Solution

Problem 30756

Differentiate the function y=17xy=17^{x}. Find dydx\frac{d y}{d x}.

See Solution

Problem 30757

Find the limit expression for the area under f(x)=xcos(x)f(x)=x \cos (x) from 00 to π2\frac{\pi}{2}. Choices include: A. limni=1n(πi2ncos(πi2n))\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{\pi i}{2 n} \cos \left(\frac{\pi i}{2 n}\right)\right) B. limni=1nπ2n(π2ncos(π2n))\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{2 n}\left(\frac{\pi}{2 n} \cos \left(\frac{\pi}{2 n}\right)\right) C. limni=1nπ2n(cos(πi2n))\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{2 n}\left(\cos \left(\frac{\pi i}{2 n}\right)\right) D. limni=1nπ2n(πi2ncos(πi2n))\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{2 n}\left(\frac{\pi i}{2 n} \cos \left(\frac{\pi i}{2 n}\right)\right) E. limni=1nπi2n(πi2ncos(πi2n))\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi i}{2 n}\left(\frac{\pi i}{2 n} \cos \left(\frac{\pi i}{2 n}\right)\right)

See Solution

Problem 30758

Differentiate the function: y=9xy=9^{x}. Find dydx\frac{d y}{d x}.

See Solution

Problem 30759

Differentiate g(t)=29tg(t)=29^{t}. Find g(t)=g^{\prime}(t)=\square.

See Solution

Problem 30760

Find the integral of sinx1+cos2x\frac{\sin x}{1+\cos ^{2} x} with respect to xx.

See Solution

Problem 30761

Evaluate the integral sin(lnx)xdx\int \frac{\sin (\ln x)}{x} d x.

See Solution

Problem 30762

Differentiate y=4xy=4^{x}. Find dydx=\frac{d y}{d x}=\square.

See Solution

Problem 30763

Evaluate the integral 142+xxdx\int_{1}^{4} \frac{\sqrt{2+\sqrt{x}}}{\sqrt{x}} d x.

See Solution

Problem 30764

Find the derivative of the function y=45xy=4 \cdot 5^{x}. What is y=?y^{\prime}=?

See Solution

Problem 30765

Differentiate g(t)=27tg(t)=27^{t}. Find g(t)=g^{\prime}(t)=\square.

See Solution

Problem 30766

Find the derivative of A=720(1.720)tA=720(1.720)^{t}. What is A=A^{\prime}=? (Type an exact answer.)

See Solution

Problem 30767

Find the derivative of A=470(1.731)tA=470(1.731)^{t}. What is A=A^{\prime}=? (Type an exact answer.)

See Solution

Problem 30768

Differentiate the function y=5xy=5^{x}. What is dydx=?\frac{d y}{d x}=?

See Solution

Problem 30769

Estimate the total water drained in the first 3 minutes using left and right endpoint averages from rates: 60, 58, 56, 54, 52, 50, 48. Answer: \_\_\_\_\_ liters.

See Solution

Problem 30770

Bestimme den Schnittpunkt der Tangente an ff bei BB mit der xx-Achse für die Funktionen: a) f(x)=0,5x2f(x)=0,5 x^{2}, b) f(x)=13x3+2x2f(x)=\frac{1}{3} x^{3}+2 x^{2}, c) f(x)=3xf(x)=\frac{3}{x^{\prime}}.

See Solution

Problem 30771

Differentiate the function y=14xy=14^{x}. Find dydx\frac{d y}{d x}.

See Solution

Problem 30772

Find which area equals the limit: limni=1nπ4ntan(iπ4n)\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{4 n} \tan \left(\frac{i \pi}{4 n}\right). Options: A, B, C, D.

See Solution

Problem 30773

Find the derivative of y=211xy=2 \cdot 11^{x}. What is y=?y^{\prime}=?

See Solution

Problem 30774

Differentiate the function y=25xy=25^{x}. What is dydx=?\frac{d y}{d x}=?

See Solution

Problem 30775

Differentiate the function g(t)=33tg(t) = 33^{t}. Find g(t)=g^{\prime}(t) =.

See Solution

Problem 30776

Find the derivative of y=37xy=3 \cdot 7^{x}. What is y=y^{\prime}=?

See Solution

Problem 30777

Differentiate the function: g(t)=16tg(t)=16^{t}. Find g(t)=g^{\prime}(t)=.

See Solution

Problem 30778

Find the sea-level rise due to a 2C2^{\circ} \mathrm{C} temperature increase in a 3.8 km3.8 \mathrm{~km} deep ocean, with φ=207×106\varphi=207 \times 10^{-6}.

See Solution

Problem 30779

Find the derivative of A=570(1.731)tA=570(1.731)^{t}. What is A=A^{\prime}=? (Type an exact answer.)

See Solution

Problem 30780

Find the derivative of A=670(1.662)tA=670(1.662)^{t}. What is A=A^{\prime}= (exact answer)?

See Solution

Problem 30781

Use the Desmos Riemann Sum Calculator to find L5,M5,R5,L25,M25,R25,L100,M100,R100L_{5}, M_{5}, R_{5}, L_{25}, M_{25}, R_{25}, L_{100}, M_{100}, R_{100} for f(x)=2x+1f(x)=2x+1 on [1,4][1,4]. Then find the exact area under the curve.

See Solution

Problem 30782

Find dxdt\frac{d x}{d t} for the function x=9t2x=9 t^{2}, where 192219_{22} applies to the procedure in Examples 22.1-22.3.

See Solution

Problem 30783

Finde die Punkte, an denen die Tangente von ff einen Steigungswinkel von 21,821,8^{\circ} hat. a) f(x)=5x2f(x)=5 x^{2} b) f(x)=40xf(x)=-\frac{40}{x} c) f(x)=56x3f(x)=\frac{5}{6} x^{3} d) f(x)=0,15f(x)=0,15

See Solution

Problem 30784

Find the limit: limr1nk=1n1k(k+1) \lim _{r \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{k(k+1)}

See Solution

Problem 30785

Approximate the integral 25(8x4)dx\int_{-2}^{5}(8 x-4) d x using the Midpoint Rule with nn subintervals. Find the limit as nn \rightarrow \infty.

See Solution

Problem 30786

Find the inflection point of the function f(x)=x3+6x2+9x1f(x)=x^{3}+6 x^{2}+9 x-1. Use f(x)f^{\prime}(x) and f(x)f^{\prime \prime}(x). Output as (x,y) or (none).

See Solution

Problem 30787

Find values of aa and bb for f(x)=x3+ax2+bx1f(x)=x^{3}+a x^{2}+b x-1 with max at x=3x=-3 and min at x=1x=-1.

See Solution

Problem 30788

Find the area under f(x)=x3f(x)=x^{3} from x=0x=0 to x=1x=1. Choose the correct limit expression and evaluate it.

See Solution

Problem 30789

Find the relative minimum point of the function f(x)=x3+3x24f(x)=-x^{3}+3 x^{2}-4 using f(x)f'(x) and f(x)f''(x).

See Solution

Problem 30790

Find the relative maximum point of f(x)=x22x21f(x) = \frac{x^{2}-2}{x^{2}-1} using f(x)f'(x) and f(x)f''(x).

See Solution

Problem 30791

Calculate the area between f(x)=x2f(x)=x^{2} and the xx-axis from x=1x=1 to x=10x=10 using right Riemann sums.

See Solution

Problem 30792

Find the limit: limx4x4x25x+4\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-5 x+4}. What is f(4)f(4)?

See Solution

Problem 30793

Calculate the area between f(x)=x2f(x)=x^{2} and the xx-axis on [1,10][1,10] using right-endpoint Riemann sums.
a. Find Δx\Delta x in terms of nn: Δx=9n\Delta x=\frac{9}{n} b. Find right endpoints x1,x2,x3x_{1}, x_{2}, x_{3} in terms of nn: x1,x2,x3=1n,2n,3nx_{1}, x_{2}, x_{3}=\frac{1}{n}, \frac{2}{n}, \frac{3}{n} c. General expression for xkx_{k}: xk=knx_{k}=\frac{k}{n} d. Find f(xk)f\left(x_{k}\right): f(xk)=(kn)2f\left(x_{k}\right)=\left(\frac{k}{n}\right)^{2} e. Find f(xk)Δxf\left(x_{k}\right) \Delta x: f(xk)Δx=(kn)29nf\left(x_{k}\right) \Delta x=\left(\frac{k}{n}\right)^{2} \cdot \frac{9}{n} f. Find the right-endpoint Riemann sum value in terms of nn.

See Solution

Problem 30794

If f(x)f(x) has a positive, decreasing derivative on interval I\mathrm{I}, what can we say about f(x)f(x)? Choose: a, b, c, d, or e.

See Solution

Problem 30795

Determine if the series n=1(n+an+b)n2\sum_{n=1}^{\infty}\left(\frac{n+a}{n+b}\right)^{n^{2}} converges or diverges for real numbers a,ba, b with b<ab<a.

See Solution

Problem 30796

Find the relative minimum point of the function f(x)=x23x2f(x)=\frac{x^{2}-3}{x-2} using f(x)f'(x) and f(x)f''(x).

See Solution

Problem 30797

Calculate the limit as x approaches 1: limx1(xx11ln(x))\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\ln (x)}\right).

See Solution

Problem 30798

Find the relative minimum point of the function f(x)=x3+6x2+9x1f(x)=x^{3}+6x^{2}+9x-1 using f(x)f'(x) and f(x)f''(x).

See Solution

Problem 30799

Find the relative minimum point for the function f(x)=1(x+1)3f(x)=1-(x+1)^{3} with f=3(x+1)2f^{\prime}=-3(x+1)^{2} and f=6(x+1)f^{\prime \prime}=-6(x+1).

See Solution

Problem 30800

Find f(xk)Δxf(x_k) \Delta x in terms of kk and nn, then the right-endpoint Riemann sum, and its limit as nn \to \infty.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord