Calculus

Problem 28701

Find the derivatives of these functions: a. y=ex2y=e^{x^{2}} b. y=2e2x2+3x+1y=2 e^{2 x^{2}+3 x+1} c. y=3e2x+4x(5x3)y=3 e^{2 x}+4 x\left(5^{x^{3}}\right)

See Solution

Problem 28702

Berechnen Sie die Halbwertszeit von Cobalt-60 mit dem Zerfallsgesetz N(t)=N0e0,13149tN(t)=N_{0} \cdot e^{-0,13149 \cdot t}.

See Solution

Problem 28703

Bestimme die Ableitungsfunktion ff' für die folgenden Funktionen: a) f(x)=1x+3f(x)=\frac{1}{x}+3 b) f(x)=3x2f(x)=\frac{3}{x}-2 c) f(x)=2x23xf(x)=2 x^{2}-3 x d) f(x)=4x2+2xf(x)=-4 x^{2}+2 x

See Solution

Problem 28704

Find the derivatives of these functions: a. y=ex2y=e^{x^{2}} b. y=2e2x2+3x+1y=2 e^{2 x^{2}+3 x+1} c. y=3e2x+4x(5x3)y=3 e^{2 x}+4 x\left(5^{x^{3}}\right)
Mark: 6 Find the derivatives of these functions: a. y=3x3e4x2y=3 x^{3} e^{4 x^{2}} b. y=5x2102x+8y=\frac{5 x^{2}}{10^{2 x+8}} c. y=2x(3ex5)3y=2 x\left(3 e^{x^{5}}\right)^{3}

See Solution

Problem 28705

Find the surface area generated by revolving x=y33x=\frac{y^{3}}{3}, 0y10 \leq y \leq 1, about the y-axis.

See Solution

Problem 28706

Find the length of the curve x=0ysec4t1dtx=\int_{0}^{y} \sqrt{\sec ^{4} t-1} \, dt from y=π3y=-\frac{\pi}{3} to y=π6y=\frac{\pi}{6}.

See Solution

Problem 28707

Find the derivatives of these functions: a. y=3x3e4x2y=3 x^{3} e^{4 x^{2}} b. y=5x2102x+8y=\frac{5 x^{2}}{10^{2 x+8}} c. y=2×(3ex5)3y=2 \times(3 e^{x^{5}})^{3}

See Solution

Problem 28708

Find the derivative using first principles for: a) f(x)=3x2+4x+1f(x)=3 x^{2}+4 x+1 b) f(x)=2x3+2x+4f(x)=-2 x^{3}+2 x+4.

See Solution

Problem 28709

Calculate the work done by a 50-N force along (2,1,5)(2,1,5) moving from A(2,1,5) to B(3,-1,2) in meters.

See Solution

Problem 28710

Determine if the series n=0n503n\sum_{n=0}^{\infty} \frac{n^{50}}{3^{n}} converges or diverges.

See Solution

Problem 28711

Calculate the limit: limxexsin(x2)\lim _{x \rightarrow-\infty} e^{x} \sin \left(x^{2}\right). Does it exist?

See Solution

Problem 28712

Calculate the limit: limx1e11x2\lim _{x \rightarrow-1^{-}} e^{\frac{-1}{1-x^{2}}} or state if it does not exist.

See Solution

Problem 28713

Differentiate these functions: (a) y=sin2(e3x)y=\sin^{2}(e^{3x}) (b) y=1+cost+sin2ty=\sqrt{1+\cos t+\sin^{2} t} (c) y=(sin2x)(tan2x)y=(\sin^{2} x)(\tan^{2} x)

See Solution

Problem 28714

Calculate the limit: limx0sin(3x)tan(7x)\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\tan (7 x)}. If it doesn't exist, state that.

See Solution

Problem 28715

Find the derivative f(x)f^{\prime}(x) for these functions: a) f(x)=sin(x2+3x+1)f(x)=\sin(x^2+3x+1), b) f(x)=cos(sin(2x))f(x)=\cos(\sin(2x)), c) f(x)=2sin(2x+3cos(x))f(x)=2^{\sin(2x+3\cos(x))}.

See Solution

Problem 28716

Is the function f(x)={3ln(1+x)x0x5+xx<0f(x)=\begin{cases}3 \ln (1+x) & x \geq 0 \\ x^{5}+x & x<0\end{cases} continuous on R? (YES / NO) Does it have an inverse? (YES / NO)

See Solution

Problem 28717

Given the function f(x)=x21+x+x2f(x)=\frac{x^{2}}{1+x+x^{2}}, determine if it has a max (YES/NO), min (YES/NO), and where it decreases.

See Solution

Problem 28718

Find the interval where f(x)=3f(x)=3 using the Intermediate Value Theorem, given f(2)=0f(-2)=0, f(0)=5f(0)=5, f(2)=8f(2)=8, f(4)=15f(4)=15.

See Solution

Problem 28719

Find the limit as tt approaches 0 for the expression 8t4\frac{-8}{t}-4.

See Solution

Problem 28720

Find the stationary points of the curve y=x33x29x+14y=x^{3}-3 x^{2}-9 x+14 and determine their nature.

See Solution

Problem 28721

Find the value of a a if f(x)=6x22x2x f(x)=\frac{6 x^{2}-2 x}{2 x} is continuous at x=0 x=0 and f(0)=a f(0)=a .

See Solution

Problem 28722

Find the values of xRx \in \mathbb{R} for which f(x)=n=0e2nxf(x) = \sum_{n=0}^{\infty} e^{-2 n x} is defined and compute f(x)f^{\circ}(x).

See Solution

Problem 28723

Determine which statements about the function f(x)={x21, if x23 if x>2f(x)=\left\{\begin{array}{ll} x^{2}-1, & \text { if } x \leq 2 \\ 3 & \text { if } x>2 \end{array}\right. are TRUE: I. limx2f(x)\lim _{x \rightarrow 2} f(x) exists II. f(2)f(2) exists III. ff is continuous at x=2x=2.

See Solution

Problem 28724

Zeige, dass f(x)=x36x2+5xf(x)=x^{3}-6 x^{2}+5 x bei x=2x=2 eine Wendestelle hat und finde die Koordinaten des Wendepunkts W.

See Solution

Problem 28725

Zeige, dass die Funktion f(x)=x36x2+5xf(x)=x^{3}-6 x^{2}+5 x an x=2x=2 eine Wendestelle hat und finde die Koordinaten des Wendepunkts.

See Solution

Problem 28726

Finde die Punkte auf dem Graphen von ff, wo die Tangente parallel zu y=4x2y=-4x-2 ist. a) f(x)=x2f(x)=x^{2} b) f(x)=1xf(x)=\frac{1}{x}

See Solution

Problem 28727

Find the dimensions of a rectangular prism with volume 600 m3600 \mathrm{~m}^{3} that minimize the surface area.

See Solution

Problem 28728

A 13 ft ladder leans against a wall, top sliding down at 6 ft/sec. How fast is the base moving when it's 5 ft from the wall?

See Solution

Problem 28729

Find the slope of the secant line for f(x)=21cosxf(x) = 21 \cos x on the interval [π2,π]\left[\frac{\pi}{2}, \pi\right].

See Solution

Problem 28730

Find slopes of secant lines for f(x)=21cosxf(x)=21 \cos x at x=π2x=\frac{\pi}{2}. Conjecture the tangent slope.

See Solution

Problem 28731

Bestimmen Sie die Hoch-, Tief- und Sattelpunkte von f(x)=x32x5f(x)=x^{3}-2x-5 durch Ableitungen.

See Solution

Problem 28732

Find xx where the average rate of change of f(x)=sinxf(x)=\sin x over [0,π][0, \pi] equals the instantaneous rate on (0,π)(0, \pi).

See Solution

Problem 28733

Finde die Stellen, an denen ff die Ableitung 2 hat, und bestimme f(2)f^{\prime}(2) für die Funktionen: a) f(x)=6x210x+5f(x)=6 x^{2}-10 x+5 b) f(x)=13x3+12x210x+4,5f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-10 x+4,5

See Solution

Problem 28734

Prove that the function f(x)=13x32x2+9xf(x)=\frac{1}{3} x^{3}-2 x^{2}+9 x has no relative extrema.

See Solution

Problem 28735

Find the derivative of z=1x3+1z=\frac{1}{x^{3}+1} at x=4x=4. Provide the exact answer using fractions.

See Solution

Problem 28736

Bestimme die Ableitung der Funktion f(x)=x2+4f(x) = -x^{2} + 4.

See Solution

Problem 28737

Find the derivative of the function f(x)=x2+4f(x) = -x^{2} + 4. What is f(x)f'(x)?

See Solution

Problem 28738

Find the local maximum and minimum points of the function f(x)=5x315xf(x)=5 x^{3}-15 x using the first derivative test.

See Solution

Problem 28739

Show that f(x)=23x32x2+7xf(x)=\frac{2}{3} x^{3}-2 x^{2}+7 x has no relative extrema.

See Solution

Problem 28740

Leite die Funktion f(x)=13x3+2x2+3xf(x)=\frac{1}{3} x^{3}+2 x^{2}+3 x ab.

See Solution

Problem 28741

Bestimme die Stammfunktion von f(x)=13x3+2x2+3xf(x)=\frac{1}{3} x^{3}+2 x^{2}+3 x.

See Solution

Problem 28742

Find the relative maximum and minimum points of the function f(x)=x3+9x2+5f(x)=x^{3}+9 x^{2}+5 using the first-derivative test.

See Solution

Problem 28743

Berechne die Stammfunktion für die Funktion f(x)=x4x3f(x)=x^{4}-x^{3}.

See Solution

Problem 28744

Calculate the integral from 1 to 8 of xdxx \, dx.

See Solution

Problem 28745

Berechne die Stammfunktion von f(x)=14x21f(x)=\frac{1}{4} x^{2}-1.

See Solution

Problem 28746

Calculate the integral: 206(x+1)dx2 \int_{0}^{6}(x+1) \, dx

See Solution

Problem 28747

Calculate H(3)H^{\prime}(3) for H(x)=xg(x)f(x)H(x)=\frac{x}{g(x) f(x)} given f(3)=6f(3)=6, f(3)=9f^{\prime}(3)=-9, g(3)=6g(3)=6, g(3)=2g^{\prime}(3)=-2.

See Solution

Problem 28748

Find the derivative of the function R(x)=20000+100xx2R(x) = 20000 + 100x - x^2.

See Solution

Problem 28749

Calculate the integral from -1 to 4 of the function 2x+32x + 3.

See Solution

Problem 28750

Bestimme die Stammfunktion von f(x)=12x32xf(x)=\frac{1}{2} x^{3}-2 x.

See Solution

Problem 28751

Find the limit as tt approaches 0 for the expression tt\frac{t}{t}.

See Solution

Problem 28752

Evaluate the integral: 314(2x+3)dx3 \quad \int_{-1}^{4}(2 x+3) d x.

See Solution

Problem 28753

Find the rate of change: it decreases by 4 over 2 years. What is the rate of change in \$ per year?

See Solution

Problem 28754

Define critical points of a function and find them for y=x36x2y=x^{3}-6 x^{2}, y=x48x2y=x^{4}-8 x^{2}, f(x)=2xx2+9f(x)=\frac{2 x}{x^{2}+9}, y=x3+3x2+1y=x^{3}+3 x^{2}+1. Use the first derivative test.

See Solution

Problem 28755

Bestimme die Tangentengleichung an den Punkten B für f(x)=2x2+4xf(x)=-2 x^{2}+4 x und f(x)=3x2f(x)=\frac{3}{x^{2}}.

See Solution

Problem 28756

Bestimme die Stammfunktion von f(x)=13x33xf(x) = \frac{1}{3} x^{3} - 3x.

See Solution

Problem 28757

Calculate the integral from 2 to 3 of the function (x2x)(x^{2}-x).

See Solution

Problem 28758

Berechne die Steigung der Tangente an f(x)=3x2+452x2f(x)=\frac{3 x^{2}+4}{5} \cdot 2 x^{2} bei x=1x=-1.

See Solution

Problem 28759

Find the limits of the function f(x)f(x) at the following points:
1. limx3f(x)\lim _{x \rightarrow -3^{-}} f(x)
2. limx3+f(x)\lim _{x \rightarrow -3^{+}} f(x)
3. limx3f(x)\lim _{x \rightarrow -3} f(x)
4. limx1+f(x)\lim _{x \rightarrow 1^{+}} f(x)

See Solution

Problem 28760

Die Funktion g(x)=2f(x)+5x1g(x)=2 \cdot f(x)+5 x-1 hat an der Stelle x=5x=5 die Steigung kg=1k_{g}=-1. Zeige dies rechnerisch.

See Solution

Problem 28761

Berechne den Flächeninhalt der Funktion f(x)=14x414f(x)=\frac{1}{4} x^{4}-\frac{1}{4} im Intervall [0;2][0 ; 2].

See Solution

Problem 28762

Berechne den Flächeninhalt zwischen der x-Achse und f(x)=14x414f(x)=\frac{1}{4} x^{4}-\frac{1}{4} im Intervall [0;2][0 ; 2].

See Solution

Problem 28763

Berechne die Stammfunktion von f(x)=14x414f(x) = \frac{1}{4} x^{4} - \frac{1}{4}.

See Solution

Problem 28764

Bestimmen Sie das Verhalten der Funktion gg für x+x \rightarrow+\infty und xx \rightarrow-\infty für die gegebenen g(x)g(x).

See Solution

Problem 28765

Berechne die Ableitung von f(x)=42x21f(x)=\frac{4}{2 x^{2}-1}.

See Solution

Problem 28766

Berechnen Sie die mittlere Änderungsrate für die Funktion ff in den Intervallen I=[1;3]I=[1;3], J=[3;1]J=[-3;-1], K=[1;2]K=[-1;2] für a) f(x)=x2f(x)=x^{2}, b) f(x)=x3+2xf(x)=x^{3}+2x, c) f(x)=2x2xf(x)=2x^{2}-x.

See Solution

Problem 28767

Find critical points and use the first derivative test for local max/min for: a. y=x48x2y=x^{4}-8 x^{2}, b. f(x)=2xx2+9f(x)=\frac{2 x}{x^{2}+9}, c. y=x3+3x2+1y=x^{3}+3 x^{2}+1.

See Solution

Problem 28768

Bestimme die waagrechten und schrägen Asymptoten für die Funktionen f(x)f(x), g(x)g(x), h(x)h(x) und l(x)l(x). Analysiere den Zusammenhang zwischen Grad der Polynome und Art der Asymptote.

See Solution

Problem 28769

Find the average velocity of the rocket for intervals [4.499,4.5][4.499,4.5] and [4.5,4.501][4.5,4.501], then approximate the instantaneous velocity at t=4.5t=4.5.

See Solution

Problem 28770

Find the derivative of the function (exx)\left(\frac{e^{x}}{x}\right).

See Solution

Problem 28771

Differentiate the function (x1)2ex(x-1)^{2} e^{x}.

See Solution

Problem 28772

Calculate the integral: (1x+1x2+1)dx\int\left(\frac{1}{x}+\frac{1}{x^{2}+1}\right) d x

See Solution

Problem 28773

Finde die Nullstellen von f(x)=3x2+2x4=0f''(x) = 3x^2 + 2x - 4 = 0 und überprüfe die Wendepunkte bei x1=1x_1 = 1 und x2=53x_2 = -\frac{5}{3}.

See Solution

Problem 28774

Bestimme die Stammfunktion von f(x)=13x243f(x)=\frac{1}{3} x^{2}-\frac{4}{3}.

See Solution

Problem 28775

Finde die Stellen, an denen die Funktion ff die Ableitung 3 hat für die folgenden Funktionen: a) f(x)=x2+x+6f(x)=-x^{2}+x+6 b) f(x)=12xf(x)=-\frac{12}{x} c) f(x)=0,4x529xf(x)=0,4 x^{5}-29 x d) f(x)=13x3+3,5x2+9x11f(x)=\frac{1}{3} x^{3}+3,5 x^{2}+9 x-11

See Solution

Problem 28776

Find the integral of (cos(x)+sec(x))2(\cos (x)+\sec (x))^{2} with respect to xx: (cos(x)+sec(x))2dx\int(\cos (x)+\sec (x))^{2} d x.

See Solution

Problem 28777

Find the integral of csc2(x)2ex\csc ^{2}(x)-2 e^{x} with respect to xx: (csc2(x)2ex)dx\int\left(\csc ^{2}(x)-2 e^{x}\right) d x.

See Solution

Problem 28778

Bestimme die Tangentengleichung an ff im Punkt B für die Funktionen: a) 5x23x5x^2-3x, b) 3x\frac{3}{x}, c) x3+8x-x^3+8x, d) x\sqrt{x}.

See Solution

Problem 28779

Find the limit as n n approaches infinity for 8120(1+1n)2 \frac{81}{20} \left(1+\frac{1}{n}\right)^2 .

See Solution

Problem 28780

Calculate the integral: (14x2+x54)dx\int \left(\frac{1}{4} x^{2} + x - \frac{5}{4}\right) dx

See Solution

Problem 28781

Find the limit: limx0x2x2+12\lim _{x \rightarrow 0} \frac{x^{2}}{\sqrt{x^{2}+12}}.

See Solution

Problem 28782

Leiten Sie die Funktionen ab und geben Sie f(t)f^{\prime}(t) an: a) f(x)=2tx332t2x2f(x)=2 t x^{3}-\frac{3}{2} t^{2} x^{2}, b) f(x)=(tx)2+t4x4f(x)=(t-x)^{2}+\frac{t}{4} x^{4}.

See Solution

Problem 28783

Sketch the piecewise function f(x)={2,x<13,x=1x+1,x>1f(x)=\left\{\begin{array}{c}2, x<1 \\ 3, x=1 \\ x+1, x>1\end{array}\right. and find limx1f(x)\lim _{x \rightarrow 1} f(x).

See Solution

Problem 28784

Evaluate the integrals using trigonometric substitution: a) 19x2dx\int \sqrt{1-9 x^{2}} d x b) dxx2x2+1\int \frac{d x}{x^{2} \sqrt{x^{2}+1}}

See Solution

Problem 28785

Find f(6)(0)f^{(6)}(0) for the Taylor polynomial p(x)=n=0102xn(n1)!p(x)=\sum_{n=0}^{10} \frac{2 x^{n}}{(n-1)!}.

See Solution

Problem 28786

Find the surface area of the curve x=yx=\sqrt{y} from y=2y=2 to y=6y=6 revolved around the yy-axis.

See Solution

Problem 28787

Evaluate the integral using partial fractions: x+32x38xdx\int \frac{x+3}{2 x^{3}-8 x} d x

See Solution

Problem 28788

Estimate the slope of the tangent line to f(x)=43x3f(x)=4-3x^{3} at P(2,20)P(2,-20) using secant lines with xx values near 2.

See Solution

Problem 28789

Solve the differential equation: y2y+5y=cos2xexy^{\prime \prime}-2 y^{\prime}+5 y=\cos 2 x \cdot e^{x}.

See Solution

Problem 28790

Berechne die folgenden Integrale mit dem Hauptsatz der Differenzial- und Integralrechnung: a) 124x3\int_{1}^{2} 4 x^{3} b) 11(9x21)\int_{-1}^{1}(9 x^{2}-1) c) 0π2sin(x)\int_{0}^{\frac{\pi}{2}} \sin (x) d) 131x2\int_{1}^{3} \frac{1}{x^{2}} e) 04x(x1)\int_{0}^{4} x(x-1) f) 1251x\int_{1}^{25} \frac{1}{\sqrt{x}}

See Solution

Problem 28791

Berechne die folgenden Integrale mit dem Hauptsatz der Differenzial- und Integralrechnung: a) 124x3\int_{1}^{2} 4 x^{3}, b) 11(9x21)\int_{-1}^{1}(9 x^{2}-1), c) 0π2sin(x)\int_{0}^{\frac{\pi}{2}} \sin (x), d) 131x2\int_{1}^{3} \frac{1}{x^{2}}, e) 04x(x1)\int_{0}^{4} x(x-1), f) 1251x\int_{1}^{25} \frac{1}{\sqrt{x}}.

See Solution

Problem 28792

Find the surface area from revolving y=x39y=\frac{x^{3}}{9}, for 0x20 \leq x \leq 2, around the x-axis.

See Solution

Problem 28793

Given piecewise functions, find the limits as x x approaches specific points for each function.

See Solution

Problem 28794

Find the limit: limx9x3x9\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}.

See Solution

Problem 28795

Find the limit: limx1x41x31\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{3}-1}.

See Solution

Problem 28796

Find the limit: limx0tan(5x)sin(4x)\lim _{x \rightarrow 0} \frac{\tan (5 x)}{\sin (4 x)}.

See Solution

Problem 28797

Berechnen Sie die mittlere Änderungsrate für f(x)=x3+2xf(x)=x^{3}+2x in I=[1;3]I=[1;3], J=[3;1]J=[-3;-1], K=[1;2]K=[-1;2] und für f(x)=2x2xf(x)=2x^{2}-x.

See Solution

Problem 28798

Find the midpoint of the interval [1,4] using 6 subintervals. What is the width of each subinterval?

See Solution

Problem 28799

Given f(x)=2tan5π3(x+1)4f(x)=2 \tan \frac{5 \pi}{3}(x+1)-4, which statement is false: A) (0.4,4)(-0.4,-4) is an inflection point, B) asymptote x=0.5x=0.5, C) f(0)=234f(0)=-2 \sqrt{3}-4, D) zero at π5\frac{\pi}{5}?

See Solution

Problem 28800

Find the derivative dydx\frac{d y}{d x} for the function y=x2csc(x)+4y = x^{2} - \csc(x) + 4.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord