Calculus

Problem 9801

Find the derivative of the function f(x)=5x2+33f(x)=\sqrt[3]{5 x^{2}+3}, i.e., calculate f(x)f^{\prime}(x).

See Solution

Problem 9802

Find the derivative dydx\frac{d y}{d x} of the function y=1(4x28)2y=\frac{1}{(4 x^{2}-8)^{2}}.

See Solution

Problem 9803

Find the derivative of the function: y=4xe2x2ex2y=4 x e^{-2 x}-2 e^{x^{2}}.

See Solution

Problem 9804

Find the derivative of the function f(x)=2cos(44x)f(x)=2 \cos (4-4 x). What is f(x)f^{\prime}(x)?

See Solution

Problem 9805

Find the derivative of the function y=3sin(23x)y=3 \sin (2-3 x), i.e., compute dydx\frac{d y}{d x}.

See Solution

Problem 9806

Find the derivative of the function y=cos(16x3)y=\cos \left(1-6 x^{3}\right), i.e., calculate dydx\frac{d y}{d x}.

See Solution

Problem 9807

Find the derivative of the function f(x)=3sin3(2x2)f(x)=3 \sin ^{3}\left(2 x^{2}\right), i.e., calculate f(x)f^{\prime}(x).

See Solution

Problem 9808

Find the derivative g(3)g^{\prime}(3) for the function g(x)=42x+3g(x)=4^{\sqrt{2 x+3}}.

See Solution

Problem 9809

Find the derivative g(3)g^{\prime}(3) for the function g(x)=42x+3g(x)=4^{\sqrt{2 x+3}}. Options: A. 64ln464 \ln 4, B. 64ln43\frac{64 \ln 4}{3}, C. 32ln43\frac{32 \ln 4}{3}, D. 32ln23\frac{32 \ln 2}{3}.

See Solution

Problem 9810

Find the tangent line for f(x)=(1+tanx)3/2f(x)=(1+\tan x)^{3/2} at x=0x=0, approximate f(0.02)f(0.02), and calculate percent error.

See Solution

Problem 9811

Consider the curve 8x2+5xy+y3=149-8 x^{2}+5 x y+y^{3}=-149.
(a) Find dydx\frac{d y}{d x} for 16x+(5y+5xdydx)+7y2=016 x + (5 y + 5 x \frac{d y}{d x}) + 7 y^{2} = 0.
(b) Write the tangent line equation at (4,1)(4,-1).
(c) Approximate kk for the point (4.2,k)(4.2, k) using the tangent line from (b).
(d) Write and solve an equation to find the actual value of kk for (4.2,k)(4.2, k) on the curve.
10. Approximate the fourth root of 20 using local linear approximation.

See Solution

Problem 9812

Differentiate: y=sin1(19x2)y=\sin^{-1}(\sqrt{1-9x^{2}})

See Solution

Problem 9813

Find the area of the surface formed by rotating y=9x2y=\sqrt{9-x^{2}} from x=2x=-2 to x=2x=2 around the x-axis.

See Solution

Problem 9814

Find the volume change rate when the sphere's radius rr is 15 cm15 \mathrm{~cm} and expanding at 60 cm/min60 \mathrm{~cm/min}. V=43πr3V=\frac{4}{3} \pi r^{3}

See Solution

Problem 9815

Find the derivative of f(x)=(x3+7x28)(2x3+x4)f(x)=\left(x^{3}+7 x^{2}-8\right)\left(2 x^{-3}+x^{-4}\right) using the product rule.

See Solution

Problem 9816

Invest \$150000 at 8% continuous compounding. (a) Value after 9 years? (b) Years to reach \$480000? Round to 3 decimals.

See Solution

Problem 9817

Evaluate the integral 07(64(87x+1)2)dx\int_{0}^{7}\left(64-\left(8-\frac{7}{x+1}\right)^{2}\right) d x.

See Solution

Problem 9818

Solve the linear differential equation: y3x2y=x2y' - 3x^2 y = x^2.

See Solution

Problem 9819

A balloon inflates at 40 in³/s. Find how fast the radius changes when d=10d=10 and d=16d=16. Which is faster?

See Solution

Problem 9820

Find the derivative f(4)f^{\prime}(4) for the function f(x)=6x3x34f(x)=-\frac{6}{x}-\frac{3 \sqrt{x^{3}}}{4}.

See Solution

Problem 9821

Calculate the integral π07(64(87x+1)2)dx\pi \int_{0}^{7}\left(64-\left(8-\frac{7}{x+1}\right)^{2}\right) d x.

See Solution

Problem 9822

Water fills a cylindrical pool at 9 ft³/min. Find the height change rate when water is 3 feet deep. Answer: ft/min\mathrm{ft} / \mathrm{min}

See Solution

Problem 9823

A hot air balloon is tracked 2 miles away. At angle π3\frac{\pi}{3}, changing at 0.1rad/min0.1 \mathrm{rad/min}, find its rise speed. Answer: miles/min

See Solution

Problem 9824

Find the water level rise rate in an inverted cone tank (top radius 3m3 m, height 5m5 m) when water is 2m2 m deep, pumped at 2m3/min2 m^{3}/\min. What is the rate in m/minm/\min?

See Solution

Problem 9825

At noon, ship A is 180 km west of ship B. A sails south at 20 km/h, B sails north at 40 km/h. Find the speed of distance change at 4 PM in km/h.

See Solution

Problem 9826

Zeigen Sie, dass x0=0x_{0}=0 ein Minimum von f(x)=x4f(x)=x^{4} ist.

See Solution

Problem 9827

Finde die Extrem- und Wendepunkte der Funktion h(x)=(34x)2+32xh(x)=(3-4 x)^{2}+32 x.

See Solution

Problem 9828

Finde die Extremstellen der Funktion f(x)=x36x2+12x9f(x)=x^{3}-6 x^{2}+12 x-9 und bestimme, ob sie Minima oder Maxima sind.

See Solution

Problem 9829

Finde die Extrem- und Wendepunkte der Funktion g(t)=t2(2t+5)g(t) = t^{2} \cdot (2t + 5).

See Solution

Problem 9830

Bestimme f(1)f^{\prime}(1) und f(2)f^{\prime}(2) für f(x)=3x2f(x)=3 x^{2}; sowie f(3)f^{\prime}(3) und f(2)f^{\prime}(-2) für f(x)=4x2f(x)=4 x^{2}.

See Solution

Problem 9831

Find values of cc that satisfy the Mean Value Theorem for: 5) y=x2+8x+15y=x^{2}+8 x+15 on [5,3][-5,-3]; 6) y=x34x2+7y=x^{3}-4 x^{2}+7 on [0,3][0,3].

See Solution

Problem 9832

Find the limit: limx02x21cos(5x)\lim _{x \rightarrow 0} \frac{2 x^{2}}{1-\cos (5 x)}.

See Solution

Problem 9833

Evaluate the integral: ex9dx\int \sqrt{e^{x}-9} \, dx

See Solution

Problem 9834

Find the volume change rate of a sphere with radius rr expanding at 50 cm/min50 \mathrm{~cm/min} at t=2 mint=2 \mathrm{~min}. dVdt=\frac{d V}{d t}=

See Solution

Problem 9835

Find the rate of change of surface area, A=4πr2A=4 \pi r^{2}, for a sphere with r=10r=10 cm at t=2t=2 min, given dr/dt=40dr/dt=40 cm/min.

See Solution

Problem 9836

Find the rate of change of volume dVdt\frac{d V}{d t} of a sphere when r=15 cmr=15 \mathrm{~cm}, given rr expands at 40 cm/min40 \mathrm{~cm/min}.

See Solution

Problem 9837

Evaluate the integral: ysec2ydy\int y \sec^{2} y \, dy

See Solution

Problem 9838

Find dhdt\frac{d h}{d t} for a conical tank (height 8 m8 \mathrm{~m}, radius 4 m4 \mathrm{~m}) with water inflow 2.4 m3/min2.4 \mathrm{~m}^{3}/\mathrm{min}.

See Solution

Problem 9839

Find the derivative of f(x)=5x77x3+2f(x) = 5x^7 - 7x^3 + 2.

See Solution

Problem 9840

Find the points of inflection for f(x)=sin2xf(x)=\sin ^{2} x in [0,π][0, \pi]. Which xx-coordinates are correct?

See Solution

Problem 9841

Find the value of kk for which f(x)=xx2+kf(x)=\frac{x}{x^{2}+k} has a relative maximum at x=0.5x=0.5. Options: A) 1 B) 0.25 C) -0.25 D) 0.5

See Solution

Problem 9842

Evaluate the integral: sin3(y)1+cos(y)dy\int \frac{\sin ^{3}(y)}{1+\cos (y)} \mathrm{d} y

See Solution

Problem 9843

Calculate the integral: duu24u21\int \frac{d u}{u^{2} \sqrt{4 u^{2}-1}}.

See Solution

Problem 9844

Find the derivative of the function f(x)=x2+6x+9f(x)=x^{2}+6x+9.

See Solution

Problem 9845

Find the derivative of f(x)=5x2x+47f(x)=\frac{5 x^{2}}{x+47}.

See Solution

Problem 9846

Find the limit as xx approaches -\infty for the expression 3x2+24x21\frac{3 x^{2}+2}{4 x^{2}-1}.

See Solution

Problem 9847

Find the derivative of the function f(x)=5x2(x+47)f(x)=5 x^{2}(x+47).

See Solution

Problem 9848

Find the unit consumption vector for sector 2. For fixed costs 15 and variable costs 2Q2Q, express TC, AC, and MC, then find QQ minimizing AC. Verify that AC = MC at this point.

See Solution

Problem 9849

Berechnen Sie Hoch- und Tiefpunkte sowie Wendepunkte der Funktionen: a) f(x)=x44x2+3f(x)=x^{4}-4 x^{2}+3, b) f(x)=x3+3x24f(x)=-x^{3}+3 x^{2}-4, c) f(x)=0,5x3+x23,5xf(x)=0,5 x^{3}+x^{2}-3,5 x, d) f(x)=19x33x+1f(x)=\frac{1}{9} x^{3}-3 x+1, e) f(x)=x44x2f(x)=x^{4}-4 x^{2}, f) f(x)=13x312x2+14f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{4}.

See Solution

Problem 9850

Evaluate the integral 22(x3cosx2+12)4x2dx\int_{-2}^{2}\left(x^{3} \cos \frac{x}{2}+\frac{1}{2}\right) \sqrt{4-x^{2}} d x.

See Solution

Problem 9851

Find the derivative y' of y=(3x4)(4x3x2+1)y=(3 x-4)(4 x^{3}-x^{2}+1). Show your work.

See Solution

Problem 9852

Find the slope of the tangent line to the curve y=x2+6xy=x^{2}+6x at the point where x=3x=-3 using the limit definition.

See Solution

Problem 9853

Find the average rate of change of the function h(x)=18x3x2h(x)=\frac{1}{8} x^{3}-x^{2} from x=2x=-2 to x=2x=2.

See Solution

Problem 9854

Untersuchen Sie das Verhalten der Funktionen für x+x \rightarrow+\infty und xx \rightarrow-\infty und erklären Sie Konvergenz/Divergenz.

See Solution

Problem 9855

Find the interval where the function h(x)=18x3x2h(x)=\frac{1}{8} x^{3}-x^{2} has a positive average rate of change. Choose one: (A) 6x86 \leq x \leq 8, (B) 0x80 \leq x \leq 8, (C) 0x20 \leq x \leq 2, (D) 0x60 \leq x \leq 6.

See Solution

Problem 9856

Untersuchen Sie das Verhalten der Funktionen ff für x+x \rightarrow+\infty und xx \rightarrow-\infty bezüglich Konvergenz und Divergenz.

See Solution

Problem 9857

Show that the polynomial f(x)=2x49x2+3f(x)=2 x^{4}-9 x^{2}+3 has a zero between -2 and 0 using the Intermediate Value Theorem.

See Solution

Problem 9858

Untersuchen Sie die Konvergenz und Divergenz der Funktionen für x+x \rightarrow+\infty und xx \rightarrow-\infty:
e) f:xγ2x+3x2f: x \mapsto \frac{-\gamma}{2 x+3 x^{2}}
f) f:x3x23x+120,25x2+6xf: x \mapsto \frac{-3 x^{2}-3 x+12}{-0,25 x^{2}+6 x}
g) f:xx2+2x9x+3f: x \mapsto \frac{x^{2}+2 x}{-9 x+3}
h) f:xx(3x)8x7f: x \mapsto \frac{x(3-x)}{-8 x-7}

See Solution

Problem 9859

Un plongeur de 70 kg saute d'une hauteur de 12 m. Quelle est sa vitesse à l'impact? (20 m/s)

See Solution

Problem 9860

Un plongeur de 70 kg saute d'une hauteur de 12 m. Quelle est sa vitesse d'impact avec l'eau? (20 m/s)

See Solution

Problem 9861

Bestimme die Ableitung der Funktion fa(x)=13ax3x2f_a(x)=\frac{1}{3a}x^3 - x^2 für a0a \neq 0.

See Solution

Problem 9862

Find f(1)f^{\prime}(1) if f(x)=arcsec(e2x)f(x)=\operatorname{arcsec}\left(e^{2 x}\right).

See Solution

Problem 9863

Bestimmen Sie die Steigung der Funktionen ft(x)f_{t}(x) für x0x_{0}: a) ft(x)=tt3xif_{t}(x)=t-\frac{t}{3} x_{i}, x0=3x_{0}=-3; b) ft(x)=t4x3tx2+tx+1f_{t}(x)=\frac{t}{4} x^{3}-t x^{2}+t x+1, x0=1x_{0}=1; c) ft(x)=tetxf_{t}(x)=t \cdot e^{t x}, x0=0x_{0}=0.

See Solution

Problem 9864

Find the extreme points of the function f(x)=13ax3x2f(x)=\frac{1}{3 a} x^{3}-x^{2}, where a0a \neq 0.

See Solution

Problem 9865

Find the speed and acceleration of the body at t=2t=2 for the function s=f(t)=7t2+2t+8s=f(t)=7 t^{2}+2 t+8.

See Solution

Problem 9866

Un plongeur de 70 kg saute d'une tour de 12 m. a) Vitesse à l'impact? b) Vitesse avec 5 m/s vers le haut?

See Solution

Problem 9867

Use the Intermediate Value Theorem to show f(x)=x3+x22x+4f(x)=x^{3}+x^{2}-2x+4 has a zero between -3 and -1.

See Solution

Problem 9868

Use the intermediate value theorem to show f(x)=3x310x+9f(x)=3x^3-10x+9 has a zero between -3 and -2.

See Solution

Problem 9869

A balloon rises 30 ft away from you. If the angle of elevation changes at 15rad/min\frac{1}{5} \mathrm{rad/min}, find its rise rate at 40 ft.

See Solution

Problem 9870

Find the inflection points of fa(x)=13ax3x2f_a(x)=\frac{1}{3 a} x^{3}-x^{2} where a0a \neq 0.

See Solution

Problem 9871

Find the velocity of a particle at t=3t=3 seconds, given s(t)=4t2+26ts(t)=4 t^{2}+26 t.

See Solution

Problem 9872

A farmer builds a pen of area 66 m² with 2 interior fences. Exterior costs \$12/m, interior \$10/m. Minimize total cost.

See Solution

Problem 9873

Untersuchen Sie, wie die Anzahl der Wendepunkte der Funktion f(x)=tx4+4x3+2x2f(x)=t \cdot x^{4}+4 x^{3}+2 x^{2} vom Parameter tt abhängt.

See Solution

Problem 9874

Untersuchen Sie, ob F(x)F(x) und F(x)F^{*}(x) zu f(x)f(x) gehören, und geben Sie ggf.f(x)g g f . f(x) an. a) F(x)=2ex(ex+1)F(x)=2 e^{x}(e^{x}+1); F(x)=e2x+2ex+4F^{*}(x)=e^{2 x}+2 e^{x}+4 b) F(x)=(x+1)3F(x)=(x+1)^{3}; F(x)=x3+3x(x+1)F^{*}(x)=x^{3}+3 x(x+1) c) F(x)=sinxF(x)=\sin x; F(x)=cos(xπ)F^{*}(x)=\cos (x-\pi) d) F(x)=x2+1x2F(x)=x^{2}+\frac{1}{x^{2}}; F(x)=(x21)2x2F^{*}(x)=\frac{(x^{2}-1)^{2}}{x^{2}}

See Solution

Problem 9875

Untersuchen Sie die Wendestellen von f(x)=tx4+4x3+2x2f(x)=t \cdot x^{4}+4 x^{3}+2 x^{2} in Abhängigkeit von tt.

See Solution

Problem 9876

Estimate the population of country XX in 24 years given N(t)=500e0.02tN(t)=500 e^{0.02 t} with current population 500 million.

See Solution

Problem 9877

A baseball machine throws a ball up at 96ft/sec96 \mathrm{ft/sec} from 1.5ft1.5 \mathrm{ft}. Find the height equation and max height/time.

See Solution

Problem 9878

Find the derivative of the function 3cos(xπ)3cos(π)x2π\frac{3 \cos (x-\pi)-3 \cos (\pi)}{x-2 \pi}.

See Solution

Problem 9879

Find the first derivative of the function f(x)=3x2x+1f(x)=\frac{3 x}{2 x+1}.

See Solution

Problem 9880

Find the limit: =limxπ23cos(xπ)xπ2.=\lim _{x \rightarrow \frac{\pi}{2}} \frac{3 \cos (x-\pi)}{x-\frac{\pi}{2}}.

See Solution

Problem 9881

A particle's velocity is v(t)=2+(t2+3t)65t3v(t)=-2+(t^{2}+3t)^{\frac{6}{5}}-t^{3} with s(0)=10s(0)=10.
a. Find tt where speed is 2 in 2t42 \leq t \leq 4. b. Determine when it changes direction in 0t50 \leq t \leq 5. c. Is speed increasing or decreasing at t=4t=4? Explain.

See Solution

Problem 9882

Find the derivative of the function y=x23+4xxy=-\frac{\sqrt[3]{x^{2}}+4x}{\sqrt{x}}.

See Solution

Problem 9883

Find the protozoa population after 8 days if it starts with 7 members and grows at a rate of 0.469 per day. Use P(0)=7P(0) = 7.

See Solution

Problem 9884

Approximate 64.33\sqrt[3]{64.3} using the tangent line to f(x)=x3f(x)=\sqrt[3]{x} at x=64x=64. Find mm and bb for y=mx+by=mx+b.

See Solution

Problem 9885

Find the xx-values where f(x)f(x) has horizontal tangents given f(x)=53x23lnx+x23f^{\prime}(x)=\frac{5}{3} x^{\frac{2}{3}} \ln x+x^{\frac{2}{3}}.

See Solution

Problem 9886

A ball bearing has a diameter of 7.4 mm7.4 \mathrm{~mm} with a possible error of 0.05 mm0.05 \mathrm{~mm}. Find: a. Max error in volume using differentials. b. Relative error in volume using differentials.

See Solution

Problem 9887

Approximate the change in surface area dAd A for a sphere when the radius changes from rr by drdr. dA= d A =

See Solution

Problem 9888

Approximate yy for x=1.24x=1.24 using the linearization of x3+y5+2y=4x^{3}+y^{5}+2y=4 at (1,1)(1,1). Round to three decimals. y y \approx

See Solution

Problem 9889

Find the derivative of y=116x4lnxy=\frac{1}{16} x^{4} \ln x.

See Solution

Problem 9890

Find the production level for max profit with C(q)=0.04q2+4q+50C(q)=0.04 q^{2}+4 q+50 and selling price of \$8. What is max profit?

See Solution

Problem 9891

Find the derivative of yy where y=4xy=4^{x}.

See Solution

Problem 9892

Find the second derivative of y=7x367y=\frac{7 x^{3}}{6}-7.

See Solution

Problem 9893

Find the differential dyd y for y=2x2+2x+3y=2x^{2}+2x+3 and estimate Δy\Delta y using Δx=0.2\Delta x=0.2 at x=5x=5.

See Solution

Problem 9894

Approximate 3.743.7^{4} using the tangent line of f(x)=x4f(x)=x^{4} at x=4x=4. Find mm and bb for y=mx+by=m x+b.

See Solution

Problem 9895

Bestimme die Bedeutung von 1050v(t)dt\int_{10}^{50} v(t) dt und berechne 1050v(t)dt\int_{10}^{50} v(t) dt mit V(t)=230(t+4)32V(t)=\frac{2}{30}(t+4)^{\frac{3}{2}}.

See Solution

Problem 9896

Find horizontal or vertical asymptotes for f(x)=x4+1x2+5x14f(x)=\frac{x^{4}+1}{x^{2}+5 x-14}. A. y=y=, B. No horizontal asymptotes.

See Solution

Problem 9897

Find the quantity qq that maximizes profit using R(q)=450qR(q)=450q and C(q)=9500+2q2C(q)=9500+2q^{2}. Round answers. a) Max profit quantity: q=q= b) Total profit: profit =$=\$

See Solution

Problem 9898

Find horizontal or vertical asymptotes of f(x)=x4+1x2+5x14f(x)=\frac{x^{4}+1}{x^{2}+5 x-14}.

See Solution

Problem 9899

Approximate yy when x=1.24x=1.24 using the linearization of x3+y5+2y=4x^{3}+y^{5}+2y=4 at (1,1)(1,1), rounding to three decimals.

See Solution

Problem 9900

Find the derivative of the function f(s)=s5s+1f(s)=\frac{\sqrt{s}-5}{\sqrt{s}+1}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord