Calculus

Problem 9001

Find the following limits as xx approaches infinity: (a) limx72x7x36=\lim _{x \rightarrow \infty} \frac{7-2 x}{7 x^{3}-6}= (b) limx72x7x6=\lim _{x \rightarrow \infty} \frac{7-2 x}{7 x-6}= (c) limx72x27x6=\lim _{x \rightarrow \infty} \frac{7-2 x^{2}}{7 x-6}=

See Solution

Problem 9002

Find the limit: limxx247x7\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-4}}{7 x-7}.

See Solution

Problem 9003

Find the limit: limxsin(3x)x\lim _{x \rightarrow \infty} \frac{\sin (3 x)}{x}.

See Solution

Problem 9004

Given the function f(x)=(x+2)2(x1)f(x)=(x+2)^{2}(x-1), find:
(a) Critical numbers: x=x=
(b) Intervals where ff is increasing and decreasing: Increasing: (,2)(-\infty,-2), (2,0)(-2,0), (0,)(0, \infty) Decreasing: (,2)(-\infty,-2), (2,0)(-2,0), (0,)(0, \infty)
(c) Use the First Derivative Test for relative extrema: Max (x,y)=((x, y)=( Min (x,y)=((x, y)=( )

See Solution

Problem 9005

Find the derivative of the composite function ddxf(g(x))\frac{d}{d x} f(g(x)) with f(x)=x5f(x)=x^{5} and g(x)=8x9g(x)=8 x-9.

See Solution

Problem 9006

Find the limits as xx approaches infinity for: (a) h(x)=8x2+2x+1xh(x)=\frac{8x^2+2x+1}{x}, (b) h(x)=8x2+2x+1x2h(x)=\frac{8x^2+2x+1}{x^2}, (c) h(x)=8x2+2x+1x3h(x)=\frac{8x^2+2x+1}{x^3}.

See Solution

Problem 9007

Find the derivative of the composite function f(g(x))f(g(x)) with f(x)=6xf(x)=\frac{6}{x} and g(x)=8x2g(x)=8-x^{2}.

See Solution

Problem 9008

Find the tangent line equation for f(x)=x(4x)2f(x)=x(4-x)^{2} at x=2x=2. What is y=y=?

See Solution

Problem 9009

Find the percentage of doctors prescribing medication after 10 months using P(t)=100(1e0.42t)P(t)=100(1-e^{-0.42 t}) and P(10)P^{\prime}(10). Interpret P(10)P^{\prime}(10).

See Solution

Problem 9010

A camera is 4,000 ft from a rocket pad. If the rocket rises at 700 ft/s from 3,000 ft, find: (a) rate of distance change (ft/s). (b) angle change rate (rad/s).

See Solution

Problem 9011

Find the derivative dydx\frac{d y}{d x} for the function y=x4x+1y=x^{4} \sqrt{x+1}.

See Solution

Problem 9012

Find the limit as xx approaches negative infinity: limx9x6xx3+2\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+2}.

See Solution

Problem 9013

A camera is 4,000ft4,000 \mathrm{ft} from a rocket pad. If the rocket rises at 700ft/s700 \mathrm{ft/s} when 3,000ft3,000 \mathrm{ft} high, find:
(a) How fast is the distance to the rocket changing in ft/s\mathrm{ft/s}? (b) How fast is the angle of elevation changing in rad/s\mathrm{rad/s}?

See Solution

Problem 9014

Find dydx\frac{d y}{d x} for y=x4x+1y=x^{4} \sqrt{x+1}.

See Solution

Problem 9015

Calculate the total amount and interest from a \$3,000 deposit at 5.24% continuous compounding for 7 years.

See Solution

Problem 9016

Find the limit: limx0sin3xsin4x6x2\lim _{x \rightarrow 0} \frac{\sin 3 x \sin 4 x}{6 x^{2}}.

See Solution

Problem 9017

Find the value of QQ that maximizes total revenue for the demand equation P=10004QP=\sqrt{1000-4Q}.

See Solution

Problem 9018

Bestimme die Verdopplungszeit der Weltbevölkerung bei einer Wachstumsrate von 1,2\% jährlich.

See Solution

Problem 9019

Evaluate the integral: 3cos(2xπ2)cos(x+π4)dx\int 3 \cos \left(2 x-\frac{\pi}{2}\right) \cos \left(x+\frac{\pi}{4}\right) d x

See Solution

Problem 9020

Calculate the integral: 4sin8xcos3xdx\int 4 \sin 8 x \cos 3 x \, dx

See Solution

Problem 9021

Find the derivative of f(x)=(x5.2)3xf(x) = (x-5.2)^{3} \cdot \sqrt{x}.

See Solution

Problem 9022

Calculate the integral: sin5xcos4xdx\int \sin^{5} x \cos^{4} x \, dx

See Solution

Problem 9023

Calculate the integral sin32xcos2xdx\int \sin^{3} 2x \sqrt{\cos 2x} \, dx.

See Solution

Problem 9024

Calculate the integral of tan2(2x)sec4(2x)dx\tan^{2}(2x) \sec^{4}(2x) \, dx.

See Solution

Problem 9025

Simplify f(x)=(ax2+44)1xf(x)=\left(a \cdot x^{2}+44\right) \cdot \frac{1}{x}, find its derivative and roots.

See Solution

Problem 9026

Evaluate the integral: tan4(3x)dx\int \tan^{4}(3x) \, dx

See Solution

Problem 9027

Find the integral of tan3xsec3/2xdx\tan^{3} x \sec^{3/2} x \, dx.

See Solution

Problem 9028

Evaluate the integral: 5sin(4x+π3)sin(2xπ6)dx\int 5 \sin \left(4 x+\frac{\pi}{3}\right) \sin \left(2 x-\frac{\pi}{6}\right) d x

See Solution

Problem 9029

Find the derivative of f(x)=(xa)10x2f(x)=(-x-a) \cdot \frac{10}{x^{2}} using the product rule.

See Solution

Problem 9030

Gegeben ist die Funktion y=f1(x)=(x+1t)etxy=f_{1}(x)=\left(x+\frac{1}{t}\right) \cdot e^{-t x}. Untersuche Nullstellen, Extrempunkte, Wendepunkte und berechne Flächeninhalt und Volumen.

See Solution

Problem 9031

Which differentiation rule is incorrect? a. If f(z)=zmf(z)=z^{m}, then f(z)=mzm1f^{\prime}(z)=m z^{m-1} b. If f(z)=a+bzmf(z)=a+b z^{m}, then f(z)=a+bmzm1f^{\prime}(z)=a+b m z^{m-1} c. If f(z)=af(z)=a, then f(z)=0f^{\prime}(z)=0 d. If f(z)=g(z)+h(z)f(z)=g(z)+h(z), then f(z)=g(z)+h(z)f^{\prime}(z)=g^{\prime}(z)+h^{\prime}(z)

See Solution

Problem 9032

Find the value of qq that maximizes the profit given the marginal profit function P(q)=4(32q)+112P^{\prime}(q)=4(3^{2}-q)+112. Select the correct option.

See Solution

Problem 9033

Bestimmen Sie die Extrem- und Wendepunkte der Funktionen: a) f(x)=x(x+3)2f(x)=x \cdot(x+3)^{2}, b) f(t)=(3t1)2f(t)=(3 t-1)^{2}, c) g(x)=(2x5)3150xg(x)=(2 x-5)^{3}-150 x, d) g(t)=t2(2t+5)g(t)=t^{2} \cdot(2 t+5), e) h(x)=(34x)2+32xh(x)=(3-4 x)^{2}+32 x, f) h(t)=(13t+2)2th(t)=\left(\frac{1}{3} t+2\right)^{2} \cdot t.

See Solution

Problem 9034

Find the marginal revenue from renting the 20th apartment using the function R(x)=6x38x2xR(x)=6 x^{3}-8 x^{2}-\sqrt{x}.

See Solution

Problem 9035

Find the derivative r(t)\vec{r}^{\prime}(t) for r(t)=3cos(t+2),3te4t,3tln(4t)\vec{r}(t)=\langle 3 \cos (t+2), 3 t e^{4 t},-3 t \ln (-4 t)\rangle.

See Solution

Problem 9036

Finde die Extrem- und Wendepunkte der Funktionen: a) f(x)=x44x3f(x)=x^{4}-4 x^{3}, b) g(x)=14x432x3+3x2g(x)=\frac{1}{4} x^{4}-\frac{3}{2} x^{3}+3 x^{2}, c) h(x)=23x32xh(x)=\frac{2}{3} x^{3}-2 x.

See Solution

Problem 9037

Find the derivative r(t)\vec{r}^{\prime}(t) for r(t)=3tln(2t),4sin(t3),5te3t\vec{r}(t)=\langle-3 t \ln (-2 t),-4 \sin (-t-3), 5 t e^{-3 t}\rangle.

See Solution

Problem 9038

Find the tangent line (L)(L) to the curve r(t)=2t2+3,t2+t4,3t3\vec{r}(t)=\left\langle 2 t^{2}+3, t^{2}+t^{4},-3 t^{3}\right\rangle at (11,20,24)(11,20,24).

See Solution

Problem 9039

Find the arc length ss of the curve r(t)=3e3t,3e3t,e3t\vec{r}(t)=\langle 3 e^{3 t},-3 e^{3 t}, e^{3 t}\rangle for 0tln(4)0 \leq t \leq \ln(4). s=s=

See Solution

Problem 9040

Find the derivative r(t)\vec{r}^{\prime}(t) for r(t)=3tln(2t),4sin(t3),5te3t\vec{r}(t)=\left\langle-3 t \ln (-2 t),-4 \sin (-t-3), 5 t e^{-3 t}\right\rangle.

See Solution

Problem 9041

Find the integral of the vector function r(t)=3t+1,4t+1,4cos(4t)\vec{r}(t)=\left\langle\sqrt{3 t+1},-\frac{4}{t+1},-4 \cos (-4 t)\right\rangle.

See Solution

Problem 9042

Berechne die Ableitung von g(x)=x2+2x3x4g(x)=\frac{x^{2}+2x}{3x-4} und finde die Tangenten bei P(3,g(3))P(3, g(3)). Untersuche auch Asymptoten.

See Solution

Problem 9043

Bestimmen Sie die Intervalle für Linkskurve und Rechtskurve des Graphen von f(x)=13x3xf(x)=\frac{1}{3} x^{3}-x.

See Solution

Problem 9044

Calculate the arc length ss of the curve r(t)=5e2t,e2t,2e2t\vec{r}(t)=\langle 5 e^{2 t},-e^{2 t},-2 e^{2 t}\rangle for 0tln(4)0 \leq t \leq \ln(4). s=s=

See Solution

Problem 9045

Find the integral r(t)dt\int \vec{r}(t) dt for r(t)=3t1,3t1,4cos(4t)\vec{r}(t)=\left\langle\sqrt{3 t-1}, \frac{3}{t-1},-4 \cos (-4 t)\right\rangle.

See Solution

Problem 9046

Find the limit as tt approaches 0 for the expression: 5t29i+etj+1cos(t)tk\frac{5}{t^{2}-9} \vec{i}+e^{-t} \vec{j}+\frac{1-\cos (t)}{t} \vec{k}.

See Solution

Problem 9047

Evaluate the limit as tt approaches 0: ln(t+3)i+ln(t+3)t5j+5t2k\ln(t+3) \vec{i} + \frac{\ln(t+3)}{t-5} \vec{j} + 5t^2 \vec{k}.

See Solution

Problem 9048

Calculate the arc length ss of the curve r(t)=5e2t,e2t,2e2t\vec{r}(t)=\langle 5 e^{2 t},-e^{2 t},-2 e^{2 t}\rangle for 0tln(4)0 \leq t \leq \ln(4).

See Solution

Problem 9049

Find the derivative r(t)\vec{r}^{\prime}(t) of the vector function r(t)=4cos(3t+4),5te4t,tln(4t)\vec{r}(t)=\langle-4 \cos (-3 t+4),-5 t e^{-4 t},-t \ln (4 t)\rangle.

See Solution

Problem 9050

Find the 1st, 2nd, and 3rd derivatives of f(x)=12x843x6+7x3+3f(x)=-\frac{1}{2} x^{8}-\frac{4}{3} x^{6}+7 x^{3}+3.

See Solution

Problem 9051

Find the integral of the vector function r(t)=3t5,cos(2t),13t+5\vec{r}(t)=\langle\sqrt{3 t-5,-\cos (-2 t), \frac{1}{-3 t+5}}\rangle.

See Solution

Problem 9052

Find r(t)\vec{r}^{\prime}(t) for r(t)=3tln(2t),4sin(t3),5te3t\vec{r}(t)=\langle-3 t \ln (-2 t),-4 \sin (-t-3), 5 t e^{-3 t}\rangle.

See Solution

Problem 9053

Find the tangent line (L)(L) to r(t)=4t4+5,t2+4t4,3t3\vec{r}(t)=\langle 4t^4+5, t^2+4t^4, 3t^3 \rangle at the point (9,5,3)(9,5,-3).

See Solution

Problem 9054

Find the derivative r(t)\vec{r}^{\prime}(t) for r(t)=3tln(2t),4sin(t3),5te3t\vec{r}(t)=\langle-3 t \ln (-2 t),-4 \sin (-t-3), 5 t e^{-3 t}\rangle.

See Solution

Problem 9055

Find the derivative r(t)\vec{r}^{\prime}(t) for r(t)=4cos(3t+4),5te4t,tln(4t)\vec{r}(t)=\langle-4 \cos (-3 t+4),-5 t e^{-4 t},-t \ln (4 t)\rangle.

See Solution

Problem 9056

Find the tangent line (L)(L) to the curve r(t)=3t3+4,t25t3,5t2\vec{r}(t)=\langle-3 t^{3}+4, t^{2}-5 t^{3},-5 t^{2}\rangle at (28,44,20)(28,44,-20).

See Solution

Problem 9057

Calculate the arc length ss of the curve r(t)=e3t,5e3t,3e3t\vec{r}(t)=\langle-e^{3t},-5e^{3t},3e^{3t}\rangle for 0tln(4)0 \leq t \leq \ln(4). s=s=

See Solution

Problem 9058

Find the limit as t t approaches 0 for (t+3)i+1cos(t)tj+etk (t+3) \vec{i} + \frac{1-\cos(t)}{t} \vec{j} + e^{-t} \vec{k} .

See Solution

Problem 9059

Find the tangent line (L)(L) to r(t)=3t3+4,t25t3,5t2\vec{r}(t)=\langle-3 t^{3}+4, t^{2}-5 t^{3},-5 t^{2}\rangle at (28,44,20)(28,44,-20).

See Solution

Problem 9060

Berechnen Sie die Werte der folgenden Integrale: a) 012xx2+1dx\int_{0}^{1} \frac{2 x}{x^{2}+1} dx b) 0π2tanxdx\int_{0}^{\frac{\pi}{2}} -\tan x \, dx c) 153x2x3+8dx\int_{1}^{5} \frac{3 x^{2}}{x^{3}+8} dx d) ee1xlnxdx\int_{e}^{e} \frac{1}{x \ln x} dx e) 20exex+edx\int_{-2}^{0} \frac{e^{x}}{e^{x}+e} dx f) π6π6cotxdx\int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \cot x \, dx g) 05exedx\int_{0}^{5} \frac{e^{x}}{e} dx h) 122x+4x3x2(1+x2)dx\int_{1}^{2} \frac{2x+4x^{3}}{x^{2}(1+x^{2})} dx i) 0π2sin(2x)dx\int_{0}^{\frac{\pi}{2}} \sin(2x) \, dx j) 26exdx\int_{-2}^{6} e^{-x} dx k) 11e2x+3dx\int_{-1}^{1} e^{2x+3} dx l) 120cos(πx)dx\int_{-\frac{1}{2}}^{0} \cos(\pi x) \, dx

See Solution

Problem 9061

Find the tangent line (L)(L) to the curve r(t)=3t3+4,t25t3,5t2\vec{r}(t)=\langle-3 t^{3}+4, t^{2}-5 t^{3},-5 t^{2}\rangle at point (28,44,20)(28,44,-20).

See Solution

Problem 9062

Bestimmen Sie die Ableitung der Funktion f(x)=2x1f(x) = 2x - 1.

See Solution

Problem 9063

Bestimme die erste Ableitung von f(x)=x2x6f(x)=x^{2}-x-6.

See Solution

Problem 9064

Bestimme die Ableitung von fa(x)=x2+axf_{a}(x)=-x^{2}+a x und die Steigung bei x=0x=0. Für welches aa ist die Steigung 1?

See Solution

Problem 9065

Find the limit as xx approaches 2 from the left for the piecewise function g(x)g(x) defined as: g(x)={5x,x<4x25,4x<2x3,x2g(x)=\begin{cases} \sqrt{5-x}, & x<-4 \\ x^{2}-5, & -4 \leq x<2 \\ x-3, & x \geq 2 \end{cases}

See Solution

Problem 9066

Find positive tt such that vector r(t)undefined=10t,10t2,5t210\overrightarrow{r(t)}=\langle 10t, 10t^2, 5t^2-10\rangle is perpendicular to r(t)undefined\overrightarrow{r'(t)}. t=t=

See Solution

Problem 9067

Find the unit tangent vector T(t)\vec{T}(t) for r(t)=5t41,e4t,sin(4t)\vec{r}(t)=\langle 5t^4-1,-e^{4t},\sin(4t)\rangle at t=0t=0. Round to 4 decimal places.

See Solution

Problem 9068

Bestimmen Sie die Intervalle, in denen der Graph der Funktionen ff eine Links- oder Rechtskurve hat: a) f(x)=320x52x3+xf(x)=\frac{3}{20} x^{5}-2 x^{3}+x b) f(x)=14x4+3x32f(x)=\frac{1}{4} x^{4}+3 x^{3}-2 c) f(x)=x42x3f(x)=x^{4}-2 x^{3}

See Solution

Problem 9069

Bestimmen Sie die Ableitung von fa(x)=x2+axf_{a}(x)=-x^{2}+a x und die Steigung bei x=0x=0. Für welches aa ist die Steigung 1?

See Solution

Problem 9070

Find the limit: limx4+g(x)\lim _{x \rightarrow-4^{+}} g(x) for the piecewise function g(x)={5x,x<4x25,4x<2x3,x2g(x)=\left\{\begin{array}{cc}\sqrt{5-x}, & x<-4 \\ x^{2}-5, & -4 \leq x<2 \\ x-3, & x \geq 2\end{array}\right.

See Solution

Problem 9071

Find the derivative of y=6x+8secxy=\frac{6}{x}+8 \sec x. Show your work.

See Solution

Problem 9072

Find the unit tangent vector T(1)\vec{T}(-1) for the curve r(t)=4t,3t,25t2\vec{r}(t)=\langle 4t, -3t, \sqrt{25-t^2} \rangle.

See Solution

Problem 9073

Invest \$150000 at 4\% interest compounded continuously. (a) Find the account value after 9 years. (b) When will it reach \$240000?

See Solution

Problem 9074

Find the derivative of y=secx+cscxcscxy=\frac{\sec x+\csc x}{\csc x}. Show your work.

See Solution

Problem 9075

Find limx4g(x)\lim _{x \rightarrow-4^{-}} g(x) for the piecewise function g(x)={5x,x<4x25,4x<2x3,x2g(x)=\left\{\begin{array}{cc}\sqrt{5-x}, & x<-4 \\ x^{2}-5, & -4 \leq x<2 \\ x-3, & x \geq 2\end{array}\right.

See Solution

Problem 9076

Find yy^{\prime \prime} for the function y=3sinxy=3 \sin x. Show your calculations.

See Solution

Problem 9077

Find the unit tangent vector T(π4)\vec{T}\left(\frac{\pi}{4}\right) for the curve r(t)=4cos(t),4sin(t),3sin2(t)\vec{r}(t)=\langle 4 \cos (t), 4 \sin (t), 3 \sin ^{2}(t)\rangle.

See Solution

Problem 9078

Does the function y=3x+6sinxy=3 x+6 \sin x have horizontal tangents in 0x2π0 \leq x \leq 2 \pi? If yes, where?

See Solution

Problem 9079

Find the limits and value for the piecewise function:
g(x)={5x,x<4x25,4x<2x3,x2g(x)=\left\{\begin{array}{cc}\sqrt{5-x}, & x<-4 \\ x^{2}-5, & -4 \leq x<2 \\ x-3, & x \geq 2\end{array}\right.
e. limx2+g(x)\lim _{x \rightarrow 2^{+}} g(x), f. limx2g(x)\lim _{x \rightarrow 2} g(x), g. limx4g(x)\lim _{x \rightarrow-4} g(x), h. g(4)g(-4).

See Solution

Problem 9080

Calculate the integral of the vector function r(t)=5t4+5,e5t,sin(t)\vec{r}(t)=\langle 5 t^{4}+5, e^{5 t},-\sin (-t)\rangle.

See Solution

Problem 9081

Find the integral r(t)dt\int \vec{r}(t) dt for r(t)=5t4+5,e5t,sin(t)\vec{r}(t)=\langle 5t^4+5, e^{5t}, -\sin(-t)\rangle.

See Solution

Problem 9082

Calculate the integral of the vector function r(t)=3sin(t),1t3,5t+3\vec{r}(t)=\langle 3 \sin (-t),-\frac{1}{t-3}, \sqrt{5 t+3}\rangle. Find r(t)dt\int \vec{r}(t) dt.

See Solution

Problem 9083

Evaluate the integral of r(t)=t23,4t9,4et\vec{r}(t)=\left\langle\sqrt[3]{t-2}, \frac{4}{t-9}, 4 e^{t}\right\rangle from 10 to 29.

See Solution

Problem 9084

Find the derivative of y=20xx3y=\sqrt{20 x-x^{3}}. Show your work.

See Solution

Problem 9085

Find dydx\frac{d y}{d x} for y=sinuy=\sin u and u=9x+18u=9 x+18. Show your work using the chain rule.

See Solution

Problem 9086

Find the derivative of (f+g)(x)=x3+x3+4(f+g)(x)=x^{3}+\sqrt[3]{x}+4 and evaluate it at a specific point.

See Solution

Problem 9087

A 4 ft person walks from a 10 ft lamppost at 3 ft/s. Find shadow tip rates when the person is 8 ft from the pole.

See Solution

Problem 9088

Montrez que pour tout x>0x > 0, on a xx39<G(x)<xx - \frac{x^3}{9} < G(x) < x avec GG la primitive de y(x)=1xarctan(x)y(x) = \frac{1}{x}\arctan(x).

See Solution

Problem 9089

Bestimmen Sie den Differenzenquotienten für die Funktionen in den angegebenen Intervallen: a) f(x)=(x2)2,I=[1;6]f(x)=(x-2)^{2}, I=[1 ; 6] b) f(x)=9x23,I=[3;1]f(x)=\frac{9}{x^{2}}-3, I=[-3 ;-1] c) f(x)=x+5+x,I=[4;1]f(x)=\sqrt{x+5}+x, I=[-4 ;-1] d) f(x)=x3+x2,I=[2;4]f(x)=x^{3}+x^{2}, I=[-2 ; 4]

See Solution

Problem 9090

Zeigen Sie, dass der Differenzenquotient von f(x)=2xf(x)=2^{x} im Intervall [a;a+2][a ; a+2] gleich 32f(a)\frac{3}{2} \cdot f(a) ist.

See Solution

Problem 9091

1. Blutzuckerwerte über Stunden: f(x)=0,25x4+13x38,5x2+15x+100f(x)=0,25 x^{4}+\frac{1}{3} x^{3}-8,5 x^{2}+15 x+100 für 0x50 \leq x \leq 5. a. Glukosespiegel nach 2h. b. Zeitpunkt und Wert des tiefsten Glukosespiegels. c. Zeitpunkt, wenn Glukose > 120 mg/dl. d. Durchschnittlicher Anstieg in 5h.

See Solution

Problem 9092

Find the derivative dydx\frac{dy}{dx} for the equation xyy2=4x y - y^{2} = 4.

See Solution

Problem 9093

Find the derivative of h(x)=(cosx1+sinx)5h(x)=\left(\frac{\cos x}{1+\sin x}\right)^{5}. Show your work.

See Solution

Problem 9094

Given an invertible function f(x)f(x), use the table to find: a) f1(3)f^{-1}(3), f1(4)f^{-1}(4), b) (f1)(4)\left(f^{-1}\right)^{\prime}(4), c) tangent line of f1(x)f^{-1}(x) at x=4x=4, d) tangent line of f(x)f(x) at x=1x=1, e) relationship between the two tangent lines.

See Solution

Problem 9095

Find the derivative of y=(1+7x)e(7x)y=(1+7 x) e^{(-7 x)}. Show your work.

See Solution

Problem 9096

Bestimme die Ableitung und die Steigung von fa(x)f_{a}(x) an x=0x=0. Wann ist die Steigung 1? Funktionen: a) x2+ax-x^{2}+a x b) ax33axa x^{3}-3 a x c) ax44x3+a2xa x^{4}-4 x^{3}+a^{2} x d) ax4+2x2+(a23)xa x^{4}+2 x^{2}+(a^{2}-3) x e) 1ax2+2ax+a\frac{1}{a} x^{2}+\frac{2}{a} x+a f) x2+(a213)x+1x^{2}+(\frac{a}{2}-\frac{1}{3}) x+1.

See Solution

Problem 9097

Die Firma Meier verkauft Schokolade. Gegeben ist die Funktion f(t)=0,0001t3+0,15t2+15tf(t)=-0,0001 t^{3}+0,15 t^{2}+15 t für 0t15000 \leq t \leq 1500.
a. Wie viele Tafeln verkauft die Firma nach 700 Tagen? b. An welchem Tag werden die meisten Schokoladen verkauft? c. Wann ist die Zunahme der täglichen Verkaufszahlen am größten?

See Solution

Problem 9098

Given the function F(x,y)=7x2+6xy2+4y+222F(x, y) = 7x^{2} + 6xy^{2} + 4y + 22^{2}, find the first derivative F1F_{1}^{\prime} and coefficients a,b,c,d,g,ka, b, c, d, g, k.

See Solution

Problem 9099

Find ss^* and tt^* such that v(s,t)=(7s22st)e15tv(s, t)=(7 s^{2}-2 s t) \cdot e^{\frac{1}{5} t} has one local extremum.

See Solution

Problem 9100

Rocket problem: Given exhaust velocity 20.4 m/s20.4 \mathrm{~m/s}, initial mass 1.1 kg1.1 \mathrm{~kg}, and gravity 9.81 ms29.81 \mathrm{~ms}^{-2}, find:
(a) Fuel burn rate α\alpha in kg/s\mathrm{kg/s} after 0.10.1 seconds when velocity is 2.66 m/s2.66 \mathrm{~m/s}.
(b) Time until all fuel is used up in seconds.
(c) Expected height when fuel is exhausted in metres (use limx0+xlnx=0\lim_{x \to 0^+} x \ln x = 0).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord