Calculus

Problem 33301

Find the limit of f(x)=2+7x83x2f(x)=\frac{-2+\frac{7}{x}}{8-\frac{3}{x^{2}}} as xx \to \infty and xx \to -\infty.

See Solution

Problem 33302

Differentiate y+y2cosx=x2y+y^{2} \cos x=x^{2} implicitly to find dydx\frac{d y}{d x}. Then, find the gradient at (0,2)(0,2).

See Solution

Problem 33303

Is it true that sec24xdx=14tan4x+c\int \sec ^{2} 4 x \, dx = \frac{1}{4} \tan 4 x + c? Select True or False.

See Solution

Problem 33304

Find the limit as xx approaches -\infty:
limxx34x+13x+x232\lim _{x \rightarrow-\infty} \frac{\sqrt[3]{x}-4 x+1}{3 x+x^{\frac{2}{3}}-2}
Write \infty or -\infty as needed.

See Solution

Problem 33305

Find the limits of h(x)=6x410x4+17x3+13x2h(x)=\frac{6 x^{4}}{10 x^{4}+17 x^{3}+13 x^{2}} as xx \to \infty and xx \to -\infty.

See Solution

Problem 33306

Find critical points of f(x)=xex2f(x)=x e^{x^{2}}. Choose: a. no points, b. 13e\frac{1}{3 \sqrt{e}}, c. e12e^{-\frac{1}{2}}, d. 12-\frac{1}{2}.

See Solution

Problem 33307

Find the area between y=lnxy=\ln x and y=ln2xy=\ln 2 x from x=1x=1 to x=5x=5: A=5ln2xlnxdxA=\int^{5} \ln 2 x - \ln x \, dx.

See Solution

Problem 33308

Evaluate the limit as xx approaches infinity: limx(6x)(3+9x)(37x)(10+6x)\lim _{x \rightarrow \infty} \frac{(6-x)(3+9 x)}{(3-7 x)(10+6 x)}.

See Solution

Problem 33309

Find the slope of the tangent line of y=3sinxy=3^{\sin x} at x=0x=0. Choices: 1/ln21 / \ln 2, ln3\ln 3, 1/ln31 / \ln 3, ln2\ln 2.

See Solution

Problem 33310

Finde drei Stammfunktionen für die folgenden Funktionen: a) f(x)=3x1f(x)=3 x-1, b) f(x)=5f(x)=5, c) f(x)=x6f(x)=x^{6}, d) f(x)=axnf(x)=a x^{n}, e) f(x)=3x2f(x)=3 x^{2}, f) f(x)=4x37x+6f(x)=4 x^{3}-7 x+6, g) f(x)=x(x4)f(x)=x(x-4), h) f(x)=3x4f(x)=-\frac{3}{x^{4}}, i) f(x)=3x2f(x)=3 x^{-2}, j) f(x)=1x2x2f(x)=\frac{1}{x^{2}}-x^{2}.

See Solution

Problem 33311

Find the horizontal asymptotes by calculating these limits:
1. limx9x6+2x=\lim _{x \rightarrow \infty} \frac{-9 x}{6+2 x}=\square
2. limx11x3x3+12x8=\lim _{x \rightarrow-\infty} \frac{11 x-3}{x^{3}+12 x-8}=\square
3. limxx27x81415x2=\lim _{x \rightarrow \infty} \frac{x^{2}-7 x-8}{14-15 x^{2}}=\square
4. limxx2+13x1214x=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+13 x}}{12-14 x}=\square
5. limxx2+13x1214x=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+13 x}}{12-14 x}=\square

See Solution

Problem 33312

Städte:
1. Berechne die Einwohnerzahl nach 5 Jahren: N1(5)N_{1}(5).
2. Bestimme, wann N1(t)=20000N_{1}(t) = 20000.
3. Finde die Abnahmerate zu Beginn und nach 10 Jahren.
4. Finde, wann N1(t)=N2(t)N_{1}(t) = N_{2}(t) und deren Größe.
5. Bestimme den Zeitpunkt, an dem die Summe der Einwohnerzahlen minimal ist.

See Solution

Problem 33313

Evaluate the integral 1221/xx2dx\int_{1}^{2} \frac{2^{1 / x}}{x^{2}} d x and choose the correct answer.

See Solution

Problem 33314

Evaluate the integral 1e6lnx+4xdx\int_{1}^{e} \frac{6 \ln x + 4}{x} \, dx.

See Solution

Problem 33315

Berechne die Ableitung der Funktion f(x)=2x2f(x)=\frac{2}{x^{2}}.

See Solution

Problem 33316

Find the first derivative of f(x)=(ln(6x2))3f(x) = \left(\ln(6 - x^2)\right)^3.

See Solution

Problem 33317

Berechne die Ableitung von u(x)=(3x+4)4u(x)=(3x+4)^{4} und v(x)=e3x+1v(x)=e^{3x+1} mit Produkt- und Kettenregel.

See Solution

Problem 33318

Use Laplace transform on the PDE uxx=uttu_{x x}=u_{t t} with u(x,0)=0u(x, 0)=0, ut(x,0)=sinxu_{t}(x, 0)=\sin x. Find the ODE.

See Solution

Problem 33319

Use Laplace transform on the PDE tutttut+u=2t u_{tt} - t u_t + u = 2 to find the transformed equation. Choose the correct option.

See Solution

Problem 33320

Bestimmen Sie die Extrem- und Wendepunkte der Funktion f(x)=xe1xf(x)=x \cdot e^{1-x}.

See Solution

Problem 33321

Find the integral of the function xex2x e^{x^{2}} with respect to xx: xex2dx=\int x e^{x^{2}} d x=

See Solution

Problem 33322

Solve Ux=Ut+UU_{x}=U_{t}+U with U(x,0)=exU(x, 0)=e^{-x} using separation of variables. Choose the correct solution.

See Solution

Problem 33323

إذا كانت u(x,y)=n=1anenysin(nx)u(x, y)=\sum_{n=1}^{\infty} a_{n} e^{n y} \sin (n x) هي الحل العام لمعادلة لابلاس بشرط الحدود u(x,0)=sinxu(x, 0)=\sin x، فهل يكون الحل u(x,y)=eysinxu(x, y)=e^{y} \sin x؟ اختر: صحيح أم خطأ.

See Solution

Problem 33324

Find dydx\frac{d y}{d x} at the point (1,1)(1,1) for the equation x23+y23=2yx^{\frac{2}{3}}+y^{\frac{2}{3}}=2 \sqrt{y}.

See Solution

Problem 33325

Find the derivative of lny=ln[t(t+1)(t2)]\ln y = \ln [t(t+1)(t-2)].

See Solution

Problem 33326

Find yy given the equation y=xlnxy(e)y = \frac{x^{\ln x}}{y'(e)} where y=dydxy' = \frac{dy}{dx}.

See Solution

Problem 33327

Find f(π/4)f^{\prime}(\pi / 4) if f(x)=x2tanxf(x) = x^2 \tan x. Choices: a, b, c, d.

See Solution

Problem 33328

Find the integral of 3xln33^{x} \ln 3 with respect to xx.

See Solution

Problem 33329

Find the derivative of f(x)=x22x+1f(x)=\frac{x^{2}}{2x+1} and evaluate it at x=2x=2. What is f(2)f^{\prime}(2)?

See Solution

Problem 33330

Untersuchen Sie das Verhalten der Funktion f(x)=2e0.5x+1f(x)=2 \cdot e^{-0.5 x}+1 für xx \rightarrow \infty.

See Solution

Problem 33331

Vereinfache die Funktionen f(x)=2x+1xf(x)=\frac{2 x+1}{x} und h(x)=0,5x313x2117xh(x)=\frac{0,5 x^{3}-13 x^{2}}{117 x} und finde die Grenzwerte. Bonus: Ändere sie für xx \rightarrow \infty. Finde Fehler in den Rechnungen und korrigiere sie.

See Solution

Problem 33332

Bestimme die Gleichung der Tangente an f(x)=xe1xf(x)=x \cdot e^{1-x} bei P(2,2e)P\left(2, \frac{2}{\mathrm{e}}\right) und wo sie den Fluss kreuzt.

See Solution

Problem 33333

Find the slope of the tangent line to the curve y=x2e2x+1y=x^{2} e^{2 x+1} at x=1x=1. Choose from: 4e4 e, 4e34 e^{3}, 2e32 e^{3}, e3e^{3}, None.

See Solution

Problem 33334

Evaluate the integral 01x22x3dx\int_{0}^{1} x^{2} 2^{x^{3}} d x and choose the correct answer from the options given.

See Solution

Problem 33335

Find the limit: limx17+x332x1\lim _{x \rightarrow 1} \frac{\sqrt[3]{7+x^{3}}-2}{x-1}.

See Solution

Problem 33336

Find the values of xx where the function f(x)=3x2x2f(x)=3-x-2x^{2} is decreasing. Choose from: x=1x=-1, x=0x=0, x=1x=1, x=2x=2.

See Solution

Problem 33337

Find the values of xx where the function f(x)=3x2x2\mathrm{f}(x)=3-x-2 x^{2} is decreasing. Options: x=1x=-1, x=0x=0, x=1x=1, x=2x=2.

See Solution

Problem 33338

Luftdruck:
a) Zeigen Sie, dass p(h)=1013e0,00013hp(h)=1013 e^{-0,00013 h} die Lösung ist. b) Bestimmen Sie den Luftdruck in 2000 m2000 \mathrm{~m}. c) Ab welcher Höhe ist bei 500 mbar500 \mathrm{~mbar} Sauerstoffzufuhr nötig?

See Solution

Problem 33339

Bestimmen Sie die Ableitung von f(x)=13x6f(x)=-\frac{1}{3 x^{6}} mit der Potenzregel für negative Exponenten.

See Solution

Problem 33340

Calculate the integral: 0π6tan2xdx\int_{0}^{\frac{\pi}{6}} \tan 2 x \, dx

See Solution

Problem 33341

The solution of y=ey2x,y(0)=ln(ln(2))y' = e^y 2^x, y(0) = \ln(\ln(2)) is y=ln(ln(2))ln(22x)y = \ln(\ln(2)) - \ln(2 - 2^x). True or False?

See Solution

Problem 33342

Bestimmen Sie die Ableitung der Funktion f(x)=1x5f(x) = \frac{1}{x^{5}} mit der Potenzregel für negative Exponenten.

See Solution

Problem 33343

Find the derivative yy^{\prime} if y=53x+lnxy=5^{3x+\ln x}.

See Solution

Problem 33344

Find the limit: limx1cosπ2x1x\lim _{x \rightarrow 1} \frac{\cos \frac{\pi}{2} x}{1-\sqrt{x}}

See Solution

Problem 33345

Find W(y1,y2)(4)W\left(y_{1}, y_{2}\right)(4) given W(y1,y2)(2)=3W\left(y_{1}, y_{2}\right)(2)=3 for the equation t2y2y+(3+t)y=0t^{2} y^{\prime \prime}-2 y^{\prime}+(3+t) y=0.

See Solution

Problem 33346

Find the derivative of the function y=tlnty=\frac{t}{\ln t}.

See Solution

Problem 33347

Identify the differential equation for the function y=c1ex+c2xexy=c_{1} e^{x}+c_{2} x e^{x}.

See Solution

Problem 33348

Identify which function is NOT a solution to the equation y+y=0y^{\prime \prime}+y=0: a. cost\cos t, b. cos(t+1)\cos (t+1), c. tant\tan t, d. sint\sin t.

See Solution

Problem 33349

Given W(y1,y2)(2)=3W(y_{1}, y_{2})(2)=3, find W(y1,y2)(4)W(y_{1}, y_{2})(4) for the equation t2y2y+(3+t)y=0t^{2} y^{\prime \prime}-2 y^{\prime}+(3+t) y=0.

See Solution

Problem 33350

Find the derivative of yy if lny=lne5x\ln y = \ln e^{-5x}. What is yy'?

See Solution

Problem 33351

Bestimme die Ableitung der Funktion f(x)=x4x+1x3f(x) = \frac{x^{4} - x + 1}{x^{3}} mit der Potenzregel für negative Exponenten.

See Solution

Problem 33352

Is the Wronskian of the solutions to the equation t4y2t3yt8y=0t^{4} y^{\prime \prime} - 2 t^{3} y^{\prime} - t^{8} y = 0 equal to ct2c t^{2}? True or False?

See Solution

Problem 33353

Eine Funktion ff dritten Grades beschreibt die Sauerstoffproduktion einer Pflanze.
a) Finde die Funktionsgleichung ff. b) Berechne die Gesamtproduktion von 6 bis 20 Uhr. c) Bestimme die Zeiträume, in denen die Produktionsrate unter 10l/h10 \mathrm{l/h} liegt.

See Solution

Problem 33354

Finde und korrigiere die Fehler in den Ableitungen: a) f(x)=4x5+2x3+2xf(x)=4 x^{5}+2 x^{3}+2 x, f(x)=20x4+6x2+2f^{\prime}(x)=20 x^{4}+6 x^{2}+2 b) f(x)=3x+x22f(x)=\frac{3}{x}+x^{2}-2, f(x)=3x2+2xf^{\prime}(x)=-\frac{3}{x^{2}}+2 x

See Solution

Problem 33355

Finde und korrigiere die Fehler in den angegebenen Stammfunktionen: a) (4x+1)3x\int(4 x+1)^{3} x b) (4e3x+4+5x3)dx\int\left(4 e^{3 x+4}+5 x^{3}\right) d x c) (3x2+2a)da\int\left(3 x^{2}+2 a\right) d a

See Solution

Problem 33356

If y=53x+lnxy=5^{3 x+\ln x}, find yy^{\prime}. Choose from the options provided.

See Solution

Problem 33357

Bestimme die Tangentengleichung tt für f(x)=0,04x3+0,6x20,3x+3f(x)=0,04 x^{3}+0,6 x^{2}-0,3 x+3 bei P(3/8,22)P(-3 / 8,22) und berechne die Fläche A.

See Solution

Problem 33358

Which differential equation does the function y=c1ex+c2xexy=c_{1} e^{x}+c_{2} x e^{x} solve? Options: a. y2y+y=0y^{\prime \prime}-2 y^{\prime}+y=0 b. 3y2y+y=03 y^{\prime \prime}-2 y^{\prime}+y=0 c. yy+y=0y^{\prime \prime}-y^{\prime}+y=0 d. y+2y+y=0y^{\prime \prime}+2 y^{\prime}+y=0

See Solution

Problem 33359

Find the equation satisfied by vv in x2y+xy+(x214)y=0x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0. Select one: a, b, c, or d.

See Solution

Problem 33360

Berechnen Sie die Grenzwerte: a) limx4x216x4\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}, b) limx1x3xx+1\lim _{x \rightarrow-1} \frac{x^{3}-x}{x+1}, c) limx33x2x26x\lim _{x \rightarrow 3} \frac{3-x}{2 x^{2}-6 x}, d) limx2x416x2\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}.

See Solution

Problem 33361

Bestimmen Sie die Tangentengleichung tt für f(x)=0,04x3+0,6x20,3x+3f(x)=0,04 x^{3}+0,6 x^{2}-0,3 x+3 bei P(3/8,22)P(-3 / 8,22) und den Flächeninhalt AA zwischen ff und tt.

See Solution

Problem 33362

Find the limit as α\alpha approaches π\pi for 1sinx1α2π2\frac{1-\sin x}{1-\frac{\alpha^{2}}{\pi^{2}}}.

See Solution

Problem 33363

Find the derivative of lny=ln[t(t1)(t2)]\ln y = \ln [t(t-1)(t-2)]. What is the correct expression?

See Solution

Problem 33364

Find dydx\frac{d y}{d x} for ln(2x+5y)=siny\ln (2 x+5 y)=\sin y.

See Solution

Problem 33365

Find the Wronskian W(y1,y2)(t)W(y_{1}, y_{2})(t) for y1(t)=tlnty_{1}(t)=t \ln t and y2(t)=t2y_{2}(t)=t^{2}, t>0t>0. Choices: a. tlnt+t2t \ln t+t^{2} b. t2lntt^{2} \ln t c. t2(lnt1)t^{2}(\ln t-1) d. t2(lnt+1)t^{2}(\ln t+1)

See Solution

Problem 33366

حدد المعادلة التفاضلية التي تكون فيها الدالة y=c1ex+c2xexy=c_{1} e^{x}+c_{2} x e^{x} حلاً: a. 3y2y+y=03 y^{\prime \prime}-2 y^{\prime}+y=0 b. y2y+y=0y^{\prime \prime}-2 y^{\prime}+y=0 c. yy+y=0y^{\prime \prime}-y^{\prime}+y=0 d. y+2y+y=0y^{\prime \prime}+2 y^{\prime}+y=0

See Solution

Problem 33367

Find the integrating factor for the linear differential equation 12xy=(1+y2)dxdy1-2xy=(1+y^{2})\frac{dx}{dy}. Options: a. 1+x1+x, b. 1+y1+y, c. 1+x21+x^{2}, d. 1+y21+y^{2}.

See Solution

Problem 33368

Find the slope of the tangent line of f(x)=etanxf(x)=e^{\tan x} at x=0x=0.

See Solution

Problem 33369

Find the particular solution for y+3y+2y=t2et+e2ty^{\prime \prime}+3 y^{\prime}+2 y=t^{2} e^{-t}+e^{-2 t}. Choose the correct option.

See Solution

Problem 33370

Find the trapezoidal approximation of 28f(x)dx\int_{2}^{8} f(x) dx using intervals [2,5],[5,7],[7,8][2,5], [5,7], [7,8] from the table values.

See Solution

Problem 33371

Bestimme, wo die Funktionen monoton steigen oder fallen: a) f(x)=x4f(x)=x^{4} b) f(x)=x3f(x)=x^{3} c) f(x)=x28xf(x)=x^{2}-8x d) f(x)=exxf(x)=e^{x}-x

See Solution

Problem 33372

Find f(x)f^{\prime}(x) for f(x)=ln(2exsinx)f(x)=\ln(2e^{-x}\sin x). Options: 1+cosxsinx\frac{-1+\cos x}{\sin x} or cotx1\cot x-1.

See Solution

Problem 33373

Find the tangent line equation to y=x23x+1y=x^{2}-3x+1 at the point (2,1)(2,-1).

See Solution

Problem 33374

Find the average rate of change of P(θ)=4θ+1P(\theta)=\sqrt{4 \theta+1} over [0,2][0,2]. Options: a) 2 b) 0 c) -2 d) 1

See Solution

Problem 33375

Evaluate the integral 1e6lnx+4xdx\int_{1}^{e} \frac{6 \ln x+4}{x} dx. What is the result? Choices: 8, 5, None, 10, 7.

See Solution

Problem 33376

Find limx2f(x)\lim _{x \rightarrow 2} f(x) if limx2f(x)5x24=3\lim _{x \rightarrow 2} \frac{f(x)-5}{x^{2}-4}=3. Options: a) 0 b) 1 c) 5 d) 3

See Solution

Problem 33377

Find the limit: limh0hsin3h\lim _{h \rightarrow 0} \frac{h}{\sin 3 h}. Choices: a) D N E b) 13\frac{1}{3} c) 0 d) \infty

See Solution

Problem 33378

Rozstrzygnij o warunkowej i bezwzględnej zbieżności szeregu n=1+(19+1nα8198)(α+1)qn\sum_{n=1}^{+\infty}\left(\sqrt[8]{19+\frac{1}{n^{\alpha}}}-\sqrt[8]{19}\right)^{(\alpha+1)} q^{n} dla α>0\alpha>0 i qRq \in \mathbb{R}.

See Solution

Problem 33379

Find the rate of change of v=0.22s0.25+sv=\frac{0.22 s}{0.25+s} with respect to ss at s=0.05s=0.05.

See Solution

Problem 33380

Find the derivative of the function: 5x7+2x310-5 x^{7}+2 x^{3}-10.

See Solution

Problem 33381

Find the value of ddx(uv)\frac{d}{dx}\left(\frac{u}{v}\right) at x=1x=1 given u(1)=3u(1)=-3, v(1)=2v(1)=2, u˙(1)=3\dot{u}(1)=-3, v˙(1)=4\dot{v}(1)=4. Options: a) 23-\frac{2}{3} b) 102-\frac{10}{2} c) 32\frac{3}{2} d) 34-\frac{3}{4}.

See Solution

Problem 33382

Find f(e)f^{\prime}(e) for the function f(x)=xlnxf(x)=x^{\ln x}. Options: e, 0, 1, 2.

See Solution

Problem 33383

Find the derivative of the function f(N)=Ln5+NLn7f(N) = \operatorname{Ln} 5 + N \operatorname{Ln} 7 with respect to NN.

See Solution

Problem 33384

Find the tangent and normal lines to the curve f(x)=2x33x+1f(x)=2 x^{3}-3 x+1 at the point (1,2)(-1,2).

See Solution

Problem 33385

Find the rate of change of impedance Z=4X4+XZ=\frac{4X}{4+X} as XX decreases at 2 ohms/sec in a parallel RL circuit.

See Solution

Problem 33386

Find the derivative of the function f(x)=7x(x38x+5)f(x)=7 \sqrt{x}(x^{3}-8 \sqrt{x}+5). What is f(x)f^{\prime}(x)?

See Solution

Problem 33387

Given f(2.9)95f^{\prime}(2.9) \approx 95 (backward) and f(2.9)40f^{\prime}(2.9) \approx 40 (central), find AA and BB.

See Solution

Problem 33388

Find the derivative f(x)f'(x) of the function f(x)=ln(ex+1)f(x)=\ln(e^{-x}+1).

See Solution

Problem 33389

Analyze the end behavior of f(x)=x311x240x47f(x)=-x^{3}-11x^{2}-40x-47. What happens as x±x \rightarrow \pm \infty?

See Solution

Problem 33390

Find the relative max and min points of the function f(x)=x33x2+1f(x)=x^{3}-3x^{2}+1.

See Solution

Problem 33391

Evaluate the integral from 2 to 4 of 1x(lnx)2dx\frac{1}{x(\ln x)^{2}} \, dx. What is the result?

See Solution

Problem 33392

Find dydx\frac{d y}{d x} for ln(3x+4y)=siny\ln (3 x+4 y)=\sin y. Choose the correct derivative.

See Solution

Problem 33393

Evaluate the integral: 21612xlnxdx\int_{2}^{16} \frac{1}{2 x \sqrt{\ln x}} \, dx.

See Solution

Problem 33394

A snowball with radius rr cm melts at 800π800 \pi cm³/s. Find the radius change rate when r=20r = 20 cm as ab-\frac{a}{b} cm/s.

See Solution

Problem 33395

Find the maxima and minima of f(x)=x38x2+20x16f(x) = x^{3} - 8x^{2} + 20x - 16. Choose from the options provided.

See Solution

Problem 33396

Differentiate (sin(4x+3))x32\left(\sin(4x+3)\right)^{x^3-2} with respect to xx.

See Solution

Problem 33397

Find the limit: limx32x218xx3\lim _{x \rightarrow 3} \frac{2 x^{2}-18 x}{x-3}.

See Solution

Problem 33398

Find dydx\frac{d y}{d x} for ln(3x+4y)=siny\ln (3 x+4 y)=\sin y. What is the correct derivative?

See Solution

Problem 33399

Find the derivative of f(x)=ln((2x+1)cos(2x))f(x) = \ln\left((2x + 1)^{\cos(2x)}\right).

See Solution

Problem 33400

Find the derivative yy^{\prime} if y=lnty=\sqrt{\ln \sqrt{t}}. Options: a. 14tln(t)\frac{1}{4 t \sqrt{\ln (t)}}, b. 1

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord