Determine if these series are absolutely convergent, conditionally convergent, or divergent: (I) ∑n=1∞(2π)n (II) ∑n=1∞n(−1)n−1e (III) ∑n=1∞n(n+1)31
A spiral is made of semicircles with the first diameter 10cm, each next being 54 of the last. 1) Find the total length of the spiral. 2) How far is point E (midpoint of the 6th semicircle) from point A?
Überprüfe die Konvergenz der geometrischen Reihen und gib die Summen an: a) 1+2+22+…, b) 1+21+(21)2+…, c) 1+(−21)+(−21)2+…, d) 1+(−1)+(−1)2+…, e) 3+3⋅41+3⋅(41)2+…, f) 5−5⋅0,1+5⋅0,12−5⋅0,13+….
Javier makes trail mix with the recipe: 43+43+21+21+31+32. He divides it into 14 equal bags. Find the amount in each bag as a simplified fraction.