Calculus

Problem 9601

An object drops from 159ft159 \mathrm{ft}; height s=15916t2s=159-16t^2. Find velocity, time to hit ground, and impact velocity.

See Solution

Problem 9602

Minimize the cost of a rectangular container with a square base and volume 2816ft32816 \mathrm{ft}^{3}, given material costs.

See Solution

Problem 9603

Estimate the solution to e4x+x2=0e^{4 x}+x-2=0 using Newton's method with initial guess x0=0x_{0}=0 for one iteration.

See Solution

Problem 9604

Find the approximate value of x0x_{0} using the tangent line at (6,7)(6,7) for the function ff with given properties.

See Solution

Problem 9605

Find the next approximation x1x_{1} using Newton's method for f(x)=0f(x)=0 with initial guess x0=4x_{0}=4 and tangent line y=3x6y=3x-6.

See Solution

Problem 9606

Show that f(x)=2x33f(x)=2 x^{3}-3 has a zero in [1,2][1,2] using the Intermediate Value Theorem and apply 3 bisection steps for an estimate.

See Solution

Problem 9607

Design a rectangular container with a square base and volume 50000ft350000 \mathrm{ft}^{3}. Minimize costs: top at \$6/ft², sides at \$10/ft², bottom at \$2/ft². Find dimensions.

See Solution

Problem 9608

Find if limx0sin1(2x)tan1(5x)\lim_{x \rightarrow 0} \frac{\sin^{-1}(2x)}{\tan^{-1}(5x)} exists, and if so, determine its value.

See Solution

Problem 9609

Zeigen Sie, dass F(x)F(x) eine Stammfunktion von ff ist. Berechnen Sie die Fläche zwischen 2-2 und 00 von ff und der xx-Achse.

See Solution

Problem 9610

Find the limit as θ\theta approaches 0: limθ0tanθθ2cot3θ\lim _{\theta \rightarrow 0} \frac{\tan \theta}{\theta^{2} \cot 3 \theta}.

See Solution

Problem 9611

Find the maximum sales per day for the function s(d)=d3+10s(d)=d^{3}+10 on the interval 0<d30<d \leq 3.

See Solution

Problem 9612

Gegeben ist f(x)=12x2f(x)=\frac{1}{2} x^{2}. Bestimme: a) mittlere Änderungsrate auf [0;2][0; 2], b) lokale Änderungsrate bei x0=1x_{0}=-1, c) lokale Änderungsrate bei x0=2x_{0}=2.

See Solution

Problem 9613

Find the absolute extrema of f(x)=2x315x284xf(x)=2 x^{3}-15 x^{2}-84 x on [6,9][-6,9]. Provide (x,f(x))(x, f(x)) as an ordered pair.

See Solution

Problem 9614

Find values of xx where the rate of change of f(x)=3(x5)(x2)f(x)=-3(x-5)(x-2) is decreasing.

See Solution

Problem 9615

Is the function f(x)={x,1x<0tanx,0xπ/4f(x)=\left\{\begin{array}{ll} x, & -1 \leq x<0 \\ \tan x, & 0 \leq x \leq \pi / 4 \end{array}\right. continuous and differentiable at x=0x=0?

See Solution

Problem 9616

Find the average cost function for C(x)=2x2+54x+98C(x)=2 x^{2}+54 x+98 and determine its minimum value per unit.

See Solution

Problem 9617

Find the highest point on the intersection of the cone x2+y2z2=0x^{2}+y^{2}-z^{2}=0 and the plane x+2z=4x+2z=4 using Lagrange multipliers.

See Solution

Problem 9618

Find y(2)y' (2) for y=log6(x44x3+1)5+4x21200xy=\log _{6}\left(x^{4}-4 x^{3}+1\right)^{5}+4^{x^{2}}-1200 x. Round to 3 decimal places.

See Solution

Problem 9619

Bestimme den Wert von a, sodass die Aussage 02e2xdx=e12\int_{0}^{2} e^{2 x} d x=\frac{e-1}{2} wahr ist.

See Solution

Problem 9620

Find the tangent line equation for the function f(x)=x2+8f(x)=x^{2}+8 at the point where x=5x=-5.

See Solution

Problem 9621

Determine conclusions from the Intermediate Value Theorem for f(x)f(x) on (7,0)(-7,0), given f(7)=5f(-7)=5 and f(0)=2f(0)=2.

See Solution

Problem 9622

Determine conclusions from the Intermediate Value Theorem for f(x)f(x) on (4,2)(-4,2) given f(4)=5f(-4)=-5 and f(2)=3f(2)=-3.

See Solution

Problem 9623

Untersuchen Sie, ob F(x)F(x) und F(x)F^{*}(x) zu f(x)f(x) gehören. Geben Sie ggf.f(x)g g f . f(x) an.
a) F(x)=2ex(ex+1)F(x)=2 e^{x}(e^{x}+1); F(x)=e2x+2ex+4F^{*}(x)=e^{2 x}+2 e^{x}+4 b) F(x)=(x+1)3F(x)=(x+1)^{3}; F(x)=x3+3x(x+1)F^{\prime \prime}(x)=x^{3}+3 x(x+1) c) F(x)=sinxF(x)=\sin x; F(x)=cos(xπ)F^{*}(x)=\cos (x-\pi) d) F(x)=x2+1x2F(x)=x^{2}+\frac{1}{x^{2}}; F(x)=(x21)2x2F^{*}(x)=\frac{(x^{2}-1)^{2}}{x^{2}}

See Solution

Problem 9624

Determine conclusions using the Intermediate Value Theorem for f(x)f(x) on (6,0)(-6,0), given f(6)=3f(-6)=3 and f(0)=3f(0)=-3.

See Solution

Problem 9625

Find the first derivative of the vehicle's acceleration function: a(t)=(t2+6t)eta(t) = (-t^{2}+6t) \cdot e^{-t}.

See Solution

Problem 9626

Determine where the function f(x)=(x7)e9xf(x)=(x-7)e^{-9x} is increasing, decreasing, and find its local extrema.

See Solution

Problem 9627

Estimate the distance (in feet) a braking car travels using a midpoint sum with six equal intervals from the given velocity graph.

See Solution

Problem 9628

Berechnen Sie die Ableitungen der Funktionen: ft(x)=1t2x2f_{t}(x)=\frac{-1}{t^{2} x^{2}}, fa(x)=(3a2x3x2)(2x)f_{a}(x)=(3 a^{2} x^{3}-x^{2})(-2 x) und ft(x)=t1+2xtxπf_{t}(x)=t^{-1}+2 x-\sqrt{t x^{\pi}}. Bestimmen Sie Nullstellen und Tangente von fa(x)=x3axf_{a}(x)=x^{3}-ax.

See Solution

Problem 9629

Find lower and upper estimates for 1030f(x)dx\int_{10}^{30} f(x) dx using the table values with five equal subintervals.

See Solution

Problem 9630

Solve the initial value problem: y(4)5y+4y=3xy^{(4)} - 5y''' + 4y'' = 3x, with y(0)=0y(0)=0, y(0)=0y'(0)=0, y(0)=0y''(0)=0, y(0)=0y'''(0)=0.

See Solution

Problem 9631

Approximate the integral 13xx2+3dx\int_{1}^{3} \frac{x}{x^{2}+3} d x using the Midpoint Rule with n=5n=5. Round to four decimal places.

See Solution

Problem 9632

Show that the polynomial f(x)=x3+x22x+5f(x)=x^{3}+x^{2}-2x+5 has a real zero between -3 and -1 using the Intermediate Value Theorem.

See Solution

Problem 9633

Solve the IVP: dydx=xsinxy\frac{d y}{d x}=\frac{x \sin x}{y} with initial condition y(0)=1y(0)=-1.

See Solution

Problem 9634

Find the derivative p(t)p^{\prime}(t) of p(t)=137t2+1,080t+14,911p(t)=137 t^{2}+1,080 t+14,911. Then, calculate consumption for 2026 and its rate of change.

See Solution

Problem 9635

Find the volume using cylindrical shells for the region bounded by y=x4y=x^{4}, y=0y=0, x=1x=1 rotated about x=2x=2.

See Solution

Problem 9636

Find the limit of the sequence an=1n12na_{n}=\frac{1-n}{1-2 \sqrt{n}} or prove it diverges.

See Solution

Problem 9637

Find the limit of these sequences if they converge; otherwise, prove divergence: a) 1/n1/n, c) an=1n12na_n=\frac{1-n}{1-2\sqrt{n}}.

See Solution

Problem 9638

Find the second derivative f(x)f^{\prime \prime}(x) for the function f(x)=(x2+1)5f(x)=(x^{2}+1)^{5}.

See Solution

Problem 9639

Invest \$25000 at 4\% compounded continuously. (a) Find value after 5 years. (b) When will it reach \$48000?

See Solution

Problem 9640

Find the xx and yy coordinates of all inflection points for the function f(x)=x3+39x2f(x)=x^{3}+39x^{2}.

See Solution

Problem 9641

Differentiate the function: f(t)=tetcot(t)f(t)=t e^{t} \cot (t) and find f(t)f^{\prime}(t).

See Solution

Problem 9642

Find the limit of 1n12n\frac{1-n}{1-2 \sqrt{n}} as nn approaches infinity.

See Solution

Problem 9643

Find the xx and yy coordinates of all inflection points for the function f(x)=x3+27x2f(x)=x^{3}+27 x^{2}.

See Solution

Problem 9644

Find the derivative of y=2exsin(x)y=2 e^{x} \sin (x) using the product and chain rules.

See Solution

Problem 9645

Invest \$25000 at 4\% interest compounded continuously. (a) Find value after 9 years. (b) When will it reach \$48000?

See Solution

Problem 9646

Find the average rate of change of the function f(x)=3x2+4f(x)=3 x^{2}+4 on the interval [2,2+h][2, 2+h].

See Solution

Problem 9647

Find the derivative of j(y)=31y6101y9j(y) = 31y^6 - 10\frac{1}{y^9}.

See Solution

Problem 9648

Find the derivative of F(x)=x3cos(x)+xF(x)=\frac{x^{3}}{\cos (x)+x}.

See Solution

Problem 9649

Invest \$10000 at 5\% continuous compounding. (a) Find value after 9 years. (b) When will it reach \$24000?

See Solution

Problem 9650

Find the derivative of k(x)=x110.2x10+π3x2+π2k(x)=x^{11}-0.2 x^{10}+\frac{\pi}{3} x^{2}+\pi^{2}.

See Solution

Problem 9651

Find the limit of the sequence an=1+n991+n100a_{n}=\frac{1+\sqrt[99]{n}}{1+\sqrt[100]{n}} or prove it diverges.

See Solution

Problem 9652

Find the area represented by the integral 38(105x)dx\int_{-3}^{8}(10-5 x) d x.

See Solution

Problem 9653

Find the area represented by the integral 80(5+64x2)dx\int_{-8}^{0}\left(5+\sqrt{64-x^{2}}\right) d x.

See Solution

Problem 9654

Determine the asymptotes for the function f(x)=x21x+1f(x)=\frac{x^{2}-1}{\sqrt{x+1}}.

See Solution

Problem 9655

Find 15f(x)dx\int_{1}^{5} f(x) d x given 17f(x)dx=8.2\int_{1}^{7} f(x) d x=8.2 and 57f(x)dx=3.7\int_{5}^{7} f(x) d x=3.7.

See Solution

Problem 9656

Find the third derivative of f(x)=cos2xf(x)=\cos ^{2} x. Options: A. cos2x-\cos ^{2} x, B. 2sin2x2 \sin 2 x, C. 8sinxcosx8 \sin x \cos x, D. sin2x\sin 2 x, E. None.

See Solution

Problem 9657

Find f(e)f^{\prime \prime}(\sqrt{e}) if f(x)=(lnx)2f(x)=(\ln x)^{2}.

See Solution

Problem 9658

Die Firma Meier verkauft Schokolade. Gegeben ist die Funktion f(t)=0,0001t3+0,15t2+15tf(t)=-0,0001 t^{3}+0,15 t^{2}+15 t für 0t15000 \leq t \leq 1500.
a. Verkaufszahlen nach 700 Tagen? b. An welchem Tag die meisten Schokoladen verkauft werden? c. Wann ist die Zunahme der täglichen Verkaufszahlen am größten?

See Solution

Problem 9659

Find the limit as θ\theta approaches π2\frac{\pi}{2} from the left of (tanθ)cosθ(\tan \theta)^{\cos \theta}.

See Solution

Problem 9660

Berechne die Ableitung von f(x)=18x2(x+3)(x2)f(x)=\frac{1}{8} x^{2}(x+3)(x-2).

See Solution

Problem 9661

Find the derivative ddx(f(lnx))\frac{d}{d x}(f(\ln x)) where f(x)=x2+2xf(x)=x^{2}+2 x.

See Solution

Problem 9662

Find the derivative of the function f(x)=lnx2+1f(x)=\ln \sqrt{x^{2}+1}. What is f(x)f^{\prime}(x)?

See Solution

Problem 9663

Evaluate the limit: limxπ2tanx(112xπ)\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan x}{\left(\frac{11}{2 x-\pi}\right)} using l'Hôpital's Rule.

See Solution

Problem 9664

Evaluate the limit: limxπ2tanx(102xπ)\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\tan x}{\left(\frac{10}{2 x-\pi}\right)}

See Solution

Problem 9665

The drug concentration CC is given by C=35t24+t2C=\frac{35 \cdot t}{24+t^{2}}. Find CC after 2.5 hours, time to reach 0.5%0.5\%, and end behavior as tt \to \infty.

See Solution

Problem 9666

Find f(π3)f^{\prime}\left(\frac{\pi}{3}\right) if f(x)=sec2xf(x)=\sec ^{2} x. Choices: 4, 434 \sqrt{3}, 838 \sqrt{3}, 3\sqrt{3}, 12.

See Solution

Problem 9667

Evaluate the limit: limx12x33x212x73x4+3x34x25x1\lim _{x \rightarrow-1} \frac{2 x^{3}-3 x^{2}-12 x-7}{3 x^{4}+3 x^{3}-4 x^{2}-5 x-1}. How to proceed? A. Direct substitution B. l'Hôpital's Rule once C. l'Hôpital's Rule multiple times D. Multiply by a unit fraction.

See Solution

Problem 9668

Find the difference quotient for f(x)=4xf(x)=\frac{4}{x}: 1) without simplification, 2) with simplification.

See Solution

Problem 9669

Find the rate of change of oil volume V(t)=10(10t)2V(t)=10(10-t)^{2} at t=5t=5 minutes. Choices: -100, -50, -150, -200 litres/min.

See Solution

Problem 9670

Find the derivative of the function f(x)=4x3+2x2f(x)=4 x^{3}+2 x^{2} and evaluate it at x=3x=3. What is f(3)f^{\prime}(3)?

See Solution

Problem 9671

Find the volume of a solid with cross-section discs of radius exe^{-x} for 1x<1 \leq x < \infty. Round to four decimal places.

See Solution

Problem 9672

Find the volume of the solid defined by 0rR0 \leq r \leq R, 0θ2π0 \leq \theta \leq 2 \pi, 0zθ0 \leq z \leq \theta.

See Solution

Problem 9673

Evaluate the limit: limv7v6v248v7\lim _{v \rightarrow 7} \frac{v-6-\sqrt{v^{2}-48}}{v-7} using l'Hôpital's Rule.

See Solution

Problem 9674

Find xx where the slope of the tangent line for y=x3+6x2y=x^{3}+6x^{2} equals 36.

See Solution

Problem 9675

Find the max and min of f(x)=x7x+5f(x)=\frac{x-7}{x+5} on the interval (5,1](-5,1].

See Solution

Problem 9676

Find the Linearization of y=(16+x)1/2y=(16+x)^{-1/2} at x=9x=9.

See Solution

Problem 9677

Solve the equation x2y+4y=8x^{2} y + 4 y = 8. Find dydy\frac{d y}{d y} in terms of xx and yy.

See Solution

Problem 9678

Evaluate the limit:
limv6v4v232v6 \lim _{v \rightarrow 6} \frac{v-4-\sqrt{v^{2}-32}}{v-6}
Choose the method: A. l'Hôpital's Rule once, B. direct substitution, X. l'Hôpital's Rule multiple times.
Find the limit value: limv6v4v232v6= \lim _{v \rightarrow 6} \frac{v-4-\sqrt{v^{2}-32}}{v-6}=\square

See Solution

Problem 9679

Find the volume of a solid with disc cross-sections of radius exe^{-x} for 1x<1 \leq x < \infty. Enter as X.XXXX.

See Solution

Problem 9680

Explain Newton's method: how does the iteration formula approximate a function's root using tangent lines?

See Solution

Problem 9681

Find the volume of the region under y=lnxy=\ln \sqrt{x} from x=1x=1 to x=ex=e when revolved around the xx-axis.

See Solution

Problem 9682

Find Newton's method formula and calculate x1x_{1} for f(x)=x212f(x)=x^{2}-12 with x0=3x_{0}=3.

See Solution

Problem 9683

When to stop Newton's method? Choose the correct option about digit agreement for accuracy.

See Solution

Problem 9684

Find the integral to compute the volume of the region DD revolved around x=5x=5: y=1x4y=1-x^{4}, first quadrant.

See Solution

Problem 9685

Find Newton's method formula for f(x)=x212f(x)=x^{2}-12 using x0=3x_{0}=3. Choose the correct formula from options A-D.

See Solution

Problem 9686

Find Newton's method formula for f(x)=x22x8f(x)=x^{2}-2x-8 with x0=3x_{0}=3. Choose the correct option for xn+1x_{n+1}.

See Solution

Problem 9687

Find the yy-intercept of the tangent line LL to f(x)=csc1xf(x)=\csc^{-1} x at x=2x=2.

See Solution

Problem 9688

Find critical numbers of f(x)=5sin(x)cos(x)f(x)=-5 \sin (x) \cos (x) on (π,π)(-\pi, \pi) and intervals where ff is increasing/decreasing.

See Solution

Problem 9689

Find critical numbers of f(x)=5sin(x)cos(x)f(x)=-5 \sin (x) \cos (x) on (π,π)(-\pi, \pi). Identify intervals where ff is increasing and decreasing.

See Solution

Problem 9690

Find the critical numbers of f(x)=5sin(x)cos(x)f(x)=-5 \sin (x) \cos (x) on (π,π)(-\pi, \pi) and determine where it's increasing and decreasing.

See Solution

Problem 9691

Find dydx\frac{d y}{d x} for the curve defined by xy+y2=4x y + y^{2} = 4 where y0y \geq 0.

See Solution

Problem 9692

Find the correct Newton's method formula and compute x1x_{1} and x2x_{2} for f(x)=5tan(6x)f(x)=5-\tan(6x), x0=1x_{0}=1.

See Solution

Problem 9693

Approximate the integral 13xx2+3dx\int_{1}^{3} \frac{x}{x^{2}+3} d x using the Midpoint Rule with n=5n=5. Round to four decimal places.

See Solution

Problem 9694

Which formula represents Newton's method for the function? A. xn=xn+1+5tan(6xn+1)6sec2(6xn+1)x_{n}=x_{n+1}+\frac{5-\tan \left(6 x_{n+1}\right)}{6 \sec ^{2}\left(6 x_{n+1}\right)} B. xn+1=xn+5tan(6xn)6sec2(6xn)x_{n+1}=x_{n}+\frac{5-\tan \left(6 x_{n}\right)}{6 \sec ^{2}\left(6 x_{n}\right)} C. xn+1=xn5tan(6xn)6sec2(6xn)x_{n+1}=x_{n}-\frac{5-\tan \left(6 x_{n}\right)}{6 \sec ^{2}\left(6 x_{n}\right)} D. xn+1=xn+6sec2(6xn)5tan(6xn)x_{n+1}=x_{n}+\frac{6 \sec ^{2}\left(6 x_{n}\right)}{5-\tan \left(6 x_{n}\right)}

See Solution

Problem 9695

Calculate the integral 04f(x)dx\int_{0}^{4} f(x) \, dx for the piecewise function defined by the given line segments.

See Solution

Problem 9696

Rearrange the steps for logarithmic differentiation of y=(3x)xy=(3 x)^{\sqrt{x}}. Identify the correct order of calculations and explanations.

See Solution

Problem 9697

Identify cases where logarithmic differentiation is needed for dydx\frac{d y}{d x} from these functions:
1. y=(7x2+4x1)12y=(7 x^{2}+4 x^{-1})^{12}
2. y=ln(x3+4x2)y=\ln(x^{3}+4 x^{2})
3. y=(7x)tanxy=(7 x)^{\tan x}
4. y=(3x4+x)2xy=(3 x^{4}+x)^{2 x}
5. y=2sinxy=2^{\sin x}
6. y=(sinx)xy=(\sin x)^{x}

See Solution

Problem 9698

Find the derivative of f(t)=46t2+9f(t)=4 \sqrt{6 t^{2}+9}. What is u=g(t)u=g(t) where u=6t2+9u=6 t^{2}+9?

See Solution

Problem 9699

Evaluate the integral from -9 to 9: 99edx\int_{-9}^{9} e \, dx.

See Solution

Problem 9700

Find the derivative of g(x)=1xln(6+t2)dtg(x) = \int_{1}^{x} \ln(6 + t^2) \, dt using the fundamental theorem of calculus.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord