Calculus

Problem 16501

Find F(x)=2x(t3+4t4)dtF(x)=\int_{2}^{x}(t^{3}+4t-4) dt and evaluate F(2)F(2), F(5)F(5), and F(8)F(8).

See Solution

Problem 16502

Find cc in [π3,π3]\left[-\frac{\pi}{3}, \frac{\pi}{3}\right] for f(x)=cosxf(x)=\cos x satisfying f(c)=f(b)f(a)baf'(c) = \frac{f(b) - f(a)}{b - a}.

See Solution

Problem 16503

An object at 190F190^{\circ} \mathrm{F} is in water at 40F40^{\circ} \mathrm{F}. Find F(t)F(t) with cooling constant k=0.6k=-0.6. F(t)= F(t)=

See Solution

Problem 16504

Find the derivative F(x)F^{\prime}(x) for F(x)=xx+2(6t+3)dtF(x)=\int_{x}^{x+2}(6 t+3) d t.

See Solution

Problem 16505

Calculate the present value of a continuous income stream F(t)=30+7tF(t)=30+7t over 20 years with a 1.9%1.9\% continuous interest rate.

See Solution

Problem 16506

Find the derivative of the function y=7tan(x)3t+tdty=\int_{7}^{\tan (x)} \sqrt{3 t+\sqrt{t}} \, dt. What is yy'?

See Solution

Problem 16507

Find the derivative F(x)F^{\prime}(x) where F(x)=0sin(x)3tdtF(x)=\int_{0}^{\sin (x)} 3 \sqrt{t} dt.

See Solution

Problem 16508

Q1. Simplify the rate formula RR and find RR for t=0t=0 and t=4t=4.
Q2. Calculate EE in J\mathrm{J} if logE=18.49\log E=-18.49.
Q3. Given c=a+bT\mathrm{c}=\mathrm{a}+\mathrm{bT}, find constants aa and bb using given heat capacities.
Q4. A baseball is ejected at 42.5 m/s42.5 \mathrm{~m/s}. Find its height and velocity at t=0.43 st=0.43 \mathrm{~s}.

See Solution

Problem 16509

Find the derivative F(x)F^{\prime}(x) if F(x)=1x21t3dtF(x)=\int_{1}^{x^{2}} \frac{1}{t^{3}} dt.

See Solution

Problem 16510

Resuelve las siguientes integrales usando integración por partes o tabulación:
1. x3lnxdx\int x^{3} \ln x \, dx
2. cos1xdx\int \cos^{-1} x \, dx
3. (t4+2t3+t2t+5)e3tdt\int (t^{4}+2t^{3}+t^{2}-t+5) e^{3t} \, dt
4. sin6θcos3θdθ\int \sin^{6} \theta \cos^{3} \theta \, d\theta
5. sin3θcos2(3θ)dθ\int \sin^{3} \theta \cos^{2} (3\theta) \, d\theta
6. sec4(3x)tan3(3x)dx\int \sec^{4} (3x) \tan^{3} (3x) \, dx
7. sec2ttan2tdt\int \frac{\sec^{2} t}{\tan^{2} t} \, dt

See Solution

Problem 16511

Evaluate the integral 02(33x+2+2x2+4)dx\int_{0}^{2}\left(\frac{3}{3 x+2}+\frac{2}{x^{2}+4}\right) d x.

See Solution

Problem 16512

Calculez les dérivées des fonctions suivantes : a) f(x)=logπ(3x2+1)+π(3x2+1)f(x)=\log_{\pi}(3x^{2}+1)+\pi^{(3x^{2}+1)} b) f(x)=e2x+1ln(2x+1)f(x)=e^{2x+1}\ln(2x+1) c) f(x)=(x+1)tan(2+x+1)f(x)=(\sqrt{x+1})\tan(2+\sqrt{x+1}) d) f(x)=arcsin(x2+1)xf(x)=\frac{\arcsin(x^{2}+1)}{x} e) f(x)=arctan(x2+x+e)f(x)=\arctan(x^{2}+x+e) f) f(x)=eln(x+1)ln(e(x+1))f(x)=e^{\ln(x+1)}-\ln(e^{(x+1)})

See Solution

Problem 16513

Evaluate the integral: sin(48t)sec2(cos(48t))dt\int \sin (48 t) \sec ^{2}(\cos (48 t)) dt (use C for the constant).

See Solution

Problem 16514

Evaluate the integral: (t4+2t3+t2t+5)e3tdt\int\left(t^{4}+2 t^{3}+t^{2}-t+5\right) e^{3 t} d t

See Solution

Problem 16515

Evaluate the integral: cos(x)sin6(x)dx\int \frac{\cos (x)}{\sin ^{6}(x)} dx and include the constant CC.

See Solution

Problem 16516

A radioactive sample starts with 618.8mg618.8 \mathrm{mg} and has a half-life of 14 days.
(a) Write the formula y=eDy = \square e^{\mathbb{D}} for amount yy after tt days.
(b) Find the amount after 16 days, rounded to the nearest tenth in mg\mathrm{mg}.

See Solution

Problem 16517

Calculez les dérivées des fonctions suivantes : 1. f(x)=ex+ln(x3+1)f(x)=\mathrm{e}^{-\sqrt{x}}+\ln(x^{3}+1) 2. f(x)=log2(1x2)log2(1+x)f(x)=\log_{2}(1-x^{2})-\log_{2}(1+x) 3. f(x)=tan(1x+1)f(x)=\tan\left(\frac{1}{x+1}\right) 4. f(x)=arccosx+arcsin(2x)f(x)=\arccos x+\arcsin(2x) 5. f(x)=πx3+2x7f(x)=\pi^{x^{3}+2x-7}

See Solution

Problem 16518

Evaluate the integral using the substitution u=1/x9u=1/x^{9}. Find sec2(u)x10dx+C\int \frac{\sec^{2}(u)}{x^{10}} dx + C.

See Solution

Problem 16519

Evaluate the derivative yy' at the point P=(0,π2)P=(0, \frac{\pi}{2}) from the equation ycos(y+x+x2)ysin(y+x+x2)(y+1+2x)=3x2y' \cos(y+x+x^2) - y \sin(y+x+x^2)(y'+1+2x) = 3x^2.

See Solution

Problem 16520

Find the area between the curves y=x2+3y=x^{2}+3 and y=6x6y=6x-6 from x=1x=-1 to x=2x=2. Round to three decimal places.

See Solution

Problem 16521

Find the area between the curves y=exy=e^{x} and y=1xy=-\frac{1}{x} from x=1x=1 to x=2x=2. Area = \square square units.

See Solution

Problem 16522

Find the area between y=e0.75xy=e^{0.75 x} and y=1xy=-\frac{1}{x} from x=1x=1 to x=2x=2. The area is \square square units.

See Solution

Problem 16523

Find the instantaneous velocity using s=st2s=\frac{s}{t^{2}} at t1=2t_{1}=-2.

See Solution

Problem 16524

Evaluate the limit: limn+i=1nsin(iπ/n)n\lim _{n \rightarrow+\infty} \sum_{i=1}^{n} \frac{\sin (i \pi / n)}{n} using a definite integral on [0,1][0,1].

See Solution

Problem 16525

Find the tangent line equation to cos(x)+10y2=xy9+31\cos(x) + 10y^2 = xy^9 + 31 at (0,3)(0, \sqrt{3}).

See Solution

Problem 16526

Evaluate the following integrals using 04x2dx=643\int_{0}^{4} x^{2} d x=\frac{64}{3}: (a) 40x2dx\int_{-4}^{0} x^{2} d x (b) 44x2dx\int_{-4}^{4} x^{2} d x (c) 04x2dx\int_{0}^{4}-x^{2} d x (d) 403x2dx\int_{-4}^{0} 3 x^{2} d x

See Solution

Problem 16527

Find the remaining amount QQ of a \6milliongrantafter70days,given6 million grant after 70 days, given \frac{dQ}{dt} \propto (100-t)^2$.

See Solution

Problem 16528

Calculate the integral sin6θcos3θdθ\int \sin^{6} \theta \cos^{3} \theta \, d\theta.

See Solution

Problem 16529

Check if the series n=21nlnn\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}} converges or diverges.

See Solution

Problem 16530

Evaluate the integral: 1273xx3dx\int_{1}^{27} \frac{3}{x \cdot \sqrt[3]{x}} dx

See Solution

Problem 16531

Kenny wants to withdraw \$33,000 annually for 25 years at 8.7% interest. How much must he have at age 65?

See Solution

Problem 16532

Determine where f(x)f(x) is increasing, decreasing, and find local extrema for f(x)=2x220x21f(x)=-2 x^{2}-20 x-21.

See Solution

Problem 16533

Determine where the function f(x)=2x220x20f(x) = -2x^2 - 20x - 20 is increasing, decreasing, and find local extrema.

See Solution

Problem 16534

Given the sequence defined by a1=2a_{1}=2 and an+1=12(an+6)a_{n+1}=\frac{1}{2}(a_{n}+6), prove it's nondecreasing & bounded by 6, then find limnan\lim_{n \to \infty} a_{n}.

See Solution

Problem 16535

Evaluate the integral: 02πsin2(θ)5+4cos(θ)dθ\int_{0}^{2 \pi} \frac{\sin ^{2}(\theta)}{5+4 \cos (\theta)} d \theta

See Solution

Problem 16536

Find the absolute maximum and minimum of f(x)=2x36xf(x)=2 x^{3}-6 x on the interval [0,3][0,3].

See Solution

Problem 16537

Find the tangent line equation for y=f(x)y=f(x) at x=ex=e, where f(x)=x8lnxf(x)=x-8 \ln x.

See Solution

Problem 16538

Find the tangent line equation to y=f(x)y=f(x) at x=ex=e, where f(x)=x8lnxf(x)=x-8 \ln x.

See Solution

Problem 16539

Evaluate the integral 12(1x3+2x+2)dx\int_{-1}^{2}\left(\frac{-1}{x-3}+\frac{2}{x+2}\right) d x.

See Solution

Problem 16540

Find where the function f(x)=3x212x20f(x) = -3x^2 - 12x - 20 is increasing, decreasing, and its local extrema.

See Solution

Problem 16541

Find the derivatives: a. dzdw\frac{d z}{d w} for z=we+eπ+πwz=w^{e}+e^{\pi}+\pi^{w}, b. f(x)f^{\prime}(x) for f(x)=e6+ln(9)f(x)=e^{6}+\ln (9), c. f(x)f^{\prime}(x) for f(x)=log8(x)4f(x)=\frac{\log _{8}(x)}{4}, d. g(s)g^{\prime}(s) for g(s)=6slnsg(s)=\frac{6^{s}}{\ln s}.

See Solution

Problem 16542

Determine where the function f(x)f(x) is increasing, decreasing, and find the local extrema for f(x)=3x218x27f(x)=-3 x^{2}-18 x-27.

See Solution

Problem 16543

Find where f(x)f(x) is increasing, decreasing, and its local extrema for f(x)=3x218x20f(x)=-3 x^{2}-18 x-20.

See Solution

Problem 16544

Evaluate the limit: limx1+5cos1(x)5π14sin1(x)+7π\lim _{x \rightarrow-1^{+}} \frac{5 \cos ^{-1}(x)-5 \pi}{14 \sin ^{-1}(x)+7 \pi}.

See Solution

Problem 16545

Find the dimensions of a Norman window with a perimeter of 90 feet that maximize its area. (r,y)=()ft (r, y)=(\square) \mathrm{ft}

See Solution

Problem 16546

Find the critical points of the function f(x)=x4lnxf(x)=x^{4} \ln x by determining where f(x)=0f^{\prime}(x)=0.

See Solution

Problem 16547

Find the difference quotient for the function f(x)=5x2+2x2f(x)=5 x^{2}+2 x-2: f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}.

See Solution

Problem 16548

Maximize the area of a window with a semicircle and rectangle. Total height is 90 ft; width is 2r2r. Find rr and yy.

See Solution

Problem 16549

Find the maximum volume of a cylinder formed by rotating a rectangle around the xx-axis, bounded by f(x)=xx2+1f(x)=\frac{x}{x^{2}+1}.

See Solution

Problem 16550

Rewrite f(x)=e8x+5f(x)=e^{8 x+5} as f(x)=Cekxf(x)=C e^{k x} and f(x)=Cbxf(x)=C \cdot b^{x}. Find f(x)f'(x). Do the same for g(x)=73xg(x)=7^{-3 x}. Find g(x)g'(x).

See Solution

Problem 16551

Calculate the series sum: n=1(5n(n+1)12n)\sum_{n=1}^{\infty}\left(\frac{5}{n(n+1)}-\frac{1}{2^{n}}\right).

See Solution

Problem 16552

Find the area under the standard normal curve from z=0z=0 to z=0.89z=0.89. Round to four decimal places.

See Solution

Problem 16553

Evaluate the integral and verify by differentiating: 98+9xdx,x89\int \frac{9}{8+9 x} d x, x \neq -\frac{8}{9}

See Solution

Problem 16554

Find the difference quotient, f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}, for the function f(x)=3x7f(x)=-3x-7.

See Solution

Problem 16555

Prove that if the series nNan\sum_{n \in \mathbb{N}} a_{n} and nNbn\sum_{n \in \mathbb{N}} b_{n} converge, then nNanbn\sum_{n \in \mathbb{N}} a_{n} b_{n} converges.

See Solution

Problem 16556

Determine the local min and max of the polynomial P(x)=49x32x2P(x)=\frac{4}{9} x^{3}-2 x^{2}.

See Solution

Problem 16557

Prove that if nNan\sum_{n \in \mathbb{N}} a_{n} and nNbn\sum_{n \in \mathbb{N}} b_{n} converge, then nNanbn\sum_{n \in \mathbb{N}} a_{n} b_{n} converges. Also, show nNan2\sum_{n \in \mathbb{N}} a_{n}^{2} converges if nNan\sum_{n \in \mathbb{N}} a_{n} converges.

See Solution

Problem 16558

Invest \$16,037 at 5.5% interest, compounded continuously. Find the function for amount over time, balances after 1, 2, 5, 10 years, and doubling time.

See Solution

Problem 16559

In a town of 4000, the infected after tt days is N(t)=40001+15.1e0.6tN(t)=\frac{4000}{1+15.1 e^{-0.6 t}}. Find N(0)N(0), N(2)N(2), N(5)N(5), N(8)N(8), N(12)N(12), N(16)N(16), and discuss if all 4000 will be infected.

See Solution

Problem 16560

Find the initial temperature and the temperature after 20 minutes of a soda cooling in a cooler, given T(x)=4+24e0.034xT(x)=-4+24 e^{-0.034 x}.

See Solution

Problem 16561

Find the population size P(t)=8001+4e0.4tP(t)=\frac{800}{1+4 e^{-0.4 t}} after 6 and 8 years. Round to the nearest whole number.

See Solution

Problem 16562

Austin invested \92,000at92,000 at 5 \frac{7}{8} \%daily,andJosiahat daily, and Josiah at 5 \frac{3}{4} \%$ continuously. After 17 years, find the difference.

See Solution

Problem 16563

Invest \10,000at10,000 at 9\%dailyor daily or 8.92\%$ continuously. Which gives more in 3 years?

See Solution

Problem 16564

Find the difference quotient for the function f(x)=3x2+x8f(x)=-3 x^{2}+x-8: f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}.

See Solution

Problem 16565

Insect population P(t)=500e0.02tP(t)=500 e^{0.02 t}: (a) Find P(0)P(0). (b) Determine growth rate. (c) Find P(10)P(10). (d) When is P=650P=650? (e) When does PP double?

See Solution

Problem 16566

Find the value of 33f(x)dx\int_{3}^{3} f(x) d x given 01f(x)dx=1\int_{0}^{1} f(x) d x=1, 02f(x)dx=3\int_{0}^{2} f(x) d x=3, and 25f(x)dx=2\int_{2}^{5} f(x) d x=2.

See Solution

Problem 16567

Find the mosquito population after 4 days if it grows from 1000 to 1900 in 1 day. Approximately \square mosquitoes.

See Solution

Problem 16568

Caroline invested \900ataninterestrateof900 at an interest rate of 8 \frac{7}{8} \%compoundedcontinuously.Jaxoninvested$900at compounded continuously. Jaxon invested \$900 at 8 \frac{5}{8} \%$ compounded daily. After 8 years, find the difference in their account balances.

See Solution

Problem 16569

Find g(52)g^{\prime}\left(\frac{5}{2}\right) given g(x)9xsin(g(x))=6x2x35g(x)-9 x \sin (g(x))=6 x^{2}-x-35 and g(52)=0g\left(\frac{5}{2}\right)=0.

See Solution

Problem 16570

Evaluate the integral: 3x2(x2+2x+2)(x2+1)2dx\int_{-\infty}^{\infty} \frac{3 x^{2}}{(x^{2}+2 x+2)(x^{2}+1)^{2}} dx

See Solution

Problem 16571

Temukan titik ekstrem dari y=13x3+8x2+60xy=\frac{1}{3} x^{3}+8 x^{2}+60 x.

See Solution

Problem 16572

How long will it take for \$2,400 to grow to \$2,930 at a continuous interest rate of 3.4%? Round to the nearest tenth of a year.

See Solution

Problem 16573

Elijah invested \$280 at a 2.1% continuous interest rate. How long until it grows to \$360? Round to the nearest tenth of a year.

See Solution

Problem 16574

Find the derivatives of these functions:
1) f(x)=18(x1)(x212x+16)f(x)=\frac{1}{8}(x-1)(x^{2}-12 x+16)
2) K(x)=ax3+bx2+cx+dK(x)=a x^{3}+b x^{2}+c x+d
3) f(x)=7ex+3ef(x)=-7 e^{x}+3 e
4) f(x)=34exexf(x)=-\frac{3}{4} e^{x}-e \cdot x
5) f(x)=14ex5x3+6e3f(x)=\frac{1}{4} e^{x}-5 x^{3}+6 e^{3}
6) f(t)=12t4t+5cos(t)f(t)=\frac{1}{2} t^{4}-t+5 \cos (t)
7) A(u)=12sin(u)+cos(π3)A(u)=-\frac{1}{2} \sin (u)+\cos \left(\frac{\pi}{3}\right)
8) f(x)=t2x(x28x)f(x)=t^{2} x(x^{2}-8 x)
9) f(x)=sin(π6)ex+e3x2f(x)=\sin \left(\frac{\pi}{6}\right) \cdot e^{x}+e^{3} x^{2}
10) f(x)=x32x2+4x+3x5xf(x)=x^{3}-2 x^{2}+4 x+\frac{3}{x}-5 \sqrt{x}

See Solution

Problem 16575

Calculate limx33x3x3\lim _{x \rightarrow 3^{-}} \frac{-3|x-3|}{x-3}. Options: A. +3 B. -3 C. -\infty D. None

See Solution

Problem 16576

Untersuchen Sie das Verhalten der Funktion f(x)=12x32x2f(x)=\frac{1}{2} x^{3}-2 x^{2} für x±x \rightarrow \pm \infty und ändern Sie die Koeffizienten für gewünschte Limiten.

See Solution

Problem 16577

Find the limit of an=n(8n3+2n132n1)a_{n}=n\left(\sqrt[3]{8 n^{3}+2 n-1}-2 n-1\right).

See Solution

Problem 16578

Find the hourly growth rate of a bacteria population that grows from 2200 to 2371 in 2 hours. Express as a percentage.

See Solution

Problem 16579

Find the half-life of a radioactive substance with a decay rate of 6.7%6.7\% per day using the continuous decay model.

See Solution

Problem 16580

A radioactive substance with a half-life of 4 min starts with 882.9 g882.9 \mathrm{~g}.
(a) Write the formula y=e(II)ty = \square e^{\text{(II)} t}.
(b) Find the amount after 23 min: g\square \mathrm{g}.

See Solution

Problem 16581

Oblicz granice ciągów:
1. limn3n+4n+n3+n4n\lim_{n \to \infty} \sqrt[n]{3^{n}+4^{n}+n^{3}+n^{4}}
2. limnn2(n2+1n21n+1)\lim_{n \to \infty} n^{2}\left(\frac{\sqrt{n^{2}+1}-\sqrt{n^{2}-1}}{n+1}\right)
3. limn(enn)n\lim_{n \to \infty} (e-\sqrt[n]{n})^{n}
4. limn(n2+4n+1n2+4n+4)n(n+1)\lim_{n \to \infty} \left(\frac{n^{2}+4 n+1}{n^{2}+4 n+4}\right)^{n(n+1)}

See Solution

Problem 16582

c) limx1x3xx1\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1}; d) limx2x416x+2\lim _{x \rightarrow-2} \frac{x^{4}-16}{x+2}; Untersuchen Sie f(x)f(x) um x0x_{0}: a) f(x)=x292x6,x0=3f(x)=\frac{x^{2}-9}{2 x-6}, x_{0}=3; b) f(x)=x+1x,x0=0f(x)=\frac{x+1}{x}, x_{0}=0; c) f(x)=x+1x2,x0=0f(x)=\frac{x+1}{x^{2}}, x_{0}=0; Grenzwertberechnung: a) limx4x216x4\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}; b) limx1x3xx+1\lim _{x \rightarrow-1} \frac{x^{3}-x}{x+1}; c) limx33x2x26x\lim _{x \rightarrow 3} \frac{3-x}{2 x^{2}-6 x}; d) limx2x416x2\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}.

See Solution

Problem 16583

Find the derivatives:
1. For z=we+eπ+πwz=w^{e}+e^{\pi}+\pi^{w}, find dzdw\frac{d z}{d w}.
2. For f(x)=e2+ln(6)f(x)=e^{2}+\ln (6), find f(x)f^{\prime}(x).
3. For f(x)=log9(x)2f(x)=\frac{\log _{9}(x)}{2}, find f(x)f^{\prime}(x).
4. For g(s)=2slnsg(s)=\frac{2^{s}}{\ln s}, find g(s)g^{\prime}(s).

See Solution

Problem 16584

Rewrite the functions f(x)=e9x+8f(x)=e^{9x+8} and g(x)=55xg(x)=5^{-5x} in forms CekxC e^{kx} and CbxC \cdot b^x, then find their derivatives.

See Solution

Problem 16585

Find f(x)f^{\prime}(x) for f(x)=x3lnxf(x)=x^{3} \ln x and identify the critical points (separate with commas or write none).

See Solution

Problem 16586

Berechnen Sie die Grenzwerte: a) limx4x216x4\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}, b) limx1x3xx+1\lim _{x \rightarrow-1} \frac{x^{3}-x}{x+1}, c) limx33x2x26x\lim _{x \rightarrow 3} \frac{3-x}{2 x^{2}-6 x}, d) limx2x416x2\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}.

See Solution

Problem 16587

Find the derivative of y=cosx1+sinxy=\frac{\cos x}{1+\sin x}.

See Solution

Problem 16588

Bestimme die Tangentengleichung an den Graphen von ff für die Punkte: a) P(1,1)P(1, 1), b) P(1,5)P(1,5), c) P(4,16)P(4, 16), d) P(1,2)P(1, 2).

See Solution

Problem 16589

Find the xx-values where the function f(x)=16x4+4x3+36x2f(x)=\frac{1}{6} x^{4}+4 x^{3}+36 x^{2} has an inflection point.

See Solution

Problem 16590

Find intervals where the function f(x)=16x6x55x4f(x)=\frac{1}{6} x^{6}-x^{5}-5 x^{4} is concave up.

See Solution

Problem 16591

Find all xx-values for the function f(x)=x330x2f(x)=x^{3}-30 x^{2} where it has an inflection point.

See Solution

Problem 16592

Ein Metallstab kühlt von 95C95^{\circ} \mathrm{C} auf 5C5^{\circ} \mathrm{C}. Welche Funktion beschreibt den Abkühlungsprozess?

See Solution

Problem 16593

Find intervals where the function f(x)=16x6+x55x4f(x)=\frac{1}{6} x^{6}+x^{5}-5 x^{4} is concave up.

See Solution

Problem 16594

Find all xx-values where the function f(x)=14x4x3f(x)=\frac{1}{4} x^{4}-x^{3} has an inflection point.

See Solution

Problem 16595

Find the intervals where the function f(x)=215x67x4f(x)=\frac{2}{15} x^{6}-7 x^{4} is concave down.

See Solution

Problem 16596

Find the xx-values where the function f(x)=16x4+3x3f(x)=\frac{1}{6} x^{4}+3 x^{3} has an inflection point.

See Solution

Problem 16597

Find all xx-values where the function f(x)=16x4+x310x2f(x)=\frac{1}{6} x^{4}+x^{3}-10 x^{2} has an inflection point.

See Solution

Problem 16598

Find intervals where the function f(x)=13x6+x5f(x)=\frac{1}{3} x^{6}+x^{5} is concave down.

See Solution

Problem 16599

Find all xx-values where the function f(x)=320x5x4f(x)=\frac{3}{20} x^{5}-x^{4} has an inflection point.

See Solution

Problem 16600

Calculate the difference quotient for g(x)=6x22x+1g(x)=6 x^{2}-2 x+1.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord