Calculus

Problem 19901

Berechne den Flächeninhalt A zwischen f(x)=4x2f(x)=4-x^{2} und g(x)=12x+4g(x)=\frac{1}{2} x+4 im Intervall [1;2][1 ; 2].

See Solution

Problem 19902

Find the function yy for x>0x>0 that satisfies the differential equation y=y2ln(x)xy2+xyy'=\frac{y^2 \ln (x)}{x y^2 + x y} with y(1)=1y(1)=1.

See Solution

Problem 19903

Solve the equation x3y=x33x2yx^{3} y^{\prime}=x^{3}-3 x^{2} y with the condition y(1)=1y(1)=1.

See Solution

Problem 19904

Solve the differential equation: (2x+4y2)dx+(8xy+4y2)dy=0(2x + 4y^2)dx + (8xy + 4y^2)dy = 0.

See Solution

Problem 19905

Solve the DE x3y=x33x2yx^{3} y' = x^{3} - 3 x^{2} y with initial condition y(1)=1y(1) = 1.

See Solution

Problem 19906

Ein Körper wird mit 6 m/s6 \mathrm{~m/s} aus 140 m140 \mathrm{~m} Höhe bei 3030^{\circ} abgeworfen. Finde die Zeit TT bis zum Aufprall.

See Solution

Problem 19907

Find F(π)F^{\prime}(\pi) if F(x)=0xcos(t)dtF(x)=-\int_{0}^{x} \cos (t) dt.

See Solution

Problem 19908

Calculate the integral 043x4dx\int_{0}^{4} \frac{3 \sqrt{x}}{4} d x. What is its value?

See Solution

Problem 19909

Find the value of 06f(x)dx\int_{0}^{6} f(x) dx for the piecewise function f(x)=2xf(x) = -2x if x<1x<1 and f(x)=3f(x) = 3 if x1x \geq 1.

See Solution

Problem 19910

Find F(π)F(\pi) where F(x)=πxt4sin2(t)dtF(x)=\int_{\pi}^{x} t^{4} \sin^{2}(t) dt.

See Solution

Problem 19911

If (cos(θ))2sin(θ)dθ=u2du-\int(\cos (\theta))^{2} \sin (\theta) d \theta=\int u^{2} d u, find uu. Choices: a. sin(θ)\sin (\theta), b. cos(t)\cos (t), c. cos(θ)-\cos (\theta), d. cos(t)-\cos (t), e. cos(θ)\cos (\theta), f. sin(π)\sin (\pi).

See Solution

Problem 19912

Find the area between f(x)=xe+exf(x)=x^{e}+e^{x} and the xx-axis for x[0,1]x \in[0,1]. What is it equal to?

See Solution

Problem 19913

Find the limit: limt(t7)(t8)\lim _{t \rightarrow \infty}(t-7)(t-8). Choose one: a. -8 b. limit does not exist. c. 7 d. 8 e. 0

See Solution

Problem 19914

Find the value of limx5ln(x)4x\lim _{x \rightarrow \infty} \frac{5 \ln (x)}{4 x}. Choices: a. DNE, b. 5/45/4, c. -1, d. 4/54/5, e. 0, f. 1.

See Solution

Problem 19915

If 3t2cos(t3)dt=cos(u)du\int 3 t^{2} \cos(t^{3}) dt = \int \cos(u) du, find uu.
Options: a. tt b. t3t^{3} c. 3t23 t^{2} d. cos(t)\cos(t) e. 3t3 t f. sin(t)\sin(t)

See Solution

Problem 19916

Bewege einen Körper mit v(t)=40t2v(t)=40-t^{2} in m/s\mathrm{m}/\mathrm{s}. a) Weg in 4s als Integral. b) Berechne Weg mit Summen.

See Solution

Problem 19917

Berechnen Sie die Reihenwerte für x>0x>0: (a) n=3(13)n3\sum_{n=3}^{\infty}\left(\frac{1}{3}\right)^{\frac{n}{3}}, (b) k=0(x2x+2)k\sum_{k=0}^{\infty}\left(\frac{x-2}{x+2}\right)^{k}, (c) k=01((1)k+4)k\sum_{k=0}^{\infty} \frac{1}{\left((-1)^{k}+4\right)^{k}}.

See Solution

Problem 19918

Ein Radfahrer fährt bergauf mit der Geschwindigkeit v(t)=t31350000+7t21500003t625+1142125v(t)=-\frac{t^{3}}{1350000}+\frac{7 t^{2}}{150000}-\frac{3 t}{625}+\frac{1142}{125}. a) Geschwindigkeit in km/h\mathrm{km/h} zu Beginn? b) Dauer der Bergfahrt? Berechne die Strecke durch ein Integral.

See Solution

Problem 19919

Berechnen Sie die Reihenwerte für x>0x>0: (a) n=3(13)n3\sum_{n=3}^{\infty}\left(\frac{1}{3}\right)^{\frac{n}{3}}, (b) k=0(x2x+2)k\sum_{k=0}^{\infty}\left(\frac{x-2}{x+2}\right)^{k}, (c) k=01((1)k+4)k\sum_{k=0}^{\infty} \frac{1}{\left((-1)^{k}+4\right)^{k}}

See Solution

Problem 19920

Bestimmen Sie die Grenzwerte der Folgen: (a) 3n+4nn\sqrt[n]{3^{n}+4^{n}}, (b) n2+cos(n)n2sin(n)\frac{n^{2}+\cos(n)}{n^{2}-\sin(n)}, (c) (11n22n+5)n\left(1-\frac{1}{n^{2}-2n+5}\right)^{n}, (d) k=1nk2n2+4k\sum_{k=1}^{n} \frac{k}{2n^{2}+4k}.

See Solution

Problem 19921

Find h(2)h^{\prime}(2) for h(x)=f(g(x))h(x)=f(g(x)) given g(2)=3g(2)=3, g(2)=5g^{\prime}(2)=5, and f(3)=1f^{\prime}(3)=-1.

See Solution

Problem 19922

Find the limit: limΔx03x+Δx+3xΔx\lim _{\Delta x \rightarrow 0} \frac{\frac{-3}{\sqrt{x+\Delta x}}+\frac{3}{\sqrt{x}}}{\Delta x}. Options: A) -3 B) 3x\frac{-3}{x} C) 32x\frac{3}{2 \sqrt{x}} D) 32xx\frac{3}{2 x \sqrt{x}}

See Solution

Problem 19923

Find the limit: limΔx0f(3+Δx)f(3)Δx\lim _{\Delta x \rightarrow 0} \frac{f(3+\Delta x)-f(3)}{\Delta x} for f(x)=x+1x1f(x)=\frac{x+1}{x-1}. Options: A) 12-\frac{1}{2} B) 12\frac{1}{2} C) 14-\frac{1}{4} D) 14\frac{1}{4}

See Solution

Problem 19924

Find the hole in g(x)=3x28x3x29g(x)=\frac{3 x^{2}-8 x-3}{x^{2}-9}, its domain, and calculate these limits:
1. limxg(x)\lim _{x \rightarrow-\infty} g(x)
2. limxg(x)\lim _{x \rightarrow \infty} g(x)
3. limx3g(x)\lim _{x \rightarrow-3^{-}} g(x)
4. limx3+g(x)\lim _{x \rightarrow-3^{+}} g(x)
5. limx3g(x)\lim _{x \rightarrow 3^{-}} g(x)
6. limx3+g(x)\lim _{x \rightarrow 3^{+}} g(x)

See Solution

Problem 19925

Determine where f(x)=1x2+7f(x)=\frac{1}{x^{2}+7} is concave up/down and find points of inflection. Select correct answers.

See Solution

Problem 19926

Vergleichen Sie die Differenzenquotienten der Intervalle [100,1][-100, -1], [10,1][-10, -1], [1,1][-1, 1] und [1.01,1][-1.01, -1].

See Solution

Problem 19927

Gegeben ist die Funktion fa(x)=2ax3+(24a)xf_{a}(x)=2 a x^{3}+(2-4 a) x.
a) Zeigen Sie, dass alle Graphen von faf_{a} durch den Hochpunkt von f0,25f_{-0,25} gehen. b) Bestimmen Sie aa, so dass die Steigung von faf_{a} am Hochpunkt 6 ist. c) Gibt es ein aa, sodass faf_{a} keine lokalen Extrema hat? d) Finde die Gleichung der Wendenormale von faf_{a} und den Parameter aa für die Steigung 0,5.

See Solution

Problem 19928

Find the general antiderivative of f(u)=10u41uu2f(u)=\frac{-10 u^{4}-1 \sqrt{u}}{u^{2}}. Use upper-case "C" for constants. F(u)=F(u)=

See Solution

Problem 19929

Find the satellite's orbital period in seconds given Earth's gravity is 6m/s26 \, m/s^{2} and radius is 6,371,000m6,371,000 \, m.

See Solution

Problem 19930

Find the antiderivative FF of f(x)=43(1+x2)1f(x)=4-3(1+x^{2})^{-1} with F(1)=1F(1)=-1.

See Solution

Problem 19931

Given the function f(x)=1x2+8x+20f(x)=\frac{1}{x^{2}+8 x+20}, find:
a) The domain in interval notation. b) The critical numbers of ff. c) Intervals where ff is increasing and decreasing. d) Use the First Derivative Test for relative maxima and minima.

See Solution

Problem 19932

Find the general antiderivative of f(u)=3u44uu2f(u)=\frac{-3 u^{4}-4 \sqrt{u}}{u^{2}}. Use upper-case " C\mathrm{C} " for constants.

See Solution

Problem 19933

Find the derivative of f(x)=x22xx2+5xf(x)=\frac{x^{2}-2 x}{x^{2}+5 x} using the quotient rule.

See Solution

Problem 19934

Find the function g(x)g(x) such that g(x)=4096x3g'(x) = -4096 - x^3 and the maximum value of g(x)g(x) is 5-5.

See Solution

Problem 19935

Find the function f(x)f(x) given that f(x)=3x+6sin(x)f^{\prime \prime}(x)=3 x+6 \sin (x), f(0)=4f(0)=4, and f(0)=3f^{\prime}(0)=3.

See Solution

Problem 19936

Simplify the expression: ddx4x(7t2+t+9)dt=\frac{d}{d x} \int_{4}^{x}(7 t^{2}+t+9) d t = \square

See Solution

Problem 19937

Find the limit: limx1554x2+4x\lim _{x \rightarrow-1} \frac{5-5}{4 x^{2}+4 x}.

See Solution

Problem 19938

Approximate local and global minima and maxima for f(x)=2x35x3f(x)=2 x^{3}-5 x-3. Round to two decimal places.

See Solution

Problem 19939

Bestimmen Sie die Tangentengleichung für die Punkte und Ableitungen: a) B(24),f(2)=1B(2 \mid 4), f^{\prime}(2)=1 b) B(31),f(3)=2B(3 \mid 1), f^{\prime}(3)=2 c) B(02),f(0)=12B(0 \mid -2), f^{\prime}(0)=\frac{1}{2} d) B(23),f(2)=32B(-2 \mid -3), f^{\prime}(-2)=\frac{3}{2} e) B(46),f(4)=2B(-4 \mid 6), f^{\prime}(-4)=-2 f) B(123),f(12)=0B\left(-\frac{1}{2} \mid 3\right), f^{\prime}\left(-\frac{1}{2}\right)=0

See Solution

Problem 19940

Bestimmen Sie die Tangentengleichungen für die Funktionen an den Punkten: a) f(x)=x2,b=2f(x)=x^{2}, b=2; b) f(x)=2x23x,b=1f(x)=2 x^{2}-3 x, b=1; c) f(x)=83x3,b=12f(x)=\frac{8}{3} x^{3}, b=\frac{1}{2}; d) f(x)=x32x2,b=2f(x)=x^{3}-2 x^{2}, b=2; e) f(x)=3x4+4x,b=1f(x)=3 x^{4}+4 x, b=-1; f) f(x)=1x2,b=2f(x)=\frac{1}{x^{2}}, b=-2.

See Solution

Problem 19941

Bestimme den Schnittpunkt der Tangente an ff bei BB mit der xx-Achse für die Funktionen a) f(x)=0,5x2f(x)=0,5 x^{2}, b) f(x)=13x3+2x2f(x)=\frac{1}{3} x^{3}+2 x^{2}, c) f(x)=3xf(x)=\frac{3}{x^{\prime}}.

See Solution

Problem 19942

Determine if the integral tpdt\int^{\infty} t^{-p} d t converges or diverges.

See Solution

Problem 19943

Analyze the function y=3x4+4x3y=3x^{4}+4x^{3}: find intercepts, extrema, inflection points, and asymptotes.

See Solution

Problem 19944

Evaluate the integral: dx2x+9\int \frac{d x}{2 x+9}. Use absolute values and CC for the constant of integration.

See Solution

Problem 19945

Analyze the function y=x2+1x225y=\frac{x^{2}+1}{x^{2}-25}: find intercepts, extrema, inflection points, asymptotes, domain, and range.

See Solution

Problem 19946

Evaluate the integral x4x52dx\int \frac{x^{4}}{x^{5}-2} d x using the substitution u=x52u=x^{5}-2. Find dud u and rewrite the integral in terms of uu.

See Solution

Problem 19947

Find where the function f(x)=(x24)exf(x)=(x^{2}-4)e^{x} is concave up or down and identify the inflection points.

See Solution

Problem 19948

Considérez la fonction f(x)=x4+19x420f(x)=\sqrt{x^{4}+19}-\frac{x^{4}}{20}. Trouvez les points critiques, minima et maxima locaux.
(a) Points critiques: x=x= (b) Minima locaux: x=x= (c) Maxima locaux: x=x=

See Solution

Problem 19949

Calculate the integral 12xln(8x)dx\int_{1}^{2} x \ln (8 x) d x.

See Solution

Problem 19950

Find kk so that f(x)=k(x+1)2f(x)=\frac{k}{(x+1)^{2}} is a probability density function for 0x10 \leq x \leq 1.

See Solution

Problem 19951

Find the integral of the function xexx e^{x} with respect to xx.

See Solution

Problem 19952

Evaluate the integral from 0 to 1 of (x+1)exdx(x+1)e^{x} \, dx.

See Solution

Problem 19953

Evaluate the integral 1t2etdt\int_{1}^{\infty} t^{-2} e^{t} d t.

See Solution

Problem 19954

Calculate the area between the curve y=7xln(x)y=7 x \ln (x), the xx-axis, and the lines x=1x=1 and x=ex=e.

See Solution

Problem 19955

Find the limit as tt approaches infinity for the expression tet1et-\frac{t}{e^{t}} - \frac{1}{e^{t}}.

See Solution

Problem 19956

A substance grows at 15%15\% daily. If it starts at 85 grams, find its mass after 5 days. Round to the nearest tenth.

See Solution

Problem 19957

Check for a typo in f(4)=4f(4)=4 and f(4)=1f(4)=1. Then find limx4(2fx2x)\lim _{x \rightarrow 4}\left(\frac{2-\sqrt{f x}}{2-\sqrt{x}}\right). Options: (A) 0 (B) 1 (C) -1 (D) none.

See Solution

Problem 19958

Calculez la limite limxxsin(2x)\lim _{x \rightarrow \infty} x \sin \left(\frac{2}{x}\right). Quelle est sa forme indéterminée? Évaluez-la.

See Solution

Problem 19959

Find the point (x,0)(x, 0) on the xx-axis to minimize cable length f(x)=(8x)2+32+(8x)2+(3)2f(x)=\sqrt{(8-x)^2+3^2}+\sqrt{(8-x)^2+(-3)^2}.

See Solution

Problem 19960

Sketch the graph of y=2x33x2y=2x^{3}-3x^{2} and find local maxima, minima, inflection points, concavity, and increase/decrease intervals.

See Solution

Problem 19961

Find the point (x,0)(x, 0) on the xx-axis that minimizes cable length from Centerville (9,0)(9,0) to Springfield (0,6)(0,6) and Shelbyville (0,6)(0,-6). Calculate the minimum cable length and justify your answer.

See Solution

Problem 19962

Evaluate the integral from 0 to 1: 01(3x3x)dx\int_{0}^{1}\left(3 x-3^{x}\right) d x.

See Solution

Problem 19963

Gegeben ist die Funktion fa(x)=2ax3+(24a)xf_{a}(x)=2 a x^{3}+(2-4 a) x.
a) Zeigen, dass alle Graphen durch HH der Kurve f0.25f-0.25 gehen. b) Bestimmen Sie aa, damit die Steigung in HH gleich 6 ist. c) Gibt es ein aa, sodass faf_{a} keine lokalen Extrema hat? d) Finden Sie die Wendenormale und den aa, für den die Steigung 0,5 ist.

See Solution

Problem 19964

Calculate the indefinite integral and include the constant CC for integration: (cos(x)+13x)dx\int\left(\cos (x)+\frac{1}{3} x\right) d x

See Solution

Problem 19965

Use Stokes' Theorem to find the circulation of F=6yi+4zj+6xk\vec{F}=6 y \vec{i}+4 z \vec{j}+6 x \vec{k} around the triangle from (6,0,0)(6,0,0) to (6,0,3)(6,0,3) to (6,2,3)(6,2,3) back to (6,0,0)(6,0,0).

See Solution

Problem 19966

Gegeben ist die Funktion fa(x)=2ax3+(24a)xf_{a}(x)=2 a x^{3}+(2-4 a) x für aRa \in \mathbb{R} und a0a \neq 0.
a) Zeigen Sie, dass alle Graphen durch den Hochpunkt HH von f0,25f_{-0,25} gehen.
b) Finden Sie aa, sodass faf_{a} im Punkt HH die Steigung 66 hat.
c) Gibt es aa, sodass faf_{a} keine lokalen Extrema hat?
d) Bestimmen Sie die Wendenormale von faf_{a} und den Parameter aa, bei dem die Steigung 0,50,5 ist.

See Solution

Problem 19967

Find the indefinite integral: (u+2)(5u+3)du\int(u+2)(5u+3) \, du (Include constant C).

See Solution

Problem 19968

Evaluate the integral using the definition: 11(1+4x)dx\int_{-1}^{1}(1+4 x) d x.

See Solution

Problem 19969

A boy walks towards a 20 m pole at 4 km/h. Find the rate (m/s) at which distance to the top changes when 5 m away. Round to 3 decimal places.

See Solution

Problem 19970

Find the flow rate out of the sphere x2+y2+z2=9x^{2}+y^{2}+z^{2}=9 for a fluid with density 4 kg/m34 \mathrm{~kg} / \mathrm{m}^{3} and velocity v=yi+xj+5zk\mathbf{v}=-y \mathbf{i}+x \mathbf{j}+5 z \mathbf{k}.

See Solution

Problem 19971

Find the flux of the vector field F=4i+3j+1k\mathbf{F}=4 \mathbf{i}+3 \mathbf{j}+1 \mathbf{k} across the surface SS defined by 4x+5y+z=44x+5y+z=4 in the first octant.

See Solution

Problem 19972

Water is poured into a cone at 3ft3/min3 \mathrm{ft}^3/\mathrm{min}. Find the water level rise rate when it's 9ft9 \mathrm{ft} deep.

See Solution

Problem 19973

Find the limit: limx0+xlnx\lim _{x \rightarrow 0^{+}} \sqrt{x} \ln x

See Solution

Problem 19974

Find the electric flux across the closed surface MM consisting of a hemisphere and its base with E=16x,16y,16z\mathbf{E}=\langle 16 x, 16 y, 16 z\rangle. Use spherical coordinates for the integral over the hemisphere.

See Solution

Problem 19975

Calculate the surface integral SzdS\iint_{\mathcal{S}} z \, d S for y=3z2y=3-z^{2}, 0x,z60 \leq x, z \leq 6.

See Solution

Problem 19976

Find the flux of F=3yi+3j3xzk\vec{F}=3 y \vec{i}+3 \vec{j}-3 x z \vec{k} through the surface S:y=x2+z2S: y=x^{2}+z^{2}, x2+z21x^{2}+z^{2} \leq 1.

See Solution

Problem 19977

Find the flux of F=xi+yj+zk\vec{F}=x \vec{i}+y \vec{j}+z \vec{k} through the curved surface of the cylinder x2+y2=16x^{2}+y^{2}=16 between x+y+z=3x+y+z=3 and x+y+z=5x+y+z=5.

See Solution

Problem 19978

Find the flux of F=xi+yj+zk\vec{F}=x \vec{i}+y \vec{j}+z \vec{k} through the curved surface of the cylinder x2+y2=16x^{2}+y^{2}=16 between the planes x+y+z=3x+y+z=3 and x+y+z=5x+y+z=5.

See Solution

Problem 19979

A snowball's surface area decreases at 9 cm2/min9 \mathrm{~cm}^{2} / \mathrm{min}. Find the diameter decrease rate when it's 12 cm12 \mathrm{~cm}. Round to three decimal places.

See Solution

Problem 19980

Ein Körper wird beschleunigt mit a(t)=1,5ta(t)=1,5 t. Finde v1(t)v_{1}(t) und v2(t)v_{2}(t) und bestimme a und v für t=0t=0 und t=10t=10.

See Solution

Problem 19981

Find the derivative of g(x)=ex67xg(x)=e^{x^{6}-7x}. What is g(x)g'(x)?

See Solution

Problem 19982

Differentiate the function g(t)=95t7t+6g(t)=\frac{9-5 t}{7 t+6}. Find g(t)=g^{\prime}(t)=.

See Solution

Problem 19983

Differentiate the function F(t) = t^{9} + e^{9}. What is F'(t)?

See Solution

Problem 19984

Calculate the average value of f(x)=2x+1f(x)=2x+1 over the interval [0,6][0,6].

See Solution

Problem 19985

A snowball's surface area decreases at 9 cm2/min9 \mathrm{~cm}^{2} / \mathrm{min}. Find the diameter's decrease rate when it's 12 cm12 \mathrm{~cm}. Round to three decimal places.

See Solution

Problem 19986

Bestimmen Sie die Folgenglieder ana_{n}, Häufungspunkte, limnNan\varlimsup_{n \in \mathbb{N}} a_{n}, supnNan\sup _{n \in \mathbb{N}} a_{n}, limnNan\varliminf_{n \in \mathbb{N}} a_{n} und das Konvergenzverhalten.

See Solution

Problem 19987

Find the linearization L(x)L(x) of g(x)=1+x7g(x)=\sqrt[7]{1+x} at a=0a=0. First, compute g(x)g^{\prime}(x) and then g(0)g^{\prime}(0).

See Solution

Problem 19988

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=x23x+5f(x)=x^{2}-3x+5, simplifying the result.

See Solution

Problem 19989

Berechnen Sie die Grenzwerte der Funktion f(x)=x23xx2x6f(x)=\frac{x^{2}-3x}{x^{2}-x-6}.

See Solution

Problem 19990

Calculate the average value of f(x)=x2f(x)=x^{2} on the interval [0,3][0,3].

See Solution

Problem 19991

Calculate the average value of f(x)=ex/8f(x)=e^{x / 8} over the interval [0,8][0,8].

See Solution

Problem 19992

Find the average value of f(x)=4x+1f(x)=4x+1 over the interval [0,6][0,6].

See Solution

Problem 19993

Calculate the average value of the function f(x)=25x2f(x)=25-x^{2} over the interval [4,4][-4,4].

See Solution

Problem 19994

Evaluate the integral using areas: 9981x2dx\int_{-9}^{9} \sqrt{81-x^{2}} d x.

See Solution

Problem 19995

Calculate the average value of f(x)=3xf(x)=3 \sqrt{x} over the interval [0,9][0,9].

See Solution

Problem 19996

Auto A bremst von 100 km/h100 \mathrm{~km/h} auf 0 km/h0 \mathrm{~km/h} in 39,08 m39,08 \mathrm{~m} mit 9,87 m/s2-9,87 \mathrm{~m/s^2}. Finde v(t)v(t) und s(t)s(t), Bremsdauer, Wege in den ersten zwei Sekunden und Geschwindigkeit nach 35,9 m35,9 \mathrm{~m}.

See Solution

Problem 19997

Calculez les valeurs de AA, BB et CC pour l'intégrale x2+3x3+9x2dx\int \frac{x^{2}+3}{x^{3}+9 x^{2}} d x avec x2+3x3+9x2=Ax+Bx2+Cx+9.\frac{x^{2}+3}{x^{3}+9 x^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+9}.

See Solution

Problem 19998

Find the integral: x2e4xdx\int x^{2} e^{4 x} d x

See Solution

Problem 19999

Calculez l'intégrale indéfinie x2+3x3+9x2dx\int \frac{x^{2}+3}{x^{3}+9 x^{2}} d x en trouvant A,B,CA, B, C avec x2+3x3+9x2=Ax+Bx2+Cx+9\frac{x^{2}+3}{x^{3}+9 x^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+9}.

See Solution

Problem 20000

Find the derivative of the function f(x)=19x(sin2(t)t4)dtf(x)=\int_{-19}^{x}(\sin^2(t)-t^4) dt. What is f(x)f'(x)?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord