Calculus

Problem 15701

Find the first derivative of the function E(t)=2t(et10)E(t)=2 t\left(e^{\frac{-t}{10}}\right).

See Solution

Problem 15702

Find the limit using L'Hôpital's Rule: limx0sin(x)x=\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=

See Solution

Problem 15703

Approximate (26.5)13(26.5)^{\frac{1}{3}} using linearization at a=27a=27. Answer to three decimal places and state if it's an overestimate or underestimate.

See Solution

Problem 15704

How many hours should Ryan study for maximum effectiveness given the function E(t)=2t(et10)E(t)=2 t\left(e^{\frac{-t}{10}}\right)?

See Solution

Problem 15705

Find the yy-coordinates for points on y=x2y=x^{2}, calculate secant slopes, and estimate the tangent slope at P(3,9)P(3,9).

See Solution

Problem 15706

Find the linearization L(x)L(x) of f(x)=13+x4f(x)=\sqrt[4]{13+x} at a=2a=2 and use it to approximate 15.54\sqrt[4]{15.5}.

See Solution

Problem 15707

Find the profit from drilling a well 300 feet deep, given P(x)=x4P^{\prime}(x)=\sqrt[4]{x}. Set up the integral:
P(300)=0300(x4)dx P(300)=\int_{0}^{300}(\sqrt[4]{x}) d x
Total profit is \$ \square. (Round to two decimal places.)

See Solution

Problem 15708

Calculate f(8)f(8) and f(9)f(9) for the function f(x)=x3+8x2+5x+10f(x)=-x^{3}+8 x^{2}+5 x+10. Is there a real zero between 8 and 9? YES or NO?

See Solution

Problem 15709

Azote (N)(\mathrm{N}) et hydrogène (H)(\mathrm{H}) forment l'ammoniac : Q(t)=100100010+tQ(t)=100-\frac{1000}{10+t}. Trouvez :
a) Q(0)Q(0) et Q(20)Q(20). b) Variation de QQ sur [10s,20s][10 s, 20 s]. c) Taux de variation moyen sur [10s,20s][10 s, 20 s] et [20s,30s][20 s, 30 s]. d) Évaluez limh0+Q(h+0)Q(0)h\lim _{h \rightarrow 0^{+}} \frac{Q(h+0)-Q(0)}{h}. e) Trouvez la fonction de variation de QQ.

See Solution

Problem 15710

Find the limit: limx01cos(x)x2\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}.

See Solution

Problem 15711

Untersuchen Sie die Funktionen auf lokale Extrempunkte und skizzieren Sie die Graphen: a) f(x)=x2+exf(x)=x-2+e^{-x}, b) f(x)=x2ex+1f(x)=x^{2} \cdot e^{x+1}.

See Solution

Problem 15712

Find the average acceleration of a particle with velocity v(t)=(2.3 m/s)+(4.1 m/s2)t(6.2 m/s3)t2v(t)=(2.3 \mathrm{~m/s})+(4.1 \mathrm{~m/s}^2)t-(6.2 \mathrm{~m/s}^3)t^2 from t=1.0 st=1.0 \mathrm{~s} to t=2.0 st=2.0 \mathrm{~s}.

See Solution

Problem 15713

Find Newton's method formula for f(x)=4tan(4x)f(x)=4-\tan(4x) with x0=1x_{0}=1 and compute x1x_{1} and x2x_{2}. Which formula is correct? A. xn=xn+1+4tan(4xn+1)4sec2(4xn+1)x_{n}=x_{n+1}+\frac{4-\tan(4x_{n+1})}{4\sec^2(4x_{n+1})} B. xn+1=xn4tan(4xn)4sec2(4xn)x_{n+1}=x_{n}-\frac{4-\tan(4x_{n})}{4\sec^2(4x_{n})} C. xn+1=xn+4sec2(4xn)4tan(4xn)x_{n+1}=x_{n}+\frac{4\sec^2(4x_{n})}{4-\tan(4x_{n})} D. xn+1=xn+4tan(4xn)4sec2(4xn)x_{n+1}=x_{n}+\frac{4-\tan(4x_{n})}{4\sec^2(4x_{n})}

See Solution

Problem 15714

Fällt der Fahrer in die Barriere zwischen A(2,1) und B(2,2), wenn das Motorrad der Funktion f(x)=(1x)exf(x)=(1-x) \cdot e^{x} folgt?

See Solution

Problem 15715

Bestimme die Tangentengleichung tt von f(x)=0,05x3+0,25x20,2x+1f(x)=0,05 x^{3}+0,25 x^{2}-0,2 x+1 bei P(52P(-5 \mid 2 und die Fläche AA zwischen ff und tt.

See Solution

Problem 15716

Find Newton's method formula for f(x)=4tan(4x)f(x)=4-\tan(4x) with x0=1x_{0}=1 and compute x1x_{1} and x2x_{2}.

See Solution

Problem 15717

Find the increase in national debt from 1996 to 2005 using the model D(t)=849+824.7t163.8t2+13.08t3D^{\prime}(t)=849+824.7 t-163.8 t^{2}+13.08 t^{3}.

See Solution

Problem 15718

Find the increase in national debt (in billions) from 1996 to 2001 using the model D(t)=858.03+819.52t191.73t2+11.52t3D^{\prime}(t)=858.03+819.52 t-191.73 t^{2}+11.52 t^{3}.

See Solution

Problem 15719

Find the indefinite integral x3(x44)4dx\int \frac{x^{3}}{\left(x^{4}-4\right)^{4}} d x using the substitution u=u=\square and du=dxd u=\square d x.

See Solution

Problem 15720

Evaluate the integral x2(x34)40dx\int x^{2}(x^{3}-4)^{40} dx using the substitution u=u=.

See Solution

Problem 15721

Berechnen Sie das Integral A=abx3x24x+3+x23dxA=\int_{a}^{b}\left|x^{3}-x^{2}-4 x+3+x^{2}-3\right| d x für gegebene Werte von aa und bb.

See Solution

Problem 15722

Find the indefinite integral: x47+x5dx+C\int x^{4} \sqrt{7+x^{5}} \, dx + C

See Solution

Problem 15723

Find the dimensions of a lidless rectangular flower box with length 4w4w and surface area 5200 cm25200 \mathrm{~cm}^{2} to maximize volume.

See Solution

Problem 15724

Evaluate the integral dx(2x+2)2\int \frac{d x}{(2 x+2)^{2}} using the substitution u=u=.

See Solution

Problem 15725

Determine if f(x)=6x2+48x+98f(x)=6x^{2}+48x+98 has a max, min, or neither. Find the value and location if it does.

See Solution

Problem 15726

A particle PP moves on the xx-axis with displacement s=5t2t3s=5 t^{2}-t^{3}. Find: a) Change in ss from t=2t=2 to t=4t=4. b) Change in ss during the third second.

See Solution

Problem 15727

Joan has \$4687 and needs \$5579. If she invests at 4.1% annual interest, how long to reach \$5579? Round to 2 decimal places.

See Solution

Problem 15728

Find C(r)=0.16πr2+24rC(r) = 0.16 \pi r^{2} + \frac{24}{r}. Calculate C(r)=0C'(r)=0 to find rr, then use it to find hh.

See Solution

Problem 15729

Find the can dimensions that minimize cost for a volume of 300 cm³, with costs of 0.04 and 0.08 cents per cm².
Use: r=2.879,h= r=2.879, \quad h=\square
Minimum cost: C=C= cents. Round to the nearest hundredth.

See Solution

Problem 15730

Find the linearization L(x)L(x) of the function f(x)=8xf(x) = 8^{x} at the point a=0a=0.

See Solution

Problem 15731

Given the population model P(t)=500eβtP(t)=500 e^{\beta t}, find β\beta if P(5)=1000P(5)=1000. Then use linear approximation at t=5t=5 to estimate P(10)P(10) and P(0)P(0).

See Solution

Problem 15732

Write Newton's method formula and compute x1x_{1} and x2x_{2} for f(x)=x212f(x)=x^{2}-12 with x0=3x_{0}=3. Choose the correct formula.

See Solution

Problem 15733

Find the general anti-derivative of h(x)=ex+x5h(x) = e^{x} + x^{5}, using CC as the arbitrary constant.

See Solution

Problem 15734

Approximate (26.5)13(26.5)^{\frac{1}{3}} using the linearization of the cube root function at a=27a=27.

See Solution

Problem 15735

Find the surface area of the curve 3x=(y2+2)323 x=\left(y^{2}+2\right)^{\frac{3}{2}} from y=0y=0 to y=1y=1 revolved around the xx-axis.

See Solution

Problem 15736

Find the general antiderivative of the function f(x)=5xf(x)=\frac{5}{x} for all x0x \neq 0.

See Solution

Problem 15737

Approximate (26.5)13(26.5)^{\frac{1}{3}} using linearization at a=27a=27 to three decimal places. Is it an overestimate or underestimate?

See Solution

Problem 15738

Find the antiderivative of f(x)=xf(x)=\sqrt{x}, f(x)=xnf(x)=x^{n} for n1n \neq -1, and f(x)=1xf(x)=\frac{1}{x} for x>0x>0.

See Solution

Problem 15739

Find the function f(x)f(x) such that f(x)=x5f^{\prime}(x) = x^{5} and f(0)=3f(0) = 3. What is f(x)f(x)?

See Solution

Problem 15740

Find the function f(x)f(x) such that f(x)=x2f'(x)=x^2 and f(0)=9f(0)=9.

See Solution

Problem 15741

Find the xx-values for the global maximum and minimum of h(x)h(x) on 3x123 \leq x \leq 12 given h(6)h'(6) is undefined.

See Solution

Problem 15742

Find the 4th-degree Taylor polynomial L4(x)L_{4}(x) for f(x)=e6x+ln(2x)f(x)=\mathrm{e}^{6 x}+\ln (2 x).

See Solution

Problem 15743

Find the tangent line equation for f(x)=xf(x)=x at x=4x=4. First, determine the slope using the derivative.

See Solution

Problem 15744

Determine the intervals of concavity for f(x)=4x3+24x2+165x6f(x)=-4 x^{3}+24 x^{2}+165 x-6 and identify any inflection points.

See Solution

Problem 15745

Find the tangent line equation for f(x)=x2f(x)=x^{2} at x=4x=4. First, calculate the derivative for the slope.

See Solution

Problem 15746

Find the function f(x)f(x) such that f(x)=x5f'(x) = x^5 and f(0)=9f(0) = 9.

See Solution

Problem 15747

Given the population model P(t)=500eβtP(t)=500 e^{\beta t}, find β\beta if P(5)=2000P(5)=2000. Then predict P(12)P(12) and P(0)P(0) using linear approximation at a=5a=5.

See Solution

Problem 15748

Find the general antiderivative of f(x)=7xf(x)=\frac{7}{x} for x0x \neq 0. Use CC as the constant. F(x)=F(x)=

See Solution

Problem 15749

Find the limits: a) limx04tanxx\lim _{x \rightarrow 0} \frac{4 \tan x}{x} using tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}; b) limx5π3cosx\lim _{x \rightarrow \frac{5 \pi}{3}} \sqrt{\cos x}.

See Solution

Problem 15750

Find the linearization L(x)L(x) of f(x)=2+x9f(x)=\sqrt[9]{2+x} at a=5a=5 and use it to approximate 7.29\sqrt[9]{7.2}.

See Solution

Problem 15751

Find the derivative of the function f(x)=exx+1f(x)=\frac{e^{x}}{x+1}. What is f(x)f^{\prime}(x)?

See Solution

Problem 15752

Compute the integral γx2d\int_{\gamma} x^{2} d \ell along the path y=lnxy=\ln x for 0<x30<x \leq \sqrt{3}.

See Solution

Problem 15753

Find the limit: limΔx0(x0+Δx)2e(x0+Δx)x02ex0Δx\lim _{\Delta x \rightarrow 0} \frac{\left(x_{0}+\Delta x\right)^{2} e^{-\left(x_{0}+\Delta x\right)} - x_{0}^{2} e^{-x_{0}}}{\Delta x}.

See Solution

Problem 15754

Find the limit: limx0cos2xcos2xcosx1\lim _{x \rightarrow 0} \frac{\cos 2 x-\cos ^{2} x}{\cos x-1}.

See Solution

Problem 15755

Find the moments of inertia Ix=γy2dI_{x}=\int_{\gamma} y^{2} d \ell and Iy=γx2dI_{y}=\int_{\gamma} x^{2} d \ell for a semicircular wire.

See Solution

Problem 15756

Find the limit using L'Hôpital's Rule: limx0sin(x)x=\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=

See Solution

Problem 15757

Find the point of diminishing returns (x,y)(x, y) for R(x)=11,000x3+39x2+700xR(x) = 11,000 - x^3 + 39x^2 + 700x, where 0x200 \leq x \leq 20.

See Solution

Problem 15758

Find the point of diminishing returns (x,y)(x, y) for the revenue function R(x)=11,000x3+36x2+800xR(x)=11,000-x^{3}+36 x^{2}+800 x where 0x200 \leq x \leq 20. The point is \square.

See Solution

Problem 15759

Approximate the displacement of an object with v=1(4t+1)v=1(4t+1) m/s from t=0t=0 to t=8t=8 using 4 subintervals. Result: \square m.

See Solution

Problem 15760

Find the largest volume of a box made from a 3 ft square cardboard by cutting out squares from the corners.

See Solution

Problem 15761

Find the point of diminishing returns (x,y)(x, y) for R(x)=10,000x3+42x2+600xR(x) = 10,000 - x^3 + 42x^2 + 600x where 0x200 \leq x \leq 20.

See Solution

Problem 15762

Use Newton's method to find a root of f(x)=3x2x4f(x)=3 x^{2}-\sqrt{x}-4 starting from x0=2x_{0}=2. Show your steps.

See Solution

Problem 15763

Find dQdt\frac{d Q}{d t} at Q=70 gQ=70 \mathrm{~g} for the function Q(t)=100100010+tQ(t) = 100 - \frac{1000}{10 + t}.

See Solution

Problem 15764

A farmer wants to fence 24 million sq ft. Let yy be the side perpendicular to the dividing fence and xx the parallel side. Write F(x)F(x) for total fencing length. Find F(x)F'(x) and critical numbers. What are the dimensions to minimize fencing cost? Smaller value: ft\mathrm{ft}, larger value: ft\mathrm{ft}.

See Solution

Problem 15765

A farmer fences 24 million sq ft in a rectangle. Let xx and yy be side lengths. Find F(x)F(x), F(x)F'(x), and critical numbers.
F(x)= F(x)=
F(x)= F^{\prime}(x)=
x= x=
Smaller side: 4000 ft, larger side: 6000 ft.

See Solution

Problem 15766

Use Newton's method to find a root of f(x)=3x2x4f(x)=3 x^{2}-\sqrt{x}-4 starting from x0=2x_{0}=2. Show your work in a table.

See Solution

Problem 15767

A farmer wants to fence 24 million sq ft in a rectangle. Write F(x)F(x) for fencing length: F(x)=2(24,000,000x)+3xF(x)=2\left(\frac{24,000,000}{x}\right)+3 x. Find F(x)F^{\prime}(x): F(x)=48,000,000x2+3F^{\prime}(x)=-\frac{48,000,000}{x^{2}}+3. Find critical numbers: x=x= for min cost. Lengths: 4000 ft, 6000 ft.

See Solution

Problem 15768

Find the cost per ton, yy, for an oil tanker of xx thousand tons using Cˉ(x)=220,000x+480\bar{C}(x)=\frac{220,000}{x+480}.
a. Calculate C(25)\overline{\mathrm{C}}(25), C(50)\overline{\mathrm{C}}(50), C(100)\overline{\mathrm{C}}(100), C(200)\overline{\mathrm{C}}(200), C(300)\overline{\mathrm{C}}(300), C(400)\overline{\mathrm{C}}(400). b. Identify the horizontal and vertical asymptotes.

See Solution

Problem 15769

The function f(x)f(x) increases on (,0)(-\infty, 0) and decreases on (0,+)(0,+\infty). What is true about f(x)f(x)? A) max at x=0x=0 B) min at x=0x=0 C) domain (0,+)(0,+\infty) D) range (0,+)(0,+\infty)

See Solution

Problem 15770

Which limit equals 35x4dx\int_{3}^{5} x^{4} d x? (A) limnk=1n(3+kn)41n\lim_{n \to \infty} \sum_{k=1}^{n} \left(3+\frac{k}{n}\right)^{4} \frac{1}{n} (B) limnk=1n(3+kn)42n\lim_{n \to \infty} \sum_{k=1}^{n} \left(3+\frac{k}{n}\right)^{4} \frac{2}{n} (C) limnk=1n(3+2kn)41n\lim_{n \to \infty} \sum_{k=1}^{n} \left(3+\frac{2k}{n}\right)^{4} \frac{1}{n} (D) limnk=1n(3+2kn)42n\lim_{n \to \infty} \sum_{k=1}^{n} \left(3+\frac{2k}{n}\right)^{4} \frac{2}{n}

See Solution

Problem 15771

Find the derivative f(x)f^{\prime}(x) of the function f(x)=(2x6+8)5f(x)=(2 x^{6}+8)^{5}.

See Solution

Problem 15772

Calculate the energy change in kJ for ammonia synthesis when volume changes from 7.8 L to 4.9 L at 45.0 atm.

See Solution

Problem 15773

Find the derivative f(x)f^{\prime}(x) of the function f(x)=(39x)7f(x)=(3-9 x)^{7}.

See Solution

Problem 15774

Find the derivative f(x)f^{\prime}(x) for the function f(x)=2x19x+7f(x)=\frac{2 x-1}{9 x+7}.

See Solution

Problem 15775

Find the derivative f(x)f^{\prime}(x) for the function f(x)=2x3f(x)=-2 x^{3}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 15776

Find the third derivative of y=32xy=\sqrt{3-2x}.

See Solution

Problem 15777

What could the instantaneous velocity be between points B and C if the velocities at A, B, and C are 5 m/s5 \mathrm{~m/s}, 15 m/s15 \mathrm{~m/s}, and 10 m/s10 \mathrm{~m/s}? Options: less than 5 m/s5 \mathrm{~m/s}, less than 10 m/s10 \mathrm{~m/s}, greater than 10 m/s10 \mathrm{~m/s}, greater than 15 m/s15 \mathrm{~m/s}.

See Solution

Problem 15778

Find the derivative f(x)f^{\prime}(x) of the function f(x)=(68x)15f(x)=(6-8 x)^{15}.

See Solution

Problem 15779

Find the derivative using the quotient rule for y=2x2+1x2+5y=\frac{2 x^{2}+1}{x^{2}+5}. What is y=y^{\prime}=\square?

See Solution

Problem 15780

Find the derivative using the product rule for y=(4x2+5)(3x2)y=(4 x^{2}+5)(3 x-2). What is y=y^{\prime}=?

See Solution

Problem 15781

Find the antiderivative FF of f(t)=csc2tf(t)=\csc^2 t such that F(π4)=5F\left(\frac{\pi}{4}\right)=5.

See Solution

Problem 15782

Solve the initial value problem: f(x)=6x5f'(x) = 6x - 5, with f(0)=9f(0) = 9.

See Solution

Problem 15783

Find the derivative of the function f(x)=tan2(3x2)f(x)=\tan ^{2}\left(3 x^{2}\right). What is f(x)f^{\prime}(x)?

See Solution

Problem 15784

Find the derivative f(π)f^{\prime}(\pi) for the function f(x)=csc(x3)f(x)=\csc \left(\frac{x}{3}\right).

See Solution

Problem 15785

Differentiate the function y=x10exy=x^{10} e^{x}. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 15786

Find the derivative f(x)f^{\prime}(x) of f(x)=x2+3x6f(x)=x^{2}+3x-6 and calculate f(1)f^{\prime}(1), f(2)f^{\prime}(2), f(3)f^{\prime}(3).

See Solution

Problem 15787

Differentiate y=ln(5x)y=\ln(5x) and show your work.

See Solution

Problem 15788

Differentiate the function f(x)=45x+8exf(x)=-4-5 x+8 e^{x}. Find f(x)=f^{\prime}(x)=\square.

See Solution

Problem 15789

Find the derivative of the function g(x)=2xx2+7g(x)=2 x \sqrt{x^{2}+7}. What is g(x)g^{\prime}(x)?

See Solution

Problem 15790

Find the second derivative of the function f(x)=sin(x2)f(x)=\sin(x^{2}), i.e., f(x)=?f^{\prime \prime}(x)=?

See Solution

Problem 15791

Find the derivative of g(x)=1tan(3x2)g(x)=\frac{1}{\sqrt{\tan(3x^2)}}. What is g(x)g'(x)?

See Solution

Problem 15792

Find the position function for an object with acceleration a(t)=40a(t)=-40, initial velocity v(0)=22v(0)=22, and initial position s(0)=0s(0)=0.

See Solution

Problem 15793

A softball is popped up with an initial velocity of 34 m/s34 \mathrm{~m/s}. Find velocity, position, max height time, and ground strike time.

See Solution

Problem 15794

Find the derivative r(1)r^{\prime}(-1) for the function r(t)=3(t22t)2r(t)=\frac{3}{(t^{2}-2 t)^{2}}.

See Solution

Problem 15795

Find the object's velocity, position, highest point time/height, and ground strike time after being released from 400 m400 \mathrm{~m} at 11 m/s11 \mathrm{~m/s}.

See Solution

Problem 15796

Find the yy-coordinates for points Q1(3.5,y)Q_1(3.5,y) to Q4(3.001,y)Q_4(3.001,y) on y=x2y=x^2, then calculate slopes to P(3,9)P(3,9). Repeat for Q5(2.5,y)Q_5(2.5,y) to Q8(2.999,y)Q_8(2.999,y) and estimate tangent slope at PP.

See Solution

Problem 15797

Find the yy-coordinates for points on y=x2y=x^{2} and calculate slopes of secants to estimate tangent slope at P(3,9)P(3,9).

See Solution

Problem 15798

Find h(2)h^{\prime}(2) for h(x)=f(g(x))h(x)=f(g(x)) using values from the given table for f(x)f(x) and g(x)g(x).

See Solution

Problem 15799

Analyze the motion of a payload dropped from 400 m400 \mathrm{~m} at 11 m/s11 \mathrm{~m/s}:
a. Find v(t)v(t). b. Find s(t)s(t). c. Determine the time and height at the highest point. d. Find when it hits the ground.

See Solution

Problem 15800

Find p(5)p^{\prime}(5) for p(x)=f(x)g(f(x))p(x)=f(x) \cdot g(f(x)) using given values of ff and gg.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord