Calculus

Problem 29601

Find constants aa, bb, and cc in the derivative equation: d(12e3x+2x27)dx=ae3x+bx+c\frac{d(12 e^{3 x}+2 x^{2}-7)}{d x}=a e^{3 x}+b x+c.

See Solution

Problem 29602

Find the derivative of the function e2x1e^{\frac{2}{x-1}} with respect to xx.

See Solution

Problem 29603

Find the derivative of ecos(x)e^{\cos (x)} and show it equals aecos(x)sin(x)a e^{\cos (x)} \sin (x).

See Solution

Problem 29604

Find the derivative dydx\frac{d y}{d x} for the function y=e1+xy=e^{\sqrt{1+x}}. Choose the correct option.

See Solution

Problem 29605

Find the potential energy at x=2 mx=2 \mathrm{~m} given F(x)=3x21F(x)=3 x^{2}-1 and U(0)=+13 JU(0)=+13 \mathrm{~J}. Options: a. 11 J11 \mathrm{~J} b. 7 J7 \mathrm{~J} c. 16 J16 \mathrm{~J} d. 9 J9 \mathrm{~J} e. 13 J13 \mathrm{~J}

See Solution

Problem 29606

Find the volumes of solids formed by revolving region RR (bounded by y=x3+1y=x^{3}+1 and y=9y=9) around y=9y=9 (Disk) and y=1y=1 (Shell).

See Solution

Problem 29607

احسب النهاية limx1x2+xx2x2\lim _{x \rightarrow-1} \frac{x^{2}+x}{x^{2}-x-2} واختر من الخيارات: 3، 13\frac{1}{3}، 13-\frac{1}{3}، 0.

See Solution

Problem 29608

Find the output level that maximizes profit for the demand curve q=902Pq=90-2 P and total cost TC=2q2+20q+60TC=2 q^{2}+20 q+60. Choices: a. 5 b. 4 c. 20 d. 4.4

See Solution

Problem 29609

A particle's position is s(t)=2t321t2+72ts(t)=2 t^{3}-21 t^{2}+72 t. Find velocity at t=0t=0, rest times, position at t=14t=14, and total distance traveled.

See Solution

Problem 29610

Calculate the integral from 0 to 1 of the function ex+2xe^{x} + 2x.

See Solution

Problem 29611

Find the limit: limxπ2sin(x)x\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (x)}{x}. Choices: 2/π2 / \pi, 0, π/2\pi / 2, 1.

See Solution

Problem 29612

Find the limit as xx approaches 0 for x2x+sinx2x\frac{x^{2}-x+\sin x}{2 x}. Options: 0, 0.5, -0.5, Does not exist.

See Solution

Problem 29613

Find tt such that the derivative of sin(e5x)\sin(e^{5x}) with respect to xx equals: d(sin(e5x))dx\frac{d\left(\sin \left(e^{5 x}\right)\right)}{d x}

See Solution

Problem 29614

Q1. (5 pts) If limx1f(x)=3\lim _{x \rightarrow 1} f(x)=3, are these true or false? (1) limx1+f(x)=3\lim _{x \rightarrow 1^{+}} f(x)=3; (2) f(1)=3f(1)=3. Justify.

See Solution

Problem 29615

Find the limit as xx approaches 0 for 2x+3sinx5x\frac{2x + 3\sin x}{5x}. Options: 0, 2/52/5, 3/53/5, 1.

See Solution

Problem 29616

Find the volume of region RR bounded by x=8y2x=8-y^{2}, x+y=6x+y=6, and the xx-axis when rotated about x=8x=8 (Washer) and y=1y=-1 (Shell).

See Solution

Problem 29617

A particle's position is s(t)=2t327t2+84ts(t)=2 t^{3}-27 t^{2}+84 t. Find velocity at t=0t=0, rest times, position at t=18t=18, and total distance from t=0t=0 to t=18t=18.

See Solution

Problem 29618

Find the correct first derivative of f(x)=3x2(x3)2 f(x) = 3x^2 \cdot (x-3)^2 step by step, correcting f(x)=6x2(x3) f'(x) = 6x \cdot 2(x-3) .

See Solution

Problem 29619

Calculate the integral 01(ex+2x)dx\int_{0}^{1}\left(e^{x}+2 x\right) d x.

See Solution

Problem 29620

Evaluate fxxf_{x x} for z=xαyβz=x^{\alpha} y^{\beta}. What is fxxf_{x x}?

See Solution

Problem 29621

Bestimmen Sie die Ableitung von fa(x)=x2+axf_{a}(x)=-x^{2}+a x und die Steigung bei x=0x=0. Für welches aa ist die Steigung 1?

See Solution

Problem 29622

Find the derivative of f(x)=elogxf(x)=e^{\log x}. Choose the correct expression for f(x)f'(x).

See Solution

Problem 29623

Find the integral function F(x)F(x) of f(x)=13x2f(x)=\frac{1}{3 x^{2}}.

See Solution

Problem 29624

Leiten Sie die Funktionen nach x,yx, y und ggf. zz ab: d) f(x,y)=x2yf(x, y)=\frac{x^{2}}{y}, e) f(x,y,z)=xz+exyzf(x, y, z)=x z+\mathrm{e}^{x y z}, f) f(x,y)=asin(x)+ysin(a)xyf(x, y)=a \cdot \sin (x)+y \cdot \sin (a)-x y, g) f(x,y)=x24(xy)2f(x, y)=x^{2} \sqrt{4-(x y)^{2}}.

See Solution

Problem 29625

Leiten Sie die Funktionen nach x,yx, y und ggf. zz ab: a) f(x,y)=6x2+3xy+yf(x, y)=6 x^{2}+3 x y+y b) f(x,y)=x3+x2y2+y46xyf(x, y)=x^{3}+x^{2} y^{2}+y^{4}-6 x y c) f(x,y)=x0.3y0.7f(x, y)=x^{0.3} y^{0.7} d) f(x,y)=x2yf(x, y)=\frac{x^{2}}{y} e) f(x,y,z)=xz+exyzf(x, y, z)=x z+\mathrm{e}^{x y z} f) f(x,y)=asin(x)+ysin(a)xyf(x, y)=a \cdot \sin (x)+y \cdot \sin (a)-x y g) f(x,y)=x24(xy)2f(x, y)=x^{2} \sqrt{4-(x y)^{2}}

See Solution

Problem 29626

Gegeben ist die Funktion f(x,y)=y3+3x2y12x15yf(x, y) = y^{3} + 3x^{2}y - 12x - 15y. Finde die kritischen Stellen und bestimme die Art der Extremstellen.

See Solution

Problem 29627

Bestimmen Sie den Gradienten und die Hesse-Matrix von f(x1,x2,x3,x4,x5)=x1x2+ex3+x4x5(x122x3)f(x_{1}, x_{2}, x_{3}, x_{4}, x_{5})=x_{1} x_{2}+e^{x_{3}+x_{4}}-x_{5}(x_{1}^{2}-2 x_{3}).

See Solution

Problem 29628

Gegeben ist die Funktion f(x,y)=x26xyy3f(x, y) = x^{2} - 6xy - y^{3}. Finde die kritischen Punkte und bestimme die Art der Extremstellen.

See Solution

Problem 29629

Gegeben ist die Funktion fa(x)=ax3+4axf_{a}(x)=-a x^{3}+4 a x.
a) Zeigen Sie die Punktsymmetrie zum Ursprung. b) Beweisen Sie, dass faf_{a} durch P(2,0)P(-2,0) und Q(2,0)Q(2,0) verläuft. c) Zeigen Sie, dass es je einen Hoch- und Tiefpunkt gibt. d) Bestimmen Sie die Wendetangente und für welche aa die Steigung m=8m=8 ist.

See Solution

Problem 29630

Find the derivative of a2x\sqrt{a-2 x} with respect to xx, where aa is a constant.

See Solution

Problem 29631

Find the derivative of f(x)=x1x+2f(x)=\frac{x-1}{x+2}. Which option is correct? (1) f(x)=1(x+2)2f'(x)=\frac{1}{(x+2)^{2}}, (2) f(x)=3(x+2)2f'(x)=\frac{3}{(x+2)^{2}}, (3) f(x)=3(x+2)2f'(x)=\frac{-3}{(x+2)^{2}}?

See Solution

Problem 29632

Find the derivative of (8cos(4x))2(8 - \cos(4x))^2 with respect to xx.

See Solution

Problem 29633

Find the derivative of px14x+3\frac{p x-1}{4 x+3} and set it equal to 7(4x+3)2\frac{7}{(4 x+3)^{2}}.

See Solution

Problem 29634

Calculate the limit: limx+x[(1+1x)xe]\lim _{x \rightarrow+\infty} x\left[\left(1+\frac{1}{x}\right)^{x}-e\right].

See Solution

Problem 29635

Find aa and bb such that d(4(x2+y2))dx=ax+bydydx\frac{d(4(x^{2}+y^{2}))}{dx} = a x + b y \frac{dy}{dx}.

See Solution

Problem 29636

Find the derivative dydx\frac{d y}{d x} for the function y=(3x24)ln(5x+2)y=\left(3 x^{2}-4\right) \ln (5 x+2).

See Solution

Problem 29637

Gegeben ist die Funktion f(x)=x33x2+3f(x)=x^{3}-3 x^{2}+3. Finde die Tangentengleichung im Wendepunkt und den Flächeninhalt mit den Achsen.

See Solution

Problem 29638

Find the derivative of the function f(x)=cos(x)1sin(x)f(x)=\frac{\cos (x)}{1-\sin (x)}. What is f(x)f^{\prime}(x)?

See Solution

Problem 29639

Find the limit as xx approaches 2 from the left for sin(x24)x2\frac{\sin(x^{2}-4)}{x-2}.

See Solution

Problem 29640

أوجد limx2x+4x42x4+3\lim _{x \rightarrow \infty} \frac{2 x+4 x^{4}}{2 x^{4}+3}. الخيارات: 23\frac{2}{3}، 32\frac{3}{2}، 2، 0.

See Solution

Problem 29641

Gegeben ist fb(x)=xex+bf_{b}(x)=x \cdot e^{x+b}. Berechnen Sie f3(3)f_{3}(-3), die Steigung im Ursprung, den Tiefpunkt und das Verhalten für xx \rightarrow-\infty. Erklären Sie den Einfluss von bb auf den Graphen.

See Solution

Problem 29642

Die Temperatur eines Kaffees wird durch T(t)=20+70ektT(t)=20+70 \cdot e^{-k t} beschrieben.
a) Was ist die Anfangstemperatur? b) Was ist die Raumtemperatur? c) Finde kk, wenn T(30)=35,6CT(30) = 35,6^{\circ} \mathrm{C}. d) Wann ist die Änderungsrate 1Cmin-1 \frac{{ }^{\circ} \mathrm{C}}{\min } für k=0,05k=0,05?

See Solution

Problem 29643

Find the average acceleration of a rocket that rises 1.60 x 10^5 m in 4 min, reaching 7.60 km/s.

See Solution

Problem 29644

Calculate the following limits using L'Hospital's rule if needed: a) limx0ex1sin2x\lim_{x \rightarrow 0} \frac{e^{x}-1}{\sin 2x}, b) limx11x+lnx1+cos(πx)\lim_{x \rightarrow 1} \frac{1-x+\ln x}{1+\cos(\pi x)}, c) limx0sinxx+x2\lim_{x \rightarrow 0} \frac{\sin x}{x+x^{2}}, d) limx+exx+x2\lim_{x \rightarrow+\infty} \frac{e^{x}}{x+x^{2}}, e) limx+lnxx\lim_{x \rightarrow+\infty} \frac{\ln x}{\sqrt{x}}, f) limx0(1x1sinx)\lim_{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right), g) limx0(1xctgx)\lim_{x \rightarrow 0}\left(\frac{1}{x}-\operatorname{ctg} x\right), h) limx2(1x21ln(x1))\lim_{x \rightarrow 2}\left(\frac{1}{x-2}-\frac{1}{\ln(x-1)}\right), i) limx+(x2+3xx)\lim_{x \rightarrow+\infty}\left(\sqrt{x^{2}+3x}-x\right), j) limx0+xlnx\lim_{x \rightarrow 0^{+}} x \ln x, k) limx0(cosx)1x2\lim_{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}, l) limx+x[(1+1x)xe]\lim_{x \rightarrow+\infty} x\left[\left(1+\frac{1}{x}\right)^{x}-e\right].

See Solution

Problem 29645

Calculate the Taylor series and radius of convergence for these functions at given points: a) f(x)=11+xf(x)=\frac{1}{1+x}, b) f(x)=12+x2f(x)=\frac{1}{2+x^{2}}, c) f(x)=1+x2+3x2f(x)=\frac{1+x}{2+3 x^{2}}, d) f(x)=1(x2)(4x)f(x)=\frac{1}{(x-2)(4-x)} (at x0=3x_{0}=3), e) f(x)=1(x2)(4x)f(x)=\frac{1}{(x-2)(4-x)} (at x0=52x_{0}=\frac{5}{2}), f) f(x)=1(x4)2f(x)=\frac{1}{(x-4)^{2}} (at x0=5x_{0}=5), g) f(x)=(1+x)2f(x)=(1+x)^{2} (at x0=2x_{0}=2), h) f(x)=(1+x)12f(x)=(1+x)^{\frac{1}{2}}, i) f(x)=(1x)13f(x)=(1-x)^{\frac{1}{3}}, j) f(x)=(1x)13f(x)=(1-x)^{-\frac{1}{3}}, k) f(x)=sin(x2)f(x)=\sin(x^{2}), l) f(x)=sin2(x)f(x)=\sin^{2}(x).

See Solution

Problem 29646

Choose the true statement about the derivative of ln(x2+x)\ln(x^2 + x) from the options below:
1. ddx(ln(x2+x))=d(ln(x2))dx+d(ln(x))dx\frac{d}{d x}\left(\ln \left(x^{2}+x\right)\right)=\frac{d\left(\ln \left(x^{2}\right)\right)}{d x}+\frac{d(\ln (x))}{d x}
2. ddx(ln(x2+x))=d(ln(x))dxd(ln(x+1))dx\frac{d}{d x}\left(\ln \left(x^{2}+x\right)\right)=\frac{d(\ln (x))}{d x} \cdot \frac{d(\ln (x+1))}{d x}
3. ddx(ln(x2+x))=d(ln(x))dx+d(ln(x+1))dx\frac{d}{d x}\left(\ln \left(x^{2}+x\right)\right)=\frac{d(\ln (x))}{d x}+\frac{d(\ln (x+1))}{d x}
4. ddx(ln(x2+x))=ln(ddx(x2+x))\frac{d}{d x}\left(\ln \left(x^{2}+x\right)\right)=\ln \left(\frac{d}{d x}\left(x^{2}+x\right)\right)

See Solution

Problem 29647

Find limx5+4(ln(x5))2+1ln(x5)\lim _{x \rightarrow 5^{+}} \frac{\sqrt{4(\ln (x-5))^{2}+1}}{\ln (x-5)}.

See Solution

Problem 29648

Differentiate: y=x4+5xy=x^{4}+5x

See Solution

Problem 29649

Find the integral: e4xdx\int e^{-4 x} d x

See Solution

Problem 29650

If ff is continuous on [a,b][a, b] and f(x)<0f'(x)<0 for x(a,b)x \in (a, b), what can we say about ff?

See Solution

Problem 29651

Find the average rate of change of f(x)=13x+1f(x)=\frac{1}{3x+1} over [2,5][2,5] and approximate the instantaneous rate at x=2x=2.

See Solution

Problem 29652

Find the critical points of f(x)=2x3f^{\prime}(x)=2 x-3 for x[0,4]x \in[0,4]. Options: a) None b) x=32x=\frac{3}{2} c) 0,320, \frac{3}{2} d) 32-\frac{3}{2}.

See Solution

Problem 29653

Find critical points, increasing, and decreasing intervals for f(x)=8lnxx2f(x)=8 \ln x-x^{2}.

See Solution

Problem 29654

Find the interval where f(x)=(2+3x)3f(x)=(2+3x)^{3} is decreasing. Options: a) x23x \leq \frac{-2}{3} b) 0230 \geq \frac{2}{3} c) 23x23\frac{-2}{3} \leq x \leq \frac{2}{3} d) Never Decreasing.

See Solution

Problem 29655

Find the limit: limx1arctan(x21x2)\lim _{x \rightarrow 1^{-}} \arctan \left(\frac{x^{2}}{1-x^{2}}\right). Does it exist?

See Solution

Problem 29656

Evaluate the integral of eεkBTe^{-\frac{\varepsilon}{k_{B} T}} with respect to ε\varepsilon.

See Solution

Problem 29657

Calculate the limit: limx1x2+2x3x1\lim _{x \rightarrow 1^{-}} \frac{x^{2}+2 x-3}{|x-1|} or state if it doesn't exist.

See Solution

Problem 29658

Find the average rate of change of f(x)=2x29f(x)=2 x^{2}-9 from x=4x=4 to x=bx=b. Simplify your answer in terms of bb.

See Solution

Problem 29659

Find the limit: limx12x+1x+1\lim _{x \rightarrow-1} \frac{2|x+1|}{x+1}.

See Solution

Problem 29660

Find the value of qq that maximizes total revenue, satisfying TR(q)=0TR'(q) = 0 and TR(q)<0TR''(q) < 0.

See Solution

Problem 29661

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=0y=0, x=π4x=-\frac{\pi}{4}, x=π4x=\frac{\pi}{4} around y=2y=-2.

See Solution

Problem 29662

Is the function f(x)={3ln(1+x)x0x5+x5x<0f(x)=\begin{cases}3 \ln (1+x) & x \geq 0 \\ x^{5}+x^{5} & x<0\end{cases} continuous on R? (YES / NO)

See Solution

Problem 29663

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=2y=\sqrt{2}, x=0x=0, and x=π4x=\frac{\pi}{4} around x=π2x=\frac{\pi}{2}.

See Solution

Problem 29664

Find the limit: limxx33x23\lim _{x \rightarrow \infty}-\frac{x^{3}}{3 x^{2}-3}.

See Solution

Problem 29665

Is the function f(x)={3ln(1+x)x0x5+xx<0f(x)=\begin{cases} 3 \ln (1+x) & x \geq 0 \\ x^{5}+x & x<0 \end{cases} continuous on R? (YES / NO)

See Solution

Problem 29666

Find the instantaneous rate of change for y=1x2y=-\frac{1}{x-2} at x=3x=-3.

See Solution

Problem 29667

Find critical points of sinx+cosy=2y\sin x + \cos y = 2y and classify them using first and second derivative tests.

See Solution

Problem 29668

Find critical points of sinx+cosy=2y\sin x+\cos y=2 y and classify them using first and second derivative tests.

See Solution

Problem 29669

Differentiate the function y=14x356xy=-\frac{14 x^{3}}{5-6 x}. Identify the appropriate differentiation rule to use.

See Solution

Problem 29670

Find the numerator of the derivative of y=14x356xy=-\frac{14 x^{3}}{5-6 x} using the quotient rule.

See Solution

Problem 29671

Analyze the function f(x)=43xtanxf(x)=\frac{4}{3} x-\tan x for concavity in the intervals given.

See Solution

Problem 29672

Find the surface area of the curve x=2cos(4y)x=2 \sqrt{\cos (4 y)} from y=π16y=-\frac{\pi}{16} to y=π16y=\frac{\pi}{16} around the yy-axis.

See Solution

Problem 29673

Find the limits: limx3f(x)\lim _{x \rightarrow 3^{-}} f(x) and limx3+f(x)\lim _{x \rightarrow 3^{+}} f(x) using the given data.

See Solution

Problem 29674

Untersuche den Abbau eines Kontrastmittels:
a) Finde die Funktionsgleichung. b) Wie viel bleibt nach 60 Minuten? c) Wann sind 95 % abgebaut? d) Ist das Kontrastmittel nach 24 Stunden fast weg?

See Solution

Problem 29675

Find the limit as xx approaches 2 from the left: limx2(x24)ln(2x)\lim _{x \rightarrow 2^{-}}(x^{2}-4) \ln (2-x).

See Solution

Problem 29676

Find the tangent points for the function y=2x29y = -\frac{2}{x^2 - 9}.

See Solution

Problem 29677

Find the limit: limn6(n+1n)1n+x\lim _{n \rightarrow \infty} 6\left(n+\frac{1}{n}\right)^{\frac{1}{n}}+|x|.

See Solution

Problem 29678

Show using the Mean Value Theorem that: a) xx+1<ln(1+x)<x\frac{x}{x+1}<\ln (1+x)<x for x>0x>0; b) arctanxarctanyxy|\arctan x-\arctan y| \leq|x-y| for x,yRx, y \in \mathbb{R}.

See Solution

Problem 29679

Calculate the limit: limxπ2(tgx1π2x)\lim _{x \rightarrow \frac{\pi}{2}}\left(\operatorname{tg} x-\frac{1}{\frac{\pi}{2}-x}\right).

See Solution

Problem 29680

Calculate the limit: limxπ2(tg(x)1π2x)\lim _{x \rightarrow \frac{\pi}{2}}\left(\operatorname{tg}(x)-\frac{1}{\frac{\pi}{2}-x}\right).

See Solution

Problem 29681

Find the vertical asymptote at x=3x=3 and determine the horizontal asymptotes for f(x)=1x3+10f(x) = \frac{1}{x-3} + 10.

See Solution

Problem 29682

Calculate the limit: limx0+(1sin4x14x)\lim _{x \rightarrow 0^{+}} \left( \frac{1}{\sin 4 x}-\frac{1}{4 x} \right).

See Solution

Problem 29683

Calculate the following limits:
1. limx+(2x2+13x2+1)xx2\lim _{x \rightarrow+\infty}\left(\frac{2 x^{2}+1}{3 x^{2}+1}\right)^{x-x^{2}}
2. limx0(2x2+13x2+1)x2+x3\lim _{x \rightarrow 0}\left(\frac{2 x^{2}+1}{3 x^{2}+1}\right)^{-x^{2}+x^{3}}
3. limxπ2(tgx1π2x)\lim _{x \rightarrow \frac{\pi}{2}}\left(\operatorname{tg} x-\frac{1}{\frac{\pi}{2}-x}\right).

See Solution

Problem 29684

Find where the following functions are increasing or decreasing: a) f(x)=x3x2f(x)=\frac{x^{3}}{x-2}. b) f(x)=xlnx,x>0f(x)=x \cdot \ln x, x>0. c) f(x)=excosxf(x)=e^{x} \cos x.

See Solution

Problem 29685

Find the first derivative of the function y=(2x26x14)(5x49)y=(2x^{2}-6x-14)(5x^{4}-9) using the product rule. What is dydx=\frac{dy}{dx}=?

See Solution

Problem 29686

Determine if the function f(x)=11x2f(x)=\frac{1}{1-x^{2}} has a max, min, or is increasing (YES/NO for each).

See Solution

Problem 29687

Find the instantaneous rate of change of height s(t)=8tt2s(t)=8t-t^{2} at t=3t=3 hours.

See Solution

Problem 29688

Tickets for the Taylor Swift concert sold out in 9 hours. Answer the following:
(a) Estimate the rate of change of L(t)L(t) at t=5.5t=5.5. (b) Use a trapezoidal sum to estimate average L(t)L(t) in the first 4 hours. (c) How many times does L(t)=0L'(t)=0 for 0t90 \leq t \leq 9? (d) How many tickets were sold by t=4t=4 using r(t)=560te12tr(t)=560 t e^{-\frac{1}{2}t}?

See Solution

Problem 29689

If ff and gg are continuous with g(x)=f(x)g^{\prime}(x)=f(x), find 23f(x)dx=\int_{2}^{3} f(x) dx= (A) g(2)g(3)g^{\prime}(2)-g^{\prime}(3) (B) g(3)g(2)g^{\prime}(3)-g^{\prime}(2) (C) g(3)g(2)g(3)-g(2) (D) f(3)f(2)f(3)-f(2) (E) f(3)f(2)f^{\prime}(3)-f^{\prime}(2).

See Solution

Problem 29690

A particle moves along the yy-axis with velocity v(t)=sin(t2)v(t)=\sin(t^2). Answer the following questions about its motion.

See Solution

Problem 29691

Find critical points of sinx+cosy=2y\sin x + \cos y = 2y using implicit differentiation. Classify them with first and second derivative tests.

See Solution

Problem 29692

If f(2)=f(2)=f(2)=0f(2)=f'(2)=f''(2)=0, which statements about ff at x=2x=2 are true? A) Local extremum B) Point of inflection C) Horizontal tangent D) No local extremum E) None

See Solution

Problem 29693

Berechne die Ableitung von ff an x0x_0 mit der h-Methode für: a. f(x)=6x+1f(x)=6x+1, x0=2x_0=2; b. f(x)=x2f(x)=x^2, x0=3x_0=3; c. f(x)=2x3f(x)=2x^3, x0=1x_0=-1; d. f(x)=x2+4f(x)=-x^2+4, x0=4x_0=-4; e. f(x)=4x4+2xf(x)=-4x^4+2x, x0=1x_0=1.

See Solution

Problem 29694

Find the future value of \2500compoundedcontinuouslyfor6yearsatan82500 compounded continuously for 6 years at an 8% annual interest rate. Use the formula A = Pe^{rt}$.

See Solution

Problem 29695

Berechne das Integral von f(x)=3x22f(x)=3 x^{2}-2 im Intervall [0;3][0 ; 3].

See Solution

Problem 29696

Berechne den Flächeninhalt zwischen f(x)=x25+1f(x)=\frac{x^{2}}{5}+1 für x=2x=2 und x=4x=4.

See Solution

Problem 29697

Berechne das Integral von f(x)=x34f(x)=\frac{x^{3}}{4} im Intervall [1;3][1 ; 3] und finde eine Stammfunktion FF.

See Solution

Problem 29698

Berechne den Flächeninhalt unter der Kurve von f(x)=6x2+2f(x)=\frac{6}{x^{2}}+2 zwischen x=2x=2 und x=3x=3.

See Solution

Problem 29699

Which technique is best for solving the integral x5x2+7dx\int x^{5} \sqrt{x^{2}+7} d x? A-F options provided.

See Solution

Problem 29700

Calculate the integral 110(1x+2x2)\int_{1}^{10}\left(\frac{1}{x}+2 x^{-2}\right). Choose the correct answer: 1) -2 2) 3.91 3) 4.10 4) 42.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord