Calculus

Problem 30401

Verkaufsprognose: Analysiere die Funktion f(t)=t324t2+150t+100f(t)=t^{3}-24 t^{2}+150 t+100 für Downloads in Tausend. Beantworte Fragen a) bis g).

See Solution

Problem 30402

Find the rate of change of average cost when producing 179 belts, given C(x)=710+32x0.062x2C(x)=710+32x-0.062x^{2}.

See Solution

Problem 30403

Find the rate of change of average cost when producing 179 belts, given C(x)=710+32x0.062x2C(x)=710+32x-0.062x^{2}. Calculate Cˉ(x)\bar{C}^{\prime}(x).

See Solution

Problem 30404

At an excavation site, the dirt removed is modeled by f(t)f(t) where g(t)g(t) is given.
(a) Find the average rate of change of ff from t=6t=6 to t=12t=12. (b) Approximate f(9)f^{\prime}(9) using the table data. Show your calculations.

See Solution

Problem 30405

Is the function ff continuous for 0t120 \leq t \leq 12? Justify. Also, find f(2)f^{\prime}(2) for dirt removed at t=2t=2 hours.

See Solution

Problem 30406

The temperature T(t)=8tt2+4+98.6T(t)=\frac{8 t}{t^{2}+4}+98.6 gives (a) the rate of change, (b) T(1)T(1), (c) change rate at t=1t=1.

See Solution

Problem 30407

Find the average cost change rate when producing 179 belts, given C(x)=750+35x0.068x2C(x)=750+35x-0.068x^{2}.

See Solution

Problem 30408

Find the rate of change of average cost for producing 179 belts with C(x)=750+35x0.068x2C(x)=750+35x-0.068x^{2}.

See Solution

Problem 30409

Find the temperature function T(t)=8tt2+4+98.6T(t)=\frac{8 t}{t^{2}+4}+98.6. (a) Determine dTdt\frac{dT}{dt}. (b) Calculate T(1)T(1). (c) Find dTdt\frac{dT}{dt} at t=1t=1.

See Solution

Problem 30410

Find the temperature function T(t)=8tt2+4+98.6T(t)=\frac{8t}{t^{2}+4}+98.6. (a) Determine T(t)T'(t). (b) Calculate T(1)T(1). (c) Find T(1)T'(1).

See Solution

Problem 30411

Find the derivative of y=x9x3y=\frac{x^{9}}{x^{3}} using the Quotient Rule and select the correct answer.

See Solution

Problem 30412

Given the temperature function T(t)=8tt2+4+98.6T(t)=\frac{8 t}{t^{2}+4}+98.6, find: (a) T(t)T'(t), (b) T(1)T(1), (c) T(1)T'(1).

See Solution

Problem 30413

Find the derivative of y=x9x3y=\frac{x^{9}}{x^{3}} using the Quotient Rule and by dividing first.

See Solution

Problem 30414

Find the derivative of y=x9x3 y=\frac{x^{9}}{x^{3}} using the Quotient Rule and select the correct answer.

See Solution

Problem 30415

Divide x9x^{9} by x3x^{3}, simplify to x6x^{6}, then find and simplify dydx=\frac{d y}{d x}=\square.

See Solution

Problem 30416

Is the sequence ana_n with anan+11n|a_n - a_{n+1}| \leq \frac{1}{n} always convergent? Also, find a formula for k=1n1(4k+3)(4k+7)\sum_{k=1}^{n} \frac{1}{(4k+3)(4k+7)} and compute k=11(4k+3)(4k+7)\sum_{k=1}^{\infty} \frac{1}{(4k+3)(4k+7)}.

See Solution

Problem 30417

Find the derivative of y=x9x3y=\frac{x^{9}}{x^{3}} using the Quotient Rule. Choose the correct derivative form from A, B, C, or D.

See Solution

Problem 30418

Find the derivative of y=x6x4 y=\frac{x^{6}}{x^{4}} using the Quotient Rule and complete the answer choices.

See Solution

Problem 30419

Cobalt-60 decays over time. Use the model A(t)=A0(12)t5.3A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{5.3}} to answer:
a) How long to reduce to half? b) Percent remaining after 10 years? c) Time until 10%10\% remains?

See Solution

Problem 30420

Determinați dimensiunile unei săli de cinema cu volum de 4000 m³ pentru a minimiza f(x,y,z)=xy+2yz+2xzf(x, y, z) = xy + 2yz + 2xz cu xyz=4000xyz = 4000. Folosiți metoda multiplicatorilor Lagrange.

See Solution

Problem 30421

Find the derivative of y=x6x4y=\frac{x^{6}}{x^{4}} using the Quotient Rule and select the correct answer.

See Solution

Problem 30422

Estimate the rate of change of f(x)=xx4f(x)=\frac{x}{x-4} at the point (2,1)(2,-1).

See Solution

Problem 30423

Find a formula for the sum k=1n1(4k+3)(4k+7)\sum_{k=1}^{n} \frac{1}{(4 k+3)(4 k+7)} and compute k=11(4k+3)(4k+7)\sum_{k=1}^{\infty} \frac{1}{(4 k+3)(4 k+7)}.

See Solution

Problem 30424

Divide x8x^{8} by x3x^{3}, simplify to get x5x^{5}. Then find and simplify the derivative dydx\frac{d y}{d x}.

See Solution

Problem 30425

Find the acceleration of a particle with velocity v(t)=3+4.1cos(0.9t)v(t)=3+4.1 \cos (0.9 t) at time t=4t=4. Choices: (A) -2.016 (B) -0.677 (C) 1.633 (D) 1.814 (E) 2.978

See Solution

Problem 30426

Divide x6x^{6} by x4x^{4}, simplify to x2x^{2}. Find its derivative and verify dydx=\frac{d y}{d x}=\square.

See Solution

Problem 30427

Calculați următoarele integrale folosind proprietățile integralelor euleriene: 1) 01x(x1)2dx\int_{0}^{1} \sqrt{x}(x-1)^{2} d x; 2) 01x1xdx\int_{0}^{1} \frac{x-1}{\sqrt{x}} d x; 3) 01(x1)3x4dx\int_{0}^{1} \frac{(x-1)^{3}}{\sqrt[4]{x}} d x; 4) 011x2xdx\int_{0}^{1} \frac{1-x^{2}}{\sqrt{x}} d x; 5) 011+2x+3x21xdx\int_{0}^{1} \frac{1+2 x+3 x^{2}}{\sqrt{1-x}} d x; 6) 01(x+1)21x3dx\int_{0}^{1}(x+1)^{2} \sqrt[3]{1-x} d x; 7) 01dxx199\int_{0}^{1} \frac{d x}{\sqrt[99]{x-1}}.

See Solution

Problem 30428

Find the limit: limx0e2cosx2xx22x\lim _{x \rightarrow 0} \frac{e^{2}-\cos x-2 x}{x^{2}-2 x}. Options: (A) 12-\frac{1}{2} (B) 0 (C) 12\frac{1}{2} (D) 1 (E) nonexistent.

See Solution

Problem 30429

Find the slope of the tangent line to x2+xy+y2=7x^{2}+x y+y^{2}=7 at the point (2,1)(2,1). Choices: (A) 43-\frac{4}{3} (B) 54-\frac{5}{4} (C) -1 (D) 45-\frac{4}{5} (E) 34-\frac{3}{4}.

See Solution

Problem 30430

Find the values of tt where the particle's position x(t)=t33t29t+1x(t)=t^{3}-3 t^{2}-9 t+1 is at rest.

See Solution

Problem 30431

Divide x5/x3x^{5}/x^{3} and find the derivative of the result. Verify that dydx=\frac{d y}{d x}=\square.

See Solution

Problem 30432

Calculați integralele: 3) 01(x1)3x4dx\int_{0}^{1} \frac{(x-1)^{3}}{\sqrt[4]{x}} d x; 4) 011x2xdx\int_{0}^{1} \frac{1-x^{2}}{\sqrt{x}} d x.

See Solution

Problem 30433

Differentiate y=12x y=12 \sqrt{x} . Find ddx(12x)= \frac{d}{d x}(12 \sqrt{x})=\square .

See Solution

Problem 30434

Find the derivative dydx\frac{d y}{d x} for the function y=10x8y=-\frac{10}{x^{8}}. What is dydx=?\frac{d y}{d x}=?

See Solution

Problem 30435

Differentiate the function: y=4x35x2+8x+9y=4 x^{3}-5 x^{2}+8 x+9. Find dydx\frac{d y}{d x}.

See Solution

Problem 30436

Find a formula for k=1n(k+3)qk\sum_{k=1}^{n}(k+3) q^{k} with q<1|q|<1, and compute k=1(k+3)qk\sum_{k=1}^{\infty}(k+3) q^{k}.

See Solution

Problem 30437

Find the derivative of the function: y=7x52+8x12+x58y=7 x^{-\frac{5}{2}}+8 x^{-\frac{1}{2}}+x^{5}-8. What is yy'?

See Solution

Problem 30438

Differentiate the function y=x1111xy=\frac{x}{11}-\frac{11}{x}. Find ddx(x1111x)\frac{d}{dx}\left(\frac{x}{11}-\frac{11}{x}\right).

See Solution

Problem 30439

Find where the tangent line to y=0.025x2+5xy=-0.025 x^{2}+5 x has a slope of 9. The point(s) is/are \square.

See Solution

Problem 30440

Differentiate the function y=4x232x3+7y=\frac{4 x^{2}-3}{2 x^{3}+7}. Find yy^{\prime}.

See Solution

Problem 30441

Find the derivative f(x)f^{\prime}(x) of the function f(x)=2x24x+1f(x)=2 x^{2}-4 x+1 and calculate f(1)f^{\prime}(-1).

See Solution

Problem 30442

Find the derivative of f(x)=(x7)(2x+5)f(x)=(x-7)(2x+5) using the Product Rule and by expanding the product.

See Solution

Problem 30443

The function s(t)=8t(t+2)s(t)=8 t(t+2) gives distance in km after time tt in hours (0 ≤ tt ≤ 5). Find average velocity for: a. i. t=3t=3 to t=4t=4; ii. t=3t=3 to t=3.1t=3.1; iii. t=3t=3 to t=3.01t=3.01. b. Approximate instantaneous velocity at t=3t=3. c. Calculate velocity at t=3t=3.

See Solution

Problem 30444

Given the equation R(v)=6400vR(v)=\frac{6400}{v}, find: a) R(v)R'(v), b) R(90)R(90), c) R(90)R'(90). Round as needed.

See Solution

Problem 30445

Differentiate the function F(x)=(x58x)2F(x)=(x^{5}-8 x)^{2}. Find F(x)=F^{\prime}(x)=\square.

See Solution

Problem 30446

Find the rate of change of average revenue when 400 jackets are produced, given R(x)=85xR(x)=85 \sqrt{x}.

See Solution

Problem 30447

Differentiate the function y=x2+11y=\sqrt{x^{2}+11}. Find dydx=\frac{d y}{d x}=\square.

See Solution

Problem 30448

Find the derivative of the function f(x)=2ex14x4f(x) = 2 e^{x} - \frac{1}{4} x^{4}. What is f(x)f^{\prime}(x)?

See Solution

Problem 30449

Differentiate the function f(x)=x(x1)3f(x)=\sqrt{x}-(x-1)^{3}. Find f(x)=f^{\prime}(x)=.

See Solution

Problem 30450

Evaluate the limit: limx1x2+x+73x26x+5\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+x+7}-3}{x^{2}-6 x+5}.

See Solution

Problem 30451

Find the derivative of the function f(x)=ex+4f(x) = -e^{x} + 4. What is f(x)f^{\prime}(x)?

See Solution

Problem 30452

Berechne UnU_{n} und UOU_{\underline{O}} für f(x)=x2f(x)=x^{2} im Intervall [0;1][0 ; 1], unterteilt in nn Teilintervalle.

See Solution

Problem 30453

Differentiate the function f(x)=(x4x+3)6f(x)=\left(\frac{x-4}{x+3}\right)^{6}. Find f(x)=f^{\prime}(x)=.

See Solution

Problem 30454

A student learns N(t)=20tt2N(t)=20t-t^{2} terms after tt hours. Find terms learned from t=2t=2 to t=3t=3 and rate at t=2t=2.

See Solution

Problem 30455

Find the first and second derivatives of the function f(x)=3ex+2x3x+5f(x) = 3 e^{x} + 2 x^{3} - x + 5.

See Solution

Problem 30456

Differentiate the function f(x)=(2x55x3+3)26f(x)=(2 x^{5}-5 x^{3}+3)^{26}. Find f(x)=f^{\prime}(x)=.

See Solution

Problem 30457

Find the first and second derivatives of the function f(x)=2x3exf(x) = \frac{2}{x} - 3 e^{x}.

See Solution

Problem 30458

Find the first and second derivatives of the function f(x)=0.3exxf(x) = 0.3 e^{x} - \sqrt{x}.

See Solution

Problem 30459

Find the rate of change of the particle's position given s=45+6ts=\sqrt{45+6t} at t=6sect=6 \mathrm{sec}. Answer: m/sec\square \mathrm{m/sec}.

See Solution

Problem 30460

Bestimme die Ableitungen für folgende Funktionen: a) f(x)=exax2f(x)=e^{x}-a x^{2} b) f(x)=aex+xbf(x)=a e^{x}+x^{b} c) f(x)=exa+b2x2f(x)=\frac{e^{x}}{a}+b^{2} x^{2} d) f(x)=aex+af(x)=-a e^{x}+a f(x)=f^{\prime}(x)= f(x)=f^{\prime}(x)= f(x)=f^{\prime}(x)= f(x)=f^{\prime}(x)=

See Solution

Problem 30461

Find yy^{\prime} if y=xln(x)1+ln(x)y=\frac{x \ln (x)}{1+\ln (x)}. Choose from options a, b, c, d, or e.

See Solution

Problem 30462

Find the derivative dCdx\frac{d C}{d x} of the function C(x)=9.16x485.05x3+287.45x2309.42x+2651.5C(x)=9.16 x^{4}-85.05 x^{3}+287.45 x^{2}-309.42 x+2651.5. Interpret its meaning.

See Solution

Problem 30463

Gegeben ist die Funktion fk(x)=x2+2kx+2x+1f_k(x) = x^2 + 2kx + 2x + 1. Finde die Tiefpunkte und deren Koordinaten.

See Solution

Problem 30464

Find the second derivative f(x)f^{\prime \prime}(x) for the function f(x)=3x211x5x2f(x)=3 x^{2}-11 x-\frac{5}{x^{2}}.

See Solution

Problem 30465

Model consumer credit with C(x)=9.16x485.05x3+287.45x2309.42x+2651.5C(x)=9.16 x^{4}-85.05 x^{3}+287.45 x^{2}-309.42 x+2651.5. Estimate rise in 2015.

See Solution

Problem 30466

Given s(t)=5t2+20ts(t)=5 t^{2}+20 t, find: a) v(t)v(t), b) a(t)a(t), c) velocity and acceleration at t=2t=2 sec.

See Solution

Problem 30467

A medicine's amount M(t)=13t2+tM(t)=-\frac{1}{3} t^{2}+t in blood changes over time. Find M(2)M'(2) and explain if it's negative.

See Solution

Problem 30468

An object falls from rest; find (a) distance s(5)s(5), (b) speed v(5)v(5), and (c) acceleration after 55 seconds.

See Solution

Problem 30469

Find the rate of change of temperature T(h)=60h+2T(h)=\frac{60}{h+2} with respect to height at h=3h=3 km.

See Solution

Problem 30470

Ein Tank hat 10 m310 \mathrm{~m}^{3} Flüssigkeit.
(a) Zuflussrate: 2m3min2 \frac{\mathrm{m}^{3}}{\mathrm{min}} bis 6m3min6 \frac{\mathrm{m}^{3}}{\mathrm{min}} (2. Minute), dann 0m3min0 \frac{\mathrm{m}^{3}}{\mathrm{min}} (8. Minute). Wie viel Flüssigkeit ist am Ende im Tank?
(b) Abflussrate: 3m3min3 \frac{\mathrm{m}^{3}}{\mathrm{min}}. Wie lange dauert es, bis der Tank leer ist?

See Solution

Problem 30471

Find the second derivative fk(k1)f_{k}^{\prime \prime}(-k-1) for fk(x)=x2+2kx+2x+1f_{k}(x) = x^2 + 2kx + 2x + 1.

See Solution

Problem 30472

Find the derivatives of the following functions:
1. a) f(x)=2x+13x6f(x)=2x+\frac{1}{3}x^{6} b) f(x)=x325f(x)=x^{\frac{3}{2}}-5 c) f(x)=x+4x12f(x)=x+4x^{\frac{1}{2}} d) f(x)=6x2x4f(x)=6x^{2}-x^{-4} e) f(x)=7+x45f(x)=7+x^{-\frac{4}{5}} f) f(x)=2x16+x14f(x)=2x^{\frac{1}{6}}+x^{\frac{1}{4}} g) f(x)=3x15x32f(x)=3x^{-1}-5x^{-\frac{3}{2}} h) f(x)=27x1+x4f(x)=2-7x^{-1}+x^{-4}
2. Find dydx\frac{dy}{dx} for: a) y=xy=\sqrt{x} b) y=41xy=4-\frac{1}{x} c) y=3x2+x3y=3x^{2}+\sqrt[3]{x} d) y=9x+3xy=9x+\frac{3}{x} e) y=14x1x2y=\frac{1}{4x}-\frac{1}{x^{2}} f) y=6x4y=\frac{6}{\sqrt[4]{x}} g) y=x5y=\sqrt{x^{5}} h) y=8x+43x2y=8\sqrt{x}+\frac{4}{3x^{2}}

See Solution

Problem 30473

Find the derivative dydx\frac{\mathrm{d} y}{\mathrm{dx}} for each function: a) y=xy=\sqrt{x} b) y=41xy=4-\frac{1}{x} c) y=3x2+x3y=3 x^{2}+\sqrt[3]{x} d) y=9x+3xy=9 x+\frac{3}{x} e) y=14x1x2y=\frac{1}{4 x}-\frac{1}{x^{2}} f) y=6x4y=\frac{6}{\sqrt[4]{x}} g) y=x5y=\sqrt{x^{5}} h) y=8x+43x2y=8 \sqrt{x}+\frac{4}{3 x^{2}}

See Solution

Problem 30474

Calculate the Riemann sum RnR_{n} for f(x)=x232f(x)=-\frac{x^{2}}{3}-2 on [0,3][0,3] as a function of nn. Find limnRn\lim_{n \to \infty} R_{n}.

See Solution

Problem 30475

Find g(3)g^{\prime}(3) for g(x)=x27(5t34t+3)dtg(x)=\int_{x^{2}}^{7}(5 t^{3}-4 t+3) dt.

See Solution

Problem 30476

Approximate the integral 25(8x4)dx\int_{-2}^{5}(8 x-4) d x using the Midpoint Rule with nn subintervals. Find the limit as nn \to \infty.

See Solution

Problem 30477

Find g(x)g^{\prime}(x) for g(x)=x28e4xsinxdxg(x)=\int_{x^{2}}^{8} \frac{e^{4 x}}{\sin x} d x. Choices: xe4x2sinx2-\frac{x e^{4 x^{2}}}{\sin x^{2}}, e4xsinx-\frac{e^{4 x}}{\sin x}, e4x2sinx2-\frac{e^{4 x^{2}}}{\sin x^{2}}, 2xe4x2sinx2-\frac{2 x e^{4 x^{2}}}{\sin x^{2}}.

See Solution

Problem 30478

Find h(x)h^{\prime}(x) if h(x)=1x5z2z4+1dzh(x)=\int_{1}^{\sqrt{x}} \frac{5 z^{2}}{z^{4}+1} d z.

See Solution

Problem 30479

Evaluate the integral from 3 to 5: 355dx=\int_{3}^{5} 5 \, dx = \square

See Solution

Problem 30480

1.) Find the particle's acceleration given its velocities at t=3.5 st=3.5 \mathrm{~s} and t=10.0 st=10.0 \mathrm{~s}.
2.) A rock is thrown up at 40 m/s40 \mathrm{~m/s} and lands on a platform 2.5 m2.5 \mathrm{~m} high. a. What is the landing velocity? b. How long is it in the air? c. What is the max height above ground?
3.) Tom walks 20 m20 \mathrm{~m} south and 70 m70 \mathrm{~m} east. What is his displacement in unit vector notation?

See Solution

Problem 30481

Find the derivative f(x)f^{\prime}(x) for f(x)=5xf(x)=5 \sqrt{x} and evaluate it at x=6x=6.

See Solution

Problem 30482

Find critical points for each function and classify them as local max, min, or horizontal tangent: a. h(x)=6x3+18x2+3h(x)=-6 x^{3}+18 x^{2}+3 b. g(t)=t5+t3g(t)=t^{5}+t^{3} c. y=(x5)13y=(x-5)^{\frac{1}{3}} d. f(x)=(x21)13f(x)=\left(x^{2}-1\right)^{\frac{1}{3}}

See Solution

Problem 30483

Find the derivative f(49)f^{\prime}(49) for f(x)=xf(x)=\sqrt{x} using f(c)=limh0f(c+h)f(c)hf^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}.

See Solution

Problem 30484

Find the derivative f(x)f^{\prime}(x) for f(x)=11xf(x)=\frac{-11}{x} at x=4x=-4.

See Solution

Problem 30485

Find dtdx\frac{d t}{d x} for t=x7x9t=\frac{x}{7 x-9}.

See Solution

Problem 30486

Find critical points of f(x)=(x21)13f(x)=\left(x^{2}-1\right)^{\frac{1}{3}} and classify them as local max, min, or horizontal tangent.

See Solution

Problem 30487

Find the critical points of f(x)=(x21)13f(x)=\left(x^{2}-1\right)^{\frac{1}{3}} and classify them as local max, min, or horizontal tangent.

See Solution

Problem 30488

Find the limit as xx approaches 1 for sin(πx)x1\frac{\sin (\pi x)}{x-1}.

See Solution

Problem 30489

Find the derivative f(x)f^{\prime}(x) for the function f(x)=5x(15x4+13x+1)f(x)=5 x\left(15 x^{4}+\frac{13}{x+1}\right).

See Solution

Problem 30490

Find the limits: (a) limx2f(x)\lim_{x \rightarrow 2} f(x), (b) limx0g(x)\lim_{x \rightarrow 0} g(x), (c) limx2g(f(x))\lim_{x \rightarrow 2} g(f(x)).

See Solution

Problem 30491

Find the limit as xx approaches 3 for x24x+3x+15x11\frac{x^{2}-4 x+3}{\sqrt{x+1}-\sqrt{5 x-11}}.

See Solution

Problem 30492

Find the tangent line equation for f(x)=(3xx2)(3xx2)f(x)=(3x-x^2)(3-x-x^2) at x=1x=1. y=y=

See Solution

Problem 30493

Find the velocity v(t)=6t26t72v(t)=6 t^{2}-6 t-72 and acceleration a(t)=12t6a(t)=12 t-6 of the particle. When is it slowing down or speeding up?

See Solution

Problem 30494

Calculate the average rate of change of f(x)=x23x+6f(x)=x^{2}-3x+6 from x=1x=1 to x=6x=6.

See Solution

Problem 30495

Find the derivative of f(x)=x2+5f(x)=x^{2}+5 using the definition f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 30496

Which statement follows from: "If ff is continuous on [a,b][a, b], then ff has an absolute max and min on [a,b][a, b]"?

See Solution

Problem 30497

Find f(x)f^{\prime}(x) for f(x)=13xf(x)=-\frac{1}{3 x} and then calculate f(2)f^{\prime}(2).

See Solution

Problem 30498

Find dydx\frac{dy}{dx} using implicit differentiation for the equation x7=cotyx^{7} = \cot y.

See Solution

Problem 30499

Graph y=x22x6y=x^{2}-2 x-6 and find the tangent line at the point where x=2x=-2.

See Solution

Problem 30500

Find the limits of the piecewise function f(x)f(x) at x=2x = -2. Calculate: limx2f(x),limx2+f(x),limx22f(x).\lim _{x \rightarrow-2^{-}} f(x), \lim _{x \rightarrow-2^{+}} f(x), \lim _{x \rightarrow-2^{2}} f(x).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord