Calculus
Problem 30401
Verkaufsprognose: Analysiere die Funktion für Downloads in Tausend. Beantworte Fragen a) bis g).
See SolutionProblem 30403
Find the rate of change of average cost when producing 179 belts, given . Calculate .
See SolutionProblem 30404
At an excavation site, the dirt removed is modeled by where is given.
(a) Find the average rate of change of from to .
(b) Approximate using the table data. Show your calculations.
See SolutionProblem 30405
Is the function continuous for ? Justify. Also, find for dirt removed at hours.
See SolutionProblem 30409
Find the temperature function . (a) Determine . (b) Calculate . (c) Find at .
See SolutionProblem 30411
Find the derivative of using the Quotient Rule and select the correct answer.
See SolutionProblem 30414
Find the derivative of using the Quotient Rule and select the correct answer.
See SolutionProblem 30416
Is the sequence with always convergent? Also, find a formula for and compute .
See SolutionProblem 30417
Find the derivative of using the Quotient Rule. Choose the correct derivative form from A, B, C, or D.
See SolutionProblem 30418
Find the derivative of using the Quotient Rule and complete the answer choices.
See SolutionProblem 30419
Cobalt-60 decays over time. Use the model to answer:
a) How long to reduce to half?
b) Percent remaining after 10 years?
c) Time until remains?
See SolutionProblem 30420
Determinați dimensiunile unei săli de cinema cu volum de 4000 m³ pentru a minimiza cu . Folosiți metoda multiplicatorilor Lagrange.
See SolutionProblem 30421
Find the derivative of using the Quotient Rule and select the correct answer.
See SolutionProblem 30425
Find the acceleration of a particle with velocity at time . Choices: (A) -2.016 (B) -0.677 (C) 1.633 (D) 1.814 (E) 2.978
See SolutionProblem 30427
Calculați următoarele integrale folosind proprietățile integralelor euleriene: 1) ; 2) ; 3) ; 4) ; 5) ; 6) ; 7) .
See SolutionProblem 30429
Find the slope of the tangent line to at the point . Choices: (A) (B) (C) -1 (D) (E) .
See SolutionProblem 30442
Find the derivative of using the Product Rule and by expanding the product.
See SolutionProblem 30443
The function gives distance in km after time in hours (0 ≤ ≤ 5). Find average velocity for: a. i. to ; ii. to ; iii. to . b. Approximate instantaneous velocity at . c. Calculate velocity at .
See SolutionProblem 30446
Find the rate of change of average revenue when 400 jackets are produced, given .
See SolutionProblem 30454
A student learns terms after hours. Find terms learned from to and rate at .
See SolutionProblem 30467
A medicine's amount in blood changes over time. Find and explain if it's negative.
See SolutionProblem 30468
An object falls from rest; find (a) distance , (b) speed , and (c) acceleration after seconds.
See SolutionProblem 30470
Ein Tank hat Flüssigkeit.
(a) Zuflussrate: bis (2. Minute), dann (8. Minute). Wie viel Flüssigkeit ist am Ende im Tank?
(b) Abflussrate: . Wie lange dauert es, bis der Tank leer ist?
See SolutionProblem 30472
Find the derivatives of the following functions:
1. a)
b)
c)
d)
e)
f)
g)
h)
2. Find for:
a)
b)
c)
d)
e)
f)
g)
h)
See SolutionProblem 30476
Approximate the integral using the Midpoint Rule with subintervals. Find the limit as .
See SolutionProblem 30480
1.) Find the particle's acceleration given its velocities at and .
2.) A rock is thrown up at and lands on a platform high.
a. What is the landing velocity?
b. How long is it in the air?
c. What is the max height above ground?
3.) Tom walks south and east. What is his displacement in unit vector notation?
See SolutionProblem 30482
Find critical points for each function and classify them as local max, min, or horizontal tangent: a. b. c. d.
See SolutionProblem 30486
Find critical points of and classify them as local max, min, or horizontal tangent.
See SolutionProblem 30487
Find the critical points of and classify them as local max, min, or horizontal tangent.
See SolutionProblem 30493
Find the velocity and acceleration of the particle. When is it slowing down or speeding up?
See SolutionProblem 30496
Which statement follows from: "If is continuous on , then has an absolute max and min on "?
See Solution123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337