Calculus

Problem 18701

Find the limit: limx5xx23x2+2x4\lim _{x \rightarrow \infty} \frac{5 x-x^{2}}{3 x^{2}+2 x-4}.

See Solution

Problem 18702

Find the general antiderivative of f(x)=3x13+5x13+7f(x)=3 x^{\frac{1}{3}}+5 x^{-\frac{1}{3}}+7. Let F(x)=F(x)=\square (use C for constant).

See Solution

Problem 18703

Find the limit: limxxex\lim _{x \rightarrow-\infty} \frac{x}{e^{x}}.

See Solution

Problem 18704

Find the limit: limx0sin3xsin5x\lim _{x \rightarrow 0} \frac{\sin 3 x}{\sin 5 x}.

See Solution

Problem 18705

Find the general antiderivative of f(x)=3x6+10x5x3x4f(x)=\frac{3 x^{6}+10 x^{5}-x^{3}}{x^{4}}.

See Solution

Problem 18706

Find the general antiderivative of f(x)=3x6+10x5x3x4f(x)=\frac{3 x^{6}+10 x^{5}-x^{3}}{x^{4}}, denoted as F(x)=F(x)=\square (use C for constant).

See Solution

Problem 18707

Find the general antiderivative of f(x)=3x5+10x4x2x3f(x)=\frac{3 x^{5}+10 x^{4}-x^{2}}{x^{3}}. Let F(x)=F(x)=\square (use C for the constant).

See Solution

Problem 18708

Bestimme die ersten beiden Ableitungen von ff für: a) f(x)=3+exf(x)=3+e^{x}, b) f(x)=3exf(x)=3 e^{x}, c) f(x)=e3xf(x)=e^{3 x}, d) f(x)=exf(x)=e^{-x}.

See Solution

Problem 18709

Which statement about the function f(x)=(x+5)(x+1)3(x2)2f(x)=(x+5)(x+1)^{3}(x-2)^{2} is true?

See Solution

Problem 18710

Insect population size P(t)=400e0.04tP(t)=400 e^{0.04 t}: (a) Find P(0)P(0), (b) growth rate, (c) P(10)P(10), (d) when P(t)=560P(t)=560, (e) when P(t)P(t) doubles.

See Solution

Problem 18711

Bestimme PR oder KR für die Ableitung der Funktionen und berechne die erste Ableitung:
a) f(x)=2ex+1f(x)=2 \cdot e^{x+1}
b) f(x)=2xex+1f(x)=2 x \cdot e^{x}+1
c) f(x)=2+e3xf(x)=2+e^{3 x}
d) f(x)=xexf(x)=\frac{x}{e^{x}}

See Solution

Problem 18712

Problema: Dibuja el gráfico de T=25+e0.4tT=25+\mathrm{e}^{0.4 t} para 0t120 \leq t \leq 12. Encuentra TT a la mitad y el tiempo para T=100CT=100^{\circ}C.

See Solution

Problem 18713

Insect population P(t)=500e0.02tP(t)=500 e^{0.02 t}: (a) Find P(0)P(0), (b) growth rate, (c) P(10)P(10), (d) when P(t)=700P(t)=700, (e) when P(t)P(t) doubles.

See Solution

Problem 18714

Evaluate the integral 3x4x3+6x2x4dx\int \frac{3 x^{4}-x^{3}+6 x^{2}}{x^{4}} d x and find functions f(x)f(x) and g(x)g(x) such that (f(x)g(x))=3x4x3+6x2x4\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{3 x^{4}-x^{3}+6 x^{2}}{x^{4}}.

See Solution

Problem 18715

A flu epidemic starts with 5 cases on day t=0t=0. The growth rate is r(t)=22e0.04tr(t)=22 e^{0.04 t}.
(a) Find the total cases formula F(t)F(t).
(b) Calculate F(25)F(25) (round to the nearest whole number).

See Solution

Problem 18716

How long does it take for a bacteria population to double with a growth rate of 8.9%8.9\% per hour? Round to the nearest hundredth.

See Solution

Problem 18717

Una moneda de un euro cae desde reposo. ¿Cuál es su posición y velocidad tras 1 s1 \mathrm{~s}? Opciones: a) b) c) d) e)

See Solution

Problem 18718

Find the relative rate of change of the Van der Waals equation P(V,T)=RTVbaV2P(V, T)=\frac{R T}{V-b}-\frac{a}{V^{2}} with respect to VV. What is PV\frac{\partial P}{\partial V}?

See Solution

Problem 18719

Find the relative rate of change of pressure PP in the Van der Waals equation: P(V,T)=RTVbaV2P(V, T)=\frac{R T}{V-b}-\frac{a}{V^{2}}. What is PT\frac{\partial P}{\partial T}? (A) (B) (C) (D) (E) (F) (G)

See Solution

Problem 18720

Find the derivative of f(x)=4xt3+64dtf(x)=\int_{-4}^{x} \sqrt{t^{3}+64} \, dt. What is f(x)f'(x)?

See Solution

Problem 18721

Evaluate the integral from 1 to 5 of 6x256 x^{-2} - 5. What is 15(6x25)dx\int_{1}^{5}(6 x^{-2}-5) d x?

See Solution

Problem 18722

Evaluate the integral 0220x4dx\int_{0}^{2} 20 x^{4} \, dx.

See Solution

Problem 18723

Find the derivative of g(y)=1yt15sintdtg(y)=\int_{1}^{y} t^{15} \sin t \, dt. What is g(y)g'(y)?

See Solution

Problem 18724

Evaluate the integral: 2124xdx\int_{2}^{12} 4 \sqrt{x} \, dx using the Fundamental Theorem of Calculus.

See Solution

Problem 18725

Find the partial derivative fx\frac{\partial f}{\partial x} for f(x,y,z)=xy22zy+xf(x, y, z)=x y^{2}-2 z y+x.

See Solution

Problem 18726

Find the partial derivative fy\frac{\partial f}{\partial y} for f(x,y,z)=xy22zy+xf(x, y, z)=x y^{2}-2 z y+x. Options: (A) y+1y+1, (B) y2y^{2}, (C) y22zy+1y^{2}-2 z y+1, (D) 2xy2z2 x y-2 z, (E) y2+1y^{2}+1, (F) 2xy2y2 x y-2 y, (G) Not listed.

See Solution

Problem 18727

Find the partial derivatives δfδx\frac{\delta f}{\delta x} and δfδy\frac{\delta f}{\delta y} for f(x,y)=xexyf(x, y)=x e^{x y}.

See Solution

Problem 18728

Find the partial derivative fx\frac{\partial f}{\partial x} for f(x,y,t,a)=txy2+ex+tsinayf(x, y, t, a)=\frac{t}{x} y^{2}+e^{x}+t \sin a y.

See Solution

Problem 18729

Evaluate the Laplacian of ψ(x,y,z)=zx2x2+y2+z2\psi(x, y, z)=\frac{z x^{2}}{x^{2}+y^{2}+z^{2}} in Cartesian and spherical coordinates and prove they are equal.

See Solution

Problem 18730

Find ft\frac{\partial f}{\partial t} for f(x,y,t,a)=txy2+ex+tsinayf(x, y, t, a)=\frac{t}{x} y^{2}+e^{x}+t \sin a y. Choose the correct option.

See Solution

Problem 18731

Find fy\frac{\partial f}{\partial y} for f(x,y,t,a)=txy2+ex+tsinayf(x, y, t, a)=\frac{t}{x} y^{2}+e^{x}+t \sin a y. Choose from options (A) to (G).

See Solution

Problem 18732

Find the second partial derivative 2zx2\frac{\partial^{2} z}{\partial x^{2}} for z(x,y)=sin(xy)z(x, y)=\sin (x y). Options: (A) xsin(xy)x \sin (x y) (B) x2sin(xy)-x^{2} \sin (x y) (C) x2sin(xy)x^{2} \sin (x y) (D) y2sin(xy)-y^{2} \sin (x y) (E) y2sin(xy)y^{2} \sin (x y) (F) ysin(xy)y \sin (x y) (G) Not listed.

See Solution

Problem 18733

Find the second partial derivative 2zy2\frac{\partial^{2} z}{\partial y^{2}} for z(x,y)=sin(xy)z(x, y)=\sin (x y).

See Solution

Problem 18734

Find the intervals where the function f(x)=x39x2+5f(x)=x^{3}-9 x^{2}+5 is increasing, decreasing, or constant. Use interval notation.

See Solution

Problem 18735

Déterminez les dimensions du rectangle d'aire maximale inscrit sous la courbe f(x)=4x2f(x)=\sqrt{4-x^{2}} et au-dessus de l'axe.

See Solution

Problem 18736

Find the second mixed partial derivative 2fxy\frac{\partial^{2} f}{\partial x \partial y} for f(x,y)=cos(xy)f(x, y)=\cos (x y).

See Solution

Problem 18737

Find the time for \$ 4125 to double at a continuous compounding rate of 9.5\%.

See Solution

Problem 18738

Find the second partial derivative 2fx2\frac{\partial^{2} f}{\partial x^{2}} for f(x,y)=cos(xy)f(x, y)=\cos (x y). Choices: (A) (B) (C) (D) (E) (F) (G)

See Solution

Problem 18739

Find local maxima, minima, and saddle points of f(x,y)=4+x3+y33xyf(x, y)=4+x^{3}+y^{3}-3 x y. Options: (A) (-1,-1) min, (B) (0,0) saddle, (1,1) min, (C) (0,0) max, (D) (0,0) min, (1,1) max, (E) (1,1) saddle, (0,0) min, (F) (0,0) saddle, (1,1) max, (G) Not listed.

See Solution

Problem 18740

Find the absolute max and min of f(x,y)=x2+4y22x2y+4f(x, y)=x^{2}+4 y^{2}-2 x^{2} y+4 on 1x,y1-1 \leq x, y \leq 1.

See Solution

Problem 18741

Find the intervals where the function f(x)=x2+4x+4x+1f(x)=\frac{x^{2}+4 x+4}{x+1} is increasing, decreasing, or constant. Use interval notation.

See Solution

Problem 18742

Identify the true statement about the function f(x,y)=4y1+x2y2f(x, y)=4y-1+x^{2}-y^{2} from the options provided.

See Solution

Problem 18743

Match the differential equations with their solutions. Get all answers correct for credit.
1. d2ydx2+16y=0\frac{d^{2} y}{d x^{2}}+16 y=0
2. dydx=2xyx24y2\frac{d y}{d x}=\frac{-2 x y}{x^{2}-4 y^{2}}
3. d2ydx2+8dydx+16y=0\frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+16 y=0
4. dydx=8xy\frac{d y}{d x}=8 x y
5. dydx+12x2y=12x2\frac{d y}{d x}+12 x^{2} y=12 x^{2}

A. y=Ce4x3+1y=C e^{-4 x^{3}}+1 B. y=Ae4x+Bxe4xy=A e^{-4 x}+B x e^{-4 x} C. y=Ae4x2y=A e^{4 x^{2}} D. 3yx24y3=C3 y x^{2}-4 y^{3}=C E. y=Acos(4x)+Bsin(4x)y_{-}=A \cos (4 x)+B \sin (4 x)

See Solution

Problem 18744

Find the volume of the solid formed by rotating the area between xy=1xy=1, y=0y=0, x=1x=1, x=5x=5 around x=1x=-1 using the shell method.

See Solution

Problem 18745

Evaluate the integrals using given values: (A) 02(f(x)+g(x))dx\int_{0}^{2}(f(x)+g(x)) d x, (B) 03(f(x)g(x))dx\int_{0}^{3}(f(x)-g(x)) d x, (C) 23(3f(x)+2g(x))dx\int_{2}^{3}(3 f(x)+2 g(x)) d x, (D) Find aa for 03(af(x)+g(x))dx=0\int_{0}^{3}(a f(x)+g(x)) d x=0. a=59a=-\frac{5}{9}

See Solution

Problem 18746

Find QQ at t=0t=0 in Q=55e1.03tQ=55 e^{1.03 t}, determine if QQ is increasing or decreasing, and find the growth rate.

See Solution

Problem 18747

Calculate the volume VV of the solid formed by rotating the area between x=y2x=y^{2} and x=1y2x=1-y^{2} around x=4x=4.

See Solution

Problem 18748

Determine which two of the following series converge:
1. n=1(n1n+1)n2+n\sum_{n=1}^{\infty}\left(\frac{n-1}{n+1}\right)^{n^{2}+n}
2. n=1n3+1n10+n3\sum_{n=1}^{\infty} \frac{n^{3}+1}{\sqrt[3]{n^{10}+n}}
3. n=1(n22n+1)n\sum_{n=1}^{\infty}\left(\frac{n^{2}}{2 n+1}\right)^{n}
4. n=1(1+1n2)n3\sum_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)^{n^{3}}
5. n=1135(2n1)n!\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n !}
6. n=13nn3\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}}
7. n=1n!(2n)!\sum_{n=1}^{\infty} \frac{n !}{(2 n) !}

See Solution

Problem 18749

Find the asymptotic behavior of a=(n(n+1)n2+4)a=\left(\frac{n(n+1)}{n^{2}+4}\right) as nn \to \infty and check series convergence.

See Solution

Problem 18750

Which differential equations are separable? Select all that apply: A. dydt=3y\frac{d y}{d t}=-3 y B. dydt=t+1\frac{d y}{d t}=t+1 C. dydt=tyy\frac{d y}{d t}=t y-y D. dydt=t2y2\frac{d y}{d t}=t^{2}-y^{2} E. None of the above
Which functions f(x)f(x) satisfy f(x)dx=xdx\int f^{\prime}(x) d x=\int x d x? Select all that apply: A. f(x)=7x2f(x)=7 x^{2} B. f(x)=12x2f(x)=\frac{1}{2} x^{2} C. f(x)=xf(x)=x D. f(x)=x7f(x)=x-7 E. f(x)=7xf(x)=7 x F. f(x)=12x2+7f(x)=\frac{1}{2} x^{2}+7 G. f(x)=12x27f(x)=\frac{1}{2} x^{2}-7 H. f(x)=x+7f(x)=x+7

See Solution

Problem 18751

Sea f(x)=3ln(x2)+1f(x)=3 \ln (x-2)+1 a) Encuentra el dominio de ff. b) ¿Cuál es la asíntota vertical de ff? c) Halla la intersección con el eje xx. d) Encuentra la tangente a ff paralela a y=xy=x.

See Solution

Problem 18752

Identify the two true statements about the series n=1(lnn)2n\sum_{n=1}^{\infty} \frac{(\ln n)^{2}}{n}.

See Solution

Problem 18753

Calculate the volume of the region bounded by y=3xy=3x, y=3y=3, y=3xy=3\sqrt{x}, x=0x=0, x=1x=1 rotated about y=3y=3.

See Solution

Problem 18754

Find the poster dimensions that minimize area, given 150 sq in of printed matter and margins: 3 in top/bottom, 2 in sides.

See Solution

Problem 18755

Which series from the list converges by the root test? Choose 2:
1. n=1(n4ln2(cos1n)n+1)n\sum_{n=1}^{\infty}\left(\frac{n^{4} \ln ^{2}\left(\cos \frac{1}{n}\right)}{n+1}\right)^{n}
2. n=1(2arctannπ)n\sum_{n=1}^{\infty}\left(\frac{2 \arctan n}{\pi}\right)^{n}
3. n=1(nlnn)n/2\sum_{n=1}^{\infty}\left(\frac{n}{\ln n}\right)^{n / 2}
4. n=1(3n3n1)n2\sum_{n=1}^{\infty}\left(\frac{3 n}{3 n-1}\right)^{n^{2}}
5. n=1(n+12n1)n\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n-1}\right)^{n}
6. n=1(2n2n+1)2n\sum_{n=1}^{\infty}\left(\frac{2 n}{2 n+1}\right)^{2 n}

See Solution

Problem 18756

How long to double \3975atacontinuous 3975 at a continuous 6\%$ interest rate?

See Solution

Problem 18757

Solve the equation (4+x4)dydx=x3y(4+x^{4}) \frac{dy}{dx}=\frac{x^{3}}{y} using separation of variables. Find y2=Cy^{2}=\mathbf{C}.

See Solution

Problem 18758

Calculate the volume of the rectangle with length 1 and width ee rotated around the axis OAO A.

See Solution

Problem 18759

Calculate the total in a savings account after investing \$9675 at 7.0\% for 7 years with continuous compounding. Round to two decimals.

See Solution

Problem 18760

Identify two series from the list where the ratio test indicates divergence:
1. n=1(n+1)2n(n+1)!\sum_{n=1}^{\infty} \frac{(n+1)^{2 n}}{(n+1) !}
2. n=1(n2)!(2n)!\sum_{n=1}^{\infty} \frac{\left(n^{2}\right) !}{(2 n) !}
3. 13+1335+\frac{1}{3}+\frac{1 \cdot 3}{3 \cdot 5}+\cdots
4. n=1n!2n!\sum_{n=1}^{\infty} \frac{n !}{2^{n !}}
5. 31+3513+\frac{3}{1}+\frac{3 \cdot 5}{1 \cdot 3}+\cdots
6. n=1(n!)2(2n)!\sum_{n=1}^{\infty} \frac{(n !)^{2}}{(2 n) !}

See Solution

Problem 18761

Set up the integral for the volume of the solid formed by rotating y=2cos(x2)y = 2\cos(x^2) around the yy-axis using cylindrical shells.

See Solution

Problem 18762

Find the volume using cylindrical shells for y=x3y=x^{3}, y=0y=0, x=1x=1, and x=4x=4.

See Solution

Problem 18763

Find the integral of the expression: (1cot2x)dx\int(1-\cot^{2} x) \, dx.

See Solution

Problem 18764

Find the positive critical number of the function f(x)=(x22)3f(x)=(x^{2}-2)^{3}. Round your answer to three decimal places.

See Solution

Problem 18765

Find the volume using cylindrical shells for the region bounded by y=1xy=\frac{1}{x}, y=0y=0, x=1x=1, and x=3x=3.

See Solution

Problem 18766

Evaluate the integral from 4 to 9: 49(6t+4t)dt\int_{4}^{9}(6 \sqrt{t}+4 t) d t.

See Solution

Problem 18767

Estimate f(9.2)f(9.2) using linear approximation given f(9)=6.4f(9)=6.4 and f(9)=7.4f^{\prime}(9)=7.4. Round to three decimal places.

See Solution

Problem 18768

Set up an integral for the volume of the region bounded by y=ln(x)y=\ln(x), y=0y=0, and x=5x=5 about the yy-axis.

See Solution

Problem 18769

Find the volume VV of the solid formed by rotating the area between x=y2x=y^{2} and x=1y2x=1-y^{2} around x=4x=4.

See Solution

Problem 18770

Find the function g(x)g(x) where g(x)=6x53x2+2x6g^{\prime}(x)=6 x^{5}-3 x^{2}+\frac{2}{x}-6 and g(1)=14.g(x)=g(1)=14. g(x)=\square

See Solution

Problem 18771

Calculate the area between f(x)=x2f(x)=x^{2} and the xx-axis from x=2x=2 to x=9x=9 using right-endpoint Riemann sums.

See Solution

Problem 18772

Find the derivative of f(x)=9+3tan1(4.3ln(x))f(x)=9+3 \tan^{-1}(4.3 \ln(x)) and evaluate f(8)f'(8). Round to three decimal places.

See Solution

Problem 18773

Solve the initial value problem (1+x20)y+20x19y=18x20(1+x^{20}) y' + 20 x^{19} y = 18 x^{20} with y(0)=2y(0)=2.

See Solution

Problem 18774

Find the rate of change of area for a circle with radius 8 ft, where the radius increases at 5 ft/s. Round to the nearest thousandth.

See Solution

Problem 18775

Find dydx\frac{d y}{d x} from the equation V=4x2ln(x)+1.4y2.2ln(y)V=-4 x-2 \ln (x)+1.4 y-2.2 \ln (y), then evaluate at x=6x=6, y=2y=2.

See Solution

Problem 18776

Find the asymptotic behavior of a=(n(n+1)n2+4)a=\left(\frac{n(n+1)}{n^{2}+4}\right) as nn \to \infty and check series convergence.

See Solution

Problem 18777

Find the function f(x)f(x) where f(x)=x33x4+2f^{\prime}(x)=x^{3}-3 x^{-4}+2 and f(1)=2f(1)=2. What is f(x)=f(x)=\square?

See Solution

Problem 18778

Find the positive xx-coordinate of the inflection point for f(x)=xexp(x2/4)f(x)=x \exp \left(-x^{2} / 4\right). Round to three decimal places.

See Solution

Problem 18779

Justifiez vos réponses. Calculez les dérivées des fonctions suivantes : a) f(x)=sin(ex)f(x)=\sin \left(e^{x}\right) b) g(x)=e(x2)+3(x2)g(x)=e^{\left(x^{2}\right)}+3^{\left(x^{2}\right)} c) h(x)=πsin(x)+log(cosx)h(x)=\pi^{\sin (x)}+\log (\cos x) d) s(x)=tan2(x2)s(x)=\tan ^{2}\left(x^{2}\right) e) k(x)=arcsin(1x)+arccos(12x)+cos(x)k(x)=\arcsin \left(\frac{1}{x}\right)+\arccos \left(\frac{1}{2 x}\right)+\cos (-x)

See Solution

Problem 18780

Calculate the area between f(x)=x2f(x)=x^{2} and the xx-axis on [2,9][2,9] using right-endpoint Riemann sums.
a. Find Δx\Delta x in terms of nn: Δx=7n\Delta x=\frac{7}{n}
b. Determine right endpoints x1,x2,x3x_{1}, x_{2}, x_{3} in terms of nn: x1,x2,x3=x_{1}, x_{2}, x_{3}=\square
c. General expression for right endpoint xkx_{k}: xk=x_{k}=\square

See Solution

Problem 18781

Prove that the (n+1)th(n+1)^{th} derivative of f(x)g(x)f(x) g(x) follows Pascal's triangle pattern, then show it for the 100th100^{th} derivative.

See Solution

Problem 18782

A conical cup is 20 cm tall and 10 cm radius. Water fills at 16π3V cm3/sec\frac{16 \pi}{3 V} \mathrm{~cm}^{3} / \mathrm{sec}. Find the rise rate when the water is 3 cm deep.

See Solution

Problem 18783

Which two series ensure convergence using the root test?
1. n=1(2n2n+1)2n\sum_{n=1}^{\infty}\left(\frac{2 n}{2 n+1}\right)^{2 n}
2. n=1(3n3n1)n2\sum_{n=1}^{\infty}\left(\frac{3 n}{3 n-1}\right)^{n^{2}}
3. n=1(2arctannπ)n\sum_{n=1}^{\infty}\left(\frac{2 \arctan n}{\pi}\right)^{n}
4. n=1(n4ln2(cos1n)n+1)n\sum_{n=1}^{\infty}\left(\frac{n^{4} \ln ^{2}\left(\cos \frac{1}{n}\right)}{n+1}\right)^{n}
5. n=1(nlnn)n/2\sum_{n=1}^{\infty}\left(\frac{n}{\ln n}\right)^{n / 2}
6. n=1(n+12n1)n\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n-1}\right)^{n}

See Solution

Problem 18784

Determine which two of the following sequences converge:
1. n=1n!(2n)!\sum_{n=1}^{\infty} \frac{n !}{(2 n) !}
2. n=1(n1n+1)n2+n\sum_{n=1}^{\infty}\left(\frac{n-1}{n+1}\right)^{n^{2}+n}
3. n=1135(2n1)n!\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n !}
4. n=1(n22n+1)n\sum_{n=1}^{\infty}\left(\frac{n^{2}}{2 n+1}\right)^{n}
5. n=13nn3\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}}
6. n=1(1+1n2)n3\sum_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)^{n^{3}}
7. n=1n3+1n10+n3\sum_{n=1}^{\infty} \frac{n^{3}+1}{\sqrt[3]{n^{10}+n}}

See Solution

Problem 18785

Determine which two series converge using the root test:
1. n=1(2n2n+1)2n\sum_{n=1}^{\infty}\left(\frac{2 n}{2 n+1}\right)^{2 n}
2. n=1(3n3n1)n2\sum_{n=1}^{\infty}\left(\frac{3 n}{3 n-1}\right)^{n^{2}}
3. n=1(2arctannπ)n\sum_{n=1}^{\infty}\left(\frac{2 \arctan n}{\pi}\right)^{n}
4. n=1(n4ln2(cos1n)n+1)n\sum_{n=1}^{\infty}\left(\frac{n^{4} \ln ^{2}\left(\cos \frac{1}{n}\right)}{n+1}\right)^{n}
5. n=1(nlnn)n/2\sum_{n=1}^{\infty}\left(\frac{n}{\ln n}\right)^{n / 2}
6. n=1(n+12n1)n\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n-1}\right)^{n}

See Solution

Problem 18786

Find the function f(x)f(x) where f(x)=x44x2+3f^{\prime}(x)=x^{4}-4 x^{-2}+3 and f(1)=0f(1)=0. What is f(x)f(x)?

See Solution

Problem 18787

Which two series below diverge according to the ratio test?
1. n=1(n!)2(2n)!\sum_{n=1}^{\infty} \frac{(n !)^{2}}{(2 n) !}
2. n=1(n2)!(2n)!\sum_{n=1}^{\infty} \frac{\left(n^{2}\right) !}{(2 n) !}
3. n=1(n+1)2n(n+1)!\sum_{n=1}^{\infty} \frac{(n+1)^{2 n}}{(n+1) !}
4. n=1n!2n!\sum_{n=1}^{\infty} \frac{n !}{2^{n !}}
5. Series with odd products and denominators.

See Solution

Problem 18788

Find the function ff such that f(t)=sint+8tf^{\prime}(t)=\sin t+8t and f(0)=3f(0)=-3. What is f(t)f(t)?

See Solution

Problem 18789

Find the volume of the solid formed by revolving the area between x=(y4)2x=(y-4)^{2} and x=1x=1 around y=3y=3.

See Solution

Problem 18790

Find the function yy such that dydx=8x(x718)\frac{d y}{d x}=8 x\left(x^{7}-\frac{1}{8}\right) with y(1)=2y(1)=2.

See Solution

Problem 18791

Find the rate of change of a rider's position when 30 m high on a 53 m Ferris wheel completing 3 revolutions in 12 min.

See Solution

Problem 18792

Find the right-endpoint Riemann sum for f(xk)=(2+7kn)2f\left(x_{k}\right)=\left(2+\frac{7 k}{n}\right)^{2} with Δx=7n\Delta x = \frac{7}{n}, then its limit as nn \to \infty.

See Solution

Problem 18793

Find yy where dydx=5x2+3x8+2ex\frac{d y}{d x}=5 x^{2}+3 x-8+2 e^{x} and y(0)=6y(0)=6. What is yy?

See Solution

Problem 18794

Calculate the average value fave f_{\text {ave }} of the function f(z)=e1/zz2f(z)=\frac{e^{1 / z}}{z^{2}} over the interval [3,8].

See Solution

Problem 18795

Calculate the area between f(x)=x2f(x)=x^{2} and the xx-axis from x=2x=2 to x=9x=9 using Riemann sums.

See Solution

Problem 18796

Find the average value favef_{\text{ave}} of f(x)=xf(x)=\sqrt{x} over the interval [0,16][0,16].

See Solution

Problem 18797

Evaluate the integral: (12x3/710x6/7)dx=(\int (12 x^{3/7} - 10 x^{6/7}) \, dx = \square( Type an exact answer. ))

See Solution

Problem 18798

Calculate the area between f(x)=x2f(x)=x^{2} and the xx-axis from x=2x=2 to x=9x=9 using right-endpoint Riemann sums.

See Solution

Problem 18799

Subdivide [2,9][2,9] into nn intervals. Find Δx\Delta x, right endpoints x1,x2,x3x_1, x_2, x_3, and Riemann sum limits.
1. Δx=7n\Delta x=\frac{7}{n}
2. x1=2+7n,x2=2+14n,x3=2+21nx_1=2+\frac{7}{n}, x_2=2+\frac{14}{n}, x_3=2+\frac{21}{n}
3. xk=2+7knx_k=2+\frac{7k}{n}
4. f(xk)=(2+7kn)2f(x_k)=(2+\frac{7k}{n})^2
5. f(xk)Δx=(2+7kn)27nf(x_k) \Delta x=(2+\frac{7k}{n})^2 \cdot \frac{7}{n}
6. Riemann sum: k=1nf(xk)Δx\sum_{k=1}^{n} f(x_k) \Delta x
7. Limit: limnk=1nf(xk)Δx=0\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x=0

See Solution

Problem 18800

Evaluate the integral: (5x3+7x23x+2)dx=(\int(5 x^{3}+7 x^{2}-3 x+2) dx = \square( Type an exact answer. ))

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord