Calculus

Problem 16001

Untersuche die Monotonie, Beschränktheit und Konvergenz der Folge an=n2+1n2+2n+2a_n=\frac{n^{2}+1}{n^{2}+2n+2}. Bestimme den Grenzwert.

See Solution

Problem 16002

Find the absolute max and min of f(x)=x3f(x)=\sqrt[3]{x} on [3,8][-3, 8] using the Closed Interval Method. Show your work.

See Solution

Problem 16003

Find local maxima and minima of f(x)=x3+52x212x1f(x)=x^{3}+\frac{5}{2} x^{2}-12 x-1 using the First Derivative Test. Show your work.

See Solution

Problem 16004

Find QQ given dQdt=1.6 g/s\frac{d Q}{d t}=1.6 \mathrm{~g/s} and Q(0)=100(100010+0)Q(0) = 100 - \left(\frac{1000}{10} +0\right).

See Solution

Problem 16005

Graph g(x)=2x3+8x23g(x)=2 x^{3}+8 x^{2}-3. Find xx-intercepts, local max/min, and intervals of increase/decrease. Round as needed.

See Solution

Problem 16006

Solve for zz in the equation z102xdx=19\int_{z}^{10} 2 x \, dx = 19.

See Solution

Problem 16007

Find the function Q(t)Q(t) given dQdt=1.6 g/s\frac{d Q}{d t}=1.6 \mathrm{~g/s} and Q(0)=100100010Q(0)=100 - \frac{1000}{10}.

See Solution

Problem 16008

Find limt+Q(t)\lim _{t \rightarrow+\infty} Q(t) for Q(t)=100100010+tQ(t)= 100 - \frac{1000}{10+t} and explain the meaning of the result.

See Solution

Problem 16009

Find the critical numbers of the function h(t)=t3/46t1/4h(t)=t^{3/4}-6t^{1/4}. Enter answers as a comma-separated list or DNE.

See Solution

Problem 16010

Find the critical numbers of the function f(x)=x5e6xf(x)=x^{5} e^{-6 x}. Enter answers as a comma-separated list or DNE.

See Solution

Problem 16011

Find the max and min of y=2xe4xy=2 x e^{-4 x} on [0,3][0,3] by checking critical points and endpoints. If none, enter DNE.

See Solution

Problem 16012

A 17 ft ladder leans against a wall. If the top slips down at 4ft/s4 \mathrm{ft} / \mathrm{s}, how fast is the foot moving when the top is 13 ft high? The foot moves at ft/s\square \mathrm{ft} / \mathrm{s}.

See Solution

Problem 16013

Problème :
1. L'azote (N)(\mathrm{N}) et l'hydrogène (H)(\mathrm{H}) forment l'ammoniac avec Q(t)=100100010+tQ(t)=100-\frac{1000}{10+t}. a) Trouvez Q(0)Q(0) et Q(20)Q(20). b) Calculez la variation de QQ sur [10s,20s][10 s, 20 s]. c) Taux de variation moyen sur (i) [10s,20s][10 s, 20 s] (ii) [20s,30s][20 s, 30 s].

See Solution

Problem 16014

Find critical points cc for local minima of the function f(x)=(x24)exf(x)=(x^{2}-4)e^{-x} for x>0x>0.

See Solution

Problem 16015

Given the function f(x)=x432x2+2f(x)=x^{4}-32 x^{2}+2, find where ff is increasing, decreasing, local max/min, inflection points, and concavity.

See Solution

Problem 16016

Determine the inflection points of the function f(x)=2x48x+3f(x)=2 x^{4}-8 x+3.

See Solution

Problem 16017

Determine the concavity intervals for the function f(x)=x312xf(x) = x^3 - 12x.

See Solution

Problem 16018

Calculate the area between the function f(x)f(x) and the xx-axis on the interval [6,2][-6,2].
f(x)={x2+3x+4x<14x+4x1 f(x)=\left\{\begin{array}{ll} x^{2}+3 x+4 & x<1 \\ 4 x+4 & x \geq 1 \end{array}\right.
The area is \square.

See Solution

Problem 16019

Find the inflection points of the function h(x)=(2x25)2h(x)=(2x^{2}-5)^{2}.

See Solution

Problem 16020

Find dydx\frac{d y}{d x} for the curve ey=xe^{y}=x and express your answer in terms of xx.

See Solution

Problem 16021

2. L'azote (N)(\mathrm{N}) et l'hydrogène (H)(\mathrm{H}) forment l'ammoniac avec Q(t)=100100010+tQ(t)=100-\frac{1000}{10+t}.
a) Trouver Q(0)Q(0) et Q(20)Q(20). b) Calculer la variation de QQ sur [10 s,20 s][10 \mathrm{~s}, 20 \mathrm{~s}]. c) Taux de variation moyen sur : (i) [10s,20s][10 s, 20 s] (ii) [20s,30s][20 s, 30 s] d) Évaluer limh0+Q(h+0)Q(0)h\lim _{h \rightarrow 0^{+}} \frac{Q(h+0)-Q(0)}{h}. e) Trouver la fonction de variation de QQ. f) Évaluer : (i) dQdtt=10s\left.\frac{d Q}{d t}\right|_{t=10 s} (ii) dQdtt=1min\left.\frac{d Q}{d t}\right|_{t=1 \min } g) Déterminer l'évolution de QQ et son taux de variation instantané. h) Trouver dQdt\frac{d Q}{d t} lorsque Q=70 gQ=70 \mathrm{~g}.

See Solution

Problem 16022

Find the derivative y(x)y'(x) of y(x)y(x) from the equation cos(x2y)siny=x\cos(x^2 y) - \sin y = x.

See Solution

Problem 16023

Find the power series for f(x)=ln(x2+4)f(x)=\ln(x^{2}+4).

See Solution

Problem 16024

Evaluate the integral from ee to e25e^{25} of 1xln(x)dx\frac{1}{x \sqrt{\ln(x)}} \, dx.

See Solution

Problem 16025

Evaluate the integral: ln(1t)tdt\int \frac{\ln (1-t)}{t} d t

See Solution

Problem 16026

Find the absolute extrema of g(x)=3x424x2g(x) = 3x^4 - 24x^2 on the interval [1,1][-1, 1].

See Solution

Problem 16027

Calculate the integral x3x2+12dx\int x^{3} \sqrt{x^{2}+12} \, dx.

See Solution

Problem 16028

Evaluate the integral: x3x2+12dx\int x^{3} \sqrt{x^{2}+12} \, dx

See Solution

Problem 16029

2. L'azote (N)(\mathrm{N}) et l'hydrogène (H)(\mathrm{H}) forment l'ammoniac avec Q(t)=100100010+tQ(t)=100-\frac{1000}{10+t}.
a) Trouvez Q(0)Q(0) et Q(20)Q(20). b) Calculez la variation de QQ sur [10 s,20 s][10 \mathrm{~s}, 20 \mathrm{~s}]. c) Trouvez le taux de variation moyen sur [10s,20s][10 s, 20 s] et [20s,30s][20 s, 30 s]. d) Évaluez limh0+Q(h+0)Q(0)h\lim _{h \rightarrow 0^{+}} \frac{Q(h+0)-Q(0)}{h} et interprétez. e) Déterminez la fonction du rythme de variation de QQ. f) Évaluez dQdtt=10s\left.\frac{d Q}{d t}\right|_{t=10 s} et dQdtt=1 min\left.\frac{d Q}{d t}\right|_{t=1 \mathrm{~min}}. g) Analysez la tendance de QQ et de son taux de variation lorsque tt augmente. h) Trouvez dQdt\frac{d Q}{d t} pour Q=70 gQ=70 \mathrm{~g}. i) Déterminez QQ pour dQdt=1,6 g/s\frac{d Q}{d t}=1,6 \mathrm{~g} / \mathrm{s}. j) Évaluez limt+Q(t)\lim _{t \rightarrow+\infty} Q(t) et interprétez. k) Tracez les graphiques de QQ et dQdt\frac{d Q}{d t}.

See Solution

Problem 16030

Calculate the area between the function f(x)f(x) and the xx-axis over the interval [5,4][-5, 4].

See Solution

Problem 16031

Find the derivative dy/dxd y / d x for the function y=sec1(x)+csc1(x)y=\sec^{-1}(x) + \csc^{-1}(x).

See Solution

Problem 16032

Find the second derivative of f(x)=x29+xf(x)=\frac{x^{2}}{9+x} and evaluate f(0)f^{\prime \prime}(0) and f(5)f^{\prime \prime}(5).

See Solution

Problem 16033

Find the derivative dydx\frac{d y}{d x} for the function y=tan1(6x21)y=\tan^{-1}(\sqrt{6 x^{2}-1}).

See Solution

Problem 16034

Find the second derivative f(x)f^{\prime \prime}(x) of f(x)=2x33x2+3x+2f(x)=2 x^{3}-3 x^{2}+3 x+2. Then calculate f(0)f^{\prime \prime}(0) and f(7)f^{\prime \prime}(7).

See Solution

Problem 16035

Evaluate the integral: 5xcos(8x)dx\int 5 x \cos (8 x) \, dx. Use the constant C C for the integration constant.

See Solution

Problem 16036

Find ff where f(x)=2xf^{\prime}(x)=\frac{2}{\sqrt{x}} and f(16)=25f(16)=25.

See Solution

Problem 16037

Find the antiderivative of C(x)=2x23xC^{\prime}(x)=2 x^{2}-3 x with C(0)=4,000C(0)=4,000.

See Solution

Problem 16038

Find the limit as x x approaches infinity:
limx(3x)5(4x2+1)2(8+x2x)2(7+x)(32x)2 \lim _{x \rightarrow \infty} \frac{(3-x)^{5}\left(4 x^{2}+1\right)^{2}}{\left(8+x^{2}-x\right)^{2}(7+x)(3-2 x)^{2}}

See Solution

Problem 16039

Find the point of diminishing returns (x,y)(x, y) for the revenue function R(x)=11,000x3+42x2+800xR(x)=11,000-x^{3}+42 x^{2}+800 x, where 0x200 \leq x \leq 20.

See Solution

Problem 16040

Find the curve equation through (2,3)(2,3) with slope dydx=3x7\frac{dy}{dx}=3x-7.

See Solution

Problem 16041

Sketch the graph of a function ff with these properties: f(0)=0f(0)=0, f(3)=f(4)=0f'(-3)=f'(4)=0, f(<0)f'(<0) on (3,0)(-3,0) and (0,4)(0,4), f(<0)f'(<0) on (,3)(-\infty,-3) and (4,)(4,\infty), f(<0)f''(<0) on (,0)(-\infty,0), f(>0)f''(>0) on (0,)(0,\infty).

See Solution

Problem 16042

Find the limit: limx(9x2+8x+3x)\lim _{x \rightarrow-\infty}\left(\sqrt{9 x^{2}+8 x}+3 x\right).

See Solution

Problem 16043

Find the point of diminishing returns (x,y)(x, y) for R(x)=0.6x3+2.7x2+7xR(x)=-0.6 x^{3}+2.7 x^{2}+7 x. Round the answer to two decimal places.

See Solution

Problem 16044

Find the initial velocity and velocity after 6 seconds for v(t)=58(1e0.18t)v(t)=58(1-e^{-0.18 t}). Round to the nearest whole number.

See Solution

Problem 16045

Find the point of diminishing returns (x,y)(x, y) for the revenue function R(x)=11,000x3+39x2+800xR(x) = 11,000 - x^3 + 39x^2 + 800x, 0x200 \leq x \leq 20.

See Solution

Problem 16046

Find the net area and the area above the xx-axis for the region bounded by y=4x2y=4-x^{2}. Set up the integral(s) needed.

See Solution

Problem 16047

Find an antiderivative of f(x)=x+1xf(x)=\sqrt{x}+\frac{1}{x}. Choose from the given options.

See Solution

Problem 16048

Let f(x)f(x) be a continuous function. Identify all true statements about its antiderivative F(x)F(x).

See Solution

Problem 16049

Find critical points of f(x)=sin1(x)7xf(x)=\sin^{-1}(x)-7x for 1<x<1-1<x<1. List them as a comma-separated list or DNE if none exist.

See Solution

Problem 16050

Find the area function A(x)=0x3costdtA(x)=\int_{0}^{x} 3 \cos t \, dt, graph f(x)f(x) and A(x)A(x), then evaluate A(π2)A(\frac{\pi}{2}) and A(π)A(\pi).

See Solution

Problem 16051

Find the min and max of y=x+x210xy=\sqrt{x+x^{2}}-10\sqrt{x} on [0,4][0,4]. minimum: maximum:

See Solution

Problem 16052

A particle starts at s(0)=3s(0)=3, v(0)=5v(0)=5, with a(t)=10sint+3costa(t)=10 \sin t+3 \cos t. Order steps to find s(7)s(7).

See Solution

Problem 16053

Bestimme die Ableitung von f(x)=5x3f(x) = \frac{5}{x^{3}}.

See Solution

Problem 16054

Find critical points of f(x)=xx2+36f(x)=\frac{x}{x^{2}+36}. List them as a comma-separated list or enter DNE if none exist.

See Solution

Problem 16055

Find the area function A(x)=0x3sintdtA(x)=\int_{0}^{x} 3 \sin t \, dt, graph f(x)f(x) and A(x)A(x), then evaluate A(π2)A(\frac{\pi}{2}) and A(π)A(\pi).

See Solution

Problem 16056

Evaluate the improper integral 0812(x1/3)dx\int_{0}^{8} \frac{1}{2\left(x^{1 / 3}\right)} d x and determine if it converges or diverges.

See Solution

Problem 16057

Find the equilibria of the fish population model Nt+1=2Nt1+Nt100N_{t+1}=\frac{2 N_{t}}{1+\frac{N_{t}}{100}} and their stability. Choose A, B, C, or D.

See Solution

Problem 16058

Which Type 1 Improper Integrals CONVERGE? Choose all that apply: 21xdx\int_{2}^{\infty} \frac{1}{x} dx, 51x9dx\int_{5}^{\infty} \frac{1}{x^{9}} dx, 41x1/3dx\int_{4}^{\infty} \frac{1}{x^{1/3}} dx, 1x3dx\int_{1}^{\infty} x^{3} dx, xsin(x2)dx\int^{\infty} x \sin(x^{2}) dx.

See Solution

Problem 16059

Evaluate the integral: 2xe9xdx\int 2 x e^{-9 x} d x

See Solution

Problem 16060

Find the value of 15g(x)dx\int_{-1}^{5} g(x) d x given that the area between f(x)f(x) and g(x)g(x) is 6 and 15f(x)dx=2\int_{-1}^{5} f(x) d x=2.

See Solution

Problem 16061

Given the function f(x)=(x+4)(x1)2f(x)=(x+4)(x-1)^{2}, find critical values, intervals of increase/decrease, local max/min, concavity, and inflection points.

See Solution

Problem 16062

For what value(s) of constant aa is the integral a3xx23x+2dx\int_{a}^{3} \frac{x}{x^{2}-3 x+2} d x improper?

See Solution

Problem 16063

Find the value(s) of pp for which the integral 151xpdx\int_{1}^{5} \frac{1}{x-p} d x is improper.

See Solution

Problem 16064

Find the derivative of f(Nt)=1+Nt100f(N_{t})=\overline{1+\frac{N_{t}}{100}}.

See Solution

Problem 16065

Which statement is TRUE by the Comparison Test?
1. e102xxdx\int_{e^{10}}^{\infty} \frac{2^{x}}{x} dx diverges.
2. e10lnxx2dx\int_{e^{10}}^{\infty} \frac{\ln x}{x^{2}} dx diverges.
3. 1cosxxdx\int_{1}^{\infty} \frac{\cos x}{x} dx converges.

See Solution

Problem 16066

Find the derivative of the function g(s)=9s(tt9)5dtg(s)=\int_{9}^{s}(t-t^{9})^{5} dt. What is g(s)g'(s)?

See Solution

Problem 16067

Find the partial derivative fyf_{y} of the function f(x,y)=yxcos(t6)dtf(x, y)=\int_{y}^{x} \cos(t^{6}) dt.

See Solution

Problem 16068

Find the derivative of the function h(x)=1ex9ln(t)dth(x)=\int_{1}^{e^{x}} 9 \ln (t) dt. What is h(x)h^{\prime}(x)?

See Solution

Problem 16069

Find the 100th derivative of f(x)=xexf(x)=x e^{-x}. What is f(100)(x)f^{(100)}(x)?

See Solution

Problem 16070

Find the 100th derivative of f(x)=xexf(x)=x e^{-x}. What is f(100)(x)=f^{(100)}(x)=?

See Solution

Problem 16071

Find the 100th derivative of the function f(x)=xexf(x)=x e^{-x}. What is f(100)(x)f^{(100)}(x)?

See Solution

Problem 16072

Find the derivative of y=cos(x)sin(x)ln(3+9v)dvy=\int_{\cos (x)}^{\sin (x)} \ln (3+9 v) \, dv, denoted as g(x)=g'(x)=\square.

See Solution

Problem 16073

Find the derivative of the function y=43x+7t1+t3dty=\int_{4}^{3x+7} \frac{t}{1+t^{3}} dt.

See Solution

Problem 16074

Given a(t)=t+6a(t)=t+6, v(0)=4v(0)=4, 0t110 \leq t \leq 11, find v(t)v(t) and the distance traveled in this interval.

See Solution

Problem 16075

Evaluate the integral: 7x2sinπxdx\int 7 x^{2} \sin \pi x \, dx

See Solution

Problem 16076

Show that the vector field F=2xy2+1i2y(x2+1)(y2+1)2j\mathbf{F}=\frac{2 x}{y^{2}+1} \mathbf{i}-\frac{2 y\left(x^{2}+1\right)}{\left(y^{2}+1\right)^{2}} \mathbf{j} is conservative. Calculate CFdr\int_{C} \mathbf{F} \cdot d \mathbf{r} for the curve C:x=t35,y=t6t,0t1C: x=t^{3}-5, y=t^{6}-t, 0 \leq t \leq 1.

See Solution

Problem 16077

Evaluate the line integral using Green's Theorem: Ce6x+5ydx+e3ydy\oint_{C} e^{6 x+5 y} dx + e^{-3 y} dy, where CC is the triangle with vertices (0,0),(1,0),(1,1)(0,0),(1,0),(1,1).

See Solution

Problem 16078

Find the distance traveled by a particle with acceleration a(t)=t+6a(t)=t+6 and initial velocity v(0)=4v(0)=4 from t=0t=0 to t=11t=11.

See Solution

Problem 16079

Evaluate the integral from ee to e36e^{36} of 1xln(x)dx\frac{1}{x \sqrt{\ln(x)}} \, dx.

See Solution

Problem 16080

Evaluate the integral: (x+2)4x+x2dx\int(x+2) \sqrt{4 x+x^{2}} \, dx (use CC for the constant).

See Solution

Problem 16081

Evaluate the line integral C5+x3dx+6xydy\int_{C} \sqrt{5+x^{3}} d x+6 x y d y using Green's theorem for triangle CC with vertices (0,0),(1,0),(1,4)(0,0),(1,0),(1,4).

See Solution

Problem 16082

Evaluate the integral using Cauchy's residue theorem: Cz+1z2(z6i)dz\oint_{C} \frac{z+1}{z^{2}(z-6 i)} d z for contours (a) z=1|z|=1, (b) z6i=1|z-6 i|=1, and (c) z6i=36|z-6 i|=36.

See Solution

Problem 16083

Evaluate the integrals using Cauchy's residue theorem for the given contours:
17. C1(z1)(z+2)2dz\oint_{C} \frac{1}{(z-1)(z+2)^{2}} d z for (a) z=12|z|=\frac{1}{2}, (b) z=32|z|=\frac{3}{2}, (c) z=3|z|=3.
18. Cz+1z2(z2i)dz\oint_{C} \frac{z+1}{z^{2}(z-2 i)} d z for (a) z=1|z|=1, (b) z2i=1|z-2 i|=1, (c) z2i=4|z-2 i|=4.
19. Cz3e1/z2dz\oint_{C} z^{3} e^{-1 / z^{2}} d z for (a) z=5|z|=5, (b) z+i=2|z+i|=2, (c) z3=1|z-3|=1.
20. C1zsinzdz\oint_{C} \frac{1}{z \sin z} d z for (a) z2i=1|z-2 i|=1, (b) z2i=3|z-2 i|=3, (c) z=5|z|=5.

See Solution

Problem 16084

Evaluate the line integral C5+x3dx+6xydy\int_{C} \sqrt{5+x^{3}} d x+6 x y d y over triangle CC with vertices (0,0),(1,0)(0,0),(1,0), and (1,4)(1,4).

See Solution

Problem 16085

Calculate the curl of the vector field F(x,y,z)=x5i+y5j+z5k\mathbf{F}(x, y, z)=x^{5} \mathbf{i}+y^{5} \mathbf{j}+z^{5} \mathbf{k}.

See Solution

Problem 16086

Estimate 0121x+3dx\int_{0}^{12} \frac{1}{x+3} dx using a left-hand sum with n=3n=3. Round to three decimal places.

See Solution

Problem 16087

Analyze the curve f(x)=x4x2f(x)=\frac{x-4}{x^{2}}: find its domain, intercepts, symmetry, derivatives, asymptotes, and intervals of increase/decrease/concavity.

See Solution

Problem 16088

Estimate 040f(x)dx\int_{0}^{40} f(x) d x using left- and right-hand sums for the increasing function f(x)f(x).

See Solution

Problem 16089

Approximate the volume change of a sphere as its radius goes from r=70ftr=70 \mathrm{ft} to r=70.1ftr=70.1 \mathrm{ft} using V(r)=43πr3V(r)=\frac{4}{3} \pi r^{3}. Find ΔVft3\Delta V \approx \square \mathrm{ft}^{3}.

See Solution

Problem 16090

Rewrite yy for differentiation and find yy^{\prime} for: (a) y=ln(x342)ey=\frac{\ln \left(\frac{\sqrt[4]{x^{3}}}{2}\right)}{e}; (b) y=7xln(ex2)y=7^{x} \ln \left(e x^{2}\right). Approximate ln(0.9)\ln(0.9) and ln(1.1)\ln(1.1) using tangent lines.

See Solution

Problem 16091

Find the value of 16f(x)dx\int_{1}^{6} f(x) \, dx for the function f(x)f(x) defined by the points (1, 1), (2, 2), (3, 1), (4, 2), (5, 2), (6, 2).

See Solution

Problem 16092

Estimate 00.5ex2dx\int_{0}^{0.5} e^{-x^{2}} d x using n=5n=5 rectangles for (a) Left-hand sum and (b) Right-hand sum. Round to three decimal places.

See Solution

Problem 16093

Find the value of 16f(x)dx\int_{1}^{6} f(x) \, dx for the function f(x)f(x) with points: (1,1)(1,1), (2,2)(2,2), (3,1)(3,1), (4,2)(4,2), (5,2)(5,2), (6,2)(6,2).

See Solution

Problem 16094

Rewrite yy for differentiation and find yy^{\prime} without simplifying. Show your work. (a) y=ln(x342)ey=\frac{\ln \left(\frac{\sqrt[4]{x^{3}}}{2}\right)}{e} (b) y=7xln(ex2)y=7^{x} \ln \left(e x^{2}\right) Approximate ln(0.9)\ln (0.9) and ln(1.1)\ln (1.1) using tangent line and sketch your work.

See Solution

Problem 16095

Find the position of a particle at time t=2t=2 given a(t)=2,3a(t)=\langle 2,3\rangle, v(0)=3,1v(0)=\langle 3,1\rangle, p(0)=1,5p(0)=\langle 1,5\rangle.

See Solution

Problem 16096

Evaluate the integral: 5lnx3dx\int 5 \ln \sqrt[3]{x} \, dx

See Solution

Problem 16097

Find the initial population P(0)P(0) and the population P(8)P(8) after 8 years for P(t)=4001+2e0.2tP(t)=\frac{400}{1+2 e^{-0.2 t}}.

See Solution

Problem 16098

Find the yy-coordinate of a particle's position at time t=2t=2 given dxdt=cost2\frac{d x}{d t}=\cos t^{2}, dydt=et2\frac{d y}{d t}=e^{t-2}, starting at (1,2)(1,2) at t=3t=3.

See Solution

Problem 16099

Find the derivative of f(x)=8x2+6xln(x)+1f(x) = 8x^2 + 6x \ln(x) + 1.

See Solution

Problem 16100

Find the domain of f(x)=ln(x)xf(x)=\ln (x)-x, classify critical points, and determine where ff is concave up or down.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord