Calculus
Problem 16001
Untersuche die Monotonie, Beschränktheit und Konvergenz der Folge . Bestimme den Grenzwert.
See SolutionProblem 16002
Find the absolute max and min of on using the Closed Interval Method. Show your work.
See SolutionProblem 16003
Find local maxima and minima of using the First Derivative Test. Show your work.
See SolutionProblem 16005
Graph . Find -intercepts, local max/min, and intervals of increase/decrease. Round as needed.
See SolutionProblem 16009
Find the critical numbers of the function . Enter answers as a comma-separated list or DNE.
See SolutionProblem 16010
Find the critical numbers of the function . Enter answers as a comma-separated list or DNE.
See SolutionProblem 16011
Find the max and min of on by checking critical points and endpoints. If none, enter DNE.
See SolutionProblem 16012
A 17 ft ladder leans against a wall. If the top slips down at , how fast is the foot moving when the top is 13 ft high? The foot moves at .
See SolutionProblem 16013
Problème :
1. L'azote et l'hydrogène forment l'ammoniac avec .
a) Trouvez et .
b) Calculez la variation de sur .
c) Taux de variation moyen sur
(i)
(ii) .
See SolutionProblem 16015
Given the function , find where is increasing, decreasing, local max/min, inflection points, and concavity.
See SolutionProblem 16018
Calculate the area between the function and the -axis on the interval .
The area is .
See SolutionProblem 16021
2. L'azote et l'hydrogène forment l'ammoniac avec .
a) Trouver et .
b) Calculer la variation de sur .
c) Taux de variation moyen sur :
(i)
(ii)
d) Évaluer .
e) Trouver la fonction de variation de .
f) Évaluer :
(i)
(ii)
g) Déterminer l'évolution de et son taux de variation instantané.
h) Trouver lorsque .
See SolutionProblem 16029
2. L'azote et l'hydrogène forment l'ammoniac avec .
a) Trouvez et .
b) Calculez la variation de sur .
c) Trouvez le taux de variation moyen sur et .
d) Évaluez et interprétez.
e) Déterminez la fonction du rythme de variation de .
f) Évaluez et .
g) Analysez la tendance de et de son taux de variation lorsque augmente.
h) Trouvez pour .
i) Déterminez pour .
j) Évaluez et interprétez.
k) Tracez les graphiques de et .
See SolutionProblem 16041
Sketch the graph of a function with these properties: , , on and , on and , on , on .
See SolutionProblem 16043
Find the point of diminishing returns for . Round the answer to two decimal places.
See SolutionProblem 16044
Find the initial velocity and velocity after 6 seconds for . Round to the nearest whole number.
See SolutionProblem 16046
Find the net area and the area above the -axis for the region bounded by . Set up the integral(s) needed.
See SolutionProblem 16048
Let be a continuous function. Identify all true statements about its antiderivative .
See SolutionProblem 16049
Find critical points of for . List them as a comma-separated list or DNE if none exist.
See SolutionProblem 16054
Find critical points of . List them as a comma-separated list or enter DNE if none exist.
See SolutionProblem 16057
Find the equilibria of the fish population model and their stability. Choose A, B, C, or D.
See SolutionProblem 16061
Given the function , find critical values, intervals of increase/decrease, local max/min, concavity, and inflection points.
See SolutionProblem 16065
Which statement is TRUE by the Comparison Test?
1. diverges.
2. diverges.
3. converges.
See SolutionProblem 16077
Evaluate the line integral using Green's Theorem: , where is the triangle with vertices .
See SolutionProblem 16078
Find the distance traveled by a particle with acceleration and initial velocity from to .
See SolutionProblem 16081
Evaluate the line integral using Green's theorem for triangle with vertices .
See SolutionProblem 16082
Evaluate the integral using Cauchy's residue theorem: for contours (a) , (b) , and (c) .
See SolutionProblem 16083
Evaluate the integrals using Cauchy's residue theorem for the given contours:
17. for (a) , (b) , (c) .
18. for (a) , (b) , (c) .
19. for (a) , (b) , (c) .
20. for (a) , (b) , (c) .
See SolutionProblem 16087
Analyze the curve : find its domain, intercepts, symmetry, derivatives, asymptotes, and intervals of increase/decrease/concavity.
See SolutionProblem 16089
Approximate the volume change of a sphere as its radius goes from to using . Find .
See SolutionProblem 16090
Rewrite for differentiation and find for: (a) ; (b) . Approximate and using tangent lines.
See SolutionProblem 16091
Find the value of for the function defined by the points (1, 1), (2, 2), (3, 1), (4, 2), (5, 2), (6, 2).
See SolutionProblem 16092
Estimate using rectangles for (a) Left-hand sum and (b) Right-hand sum. Round to three decimal places.
See SolutionProblem 16094
Rewrite for differentiation and find without simplifying. Show your work. (a) (b) Approximate and using tangent line and sketch your work.
See SolutionProblem 16098
Find the -coordinate of a particle's position at time given , , starting at at .
See SolutionProblem 16100
Find the domain of , classify critical points, and determine where is concave up or down.
See Solution123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337