Calculus

Problem 30001

Find the stationary points of the function y=13x3x215x9y=\frac{1}{3} x^{3}-x^{2}-15 x-9. Options: x=5,x=3x=5, x=3; x=5,x=3x=5, x=-3; x=5,x=3x=-5, x=3; x=5,x=3x=-5, x=-3.

See Solution

Problem 30002

Consider the function f(x)=x21+x+x2f(x)=\frac{x^{2}}{1+x+x^{2}} for x>2x > -2. (a) Does ff have a maximum? (YES / NO) (b) Does ff have a minimum? (YES / NO) (c) For which xx is ff decreasing?

See Solution

Problem 30003

Find fyyf_{y y} for the function z=elnx(x2y2)z=e^{\ln x}(x^{2}-y^{2}).

See Solution

Problem 30004

Find the maximum value of f(x)=x2+2x3x2+1f(x)=\frac{x^{2}+2 x-3}{x^{2}+1} at its stationary point: 1+5-1+\sqrt{5}, 1+51+\sqrt{5}, 2, or 252-\sqrt{5}.

See Solution

Problem 30005

Find the derivative of y=e2xlne2xy=e^{2-x} \ln e^{\sqrt{2 x}}. Simplify first.

See Solution

Problem 30006

Consider the function f(x)=x21+x+x2f(x)=\frac{x^{2}}{1+x+x^{2}} for x>2x > -2. Does it have a maximum (YES/NO), a minimum (YES/NO), and where is it decreasing?

See Solution

Problem 30007

Evaluate the integral: 18tan2xsec2x(2+tan3x)2dx\int \frac{18 \tan ^{2} x \sec ^{2} x}{\left(2+\tan ^{3} x\right)^{2}} d x

See Solution

Problem 30008

Find the values of xRx \in \mathbb{R} for which f(x)=n=0e2nxf(x)=\sum_{n=0}^{\infty} e^{-2 n x} is defined, and compute f(x)f^{\prime}(x).

See Solution

Problem 30009

Determine the nature of the function z=x2+xyy27z=-x^{2}+xy-y^{2}-7: max z=7z=-7, min z=0z=0, saddle z=8z=8, max z=0z=0.

See Solution

Problem 30010

Find the incorrect statement for extreme values of z=xyz=xy with constraint x2+2y2=1x^{2}+2y^{2}=1: y=±12y= \pm \frac{1}{2}, x=±22x= \pm \frac{\sqrt{2}}{2}, z=±2z= \pm 2, λ=±24\lambda= \pm \frac{\sqrt{2}}{4}.

See Solution

Problem 30011

Find the derivative of y=x312x+4y=x^{3}-12 x+4, find turning points AA and BB, and the tangent at C(1,7)C(1,-7) in y=px+qy=p x+q form.

See Solution

Problem 30012

Find the extreme value of z=49x2y2z=49-x^{2}-y^{2} subject to x+3y=10x+3y=10. Which statement about the extrema is correct?

See Solution

Problem 30013

Calculate the value of ab(ex+1x)\int_{a}^{b}\left(e^{x}+\frac{1}{x}\right). Choose the correct expression from the options.

See Solution

Problem 30014

Evaluate the integral 10x3x4+9dx\int_{-1}^{0} \frac{x^{3}}{\sqrt{x^{4}+9}} d x.

See Solution

Problem 30015

Find the tangent line to the function yln(2xy)+x2y7x2+16=0y \ln (2 x-y)+x^{2} y-7 x^{2}+16=0 at the point (2,3).

See Solution

Problem 30016

Find the slope of the tangent line to y=F(x)y=F(x) at x=3x=3, where F(x)=2xe1/tdtF(x)=\int_{2}^{x} e^{1/t} dt.

See Solution

Problem 30017

Berechne die Ableitung der Funktion f(x)=0,5x2+4xf(x)=-0,5 x^{2}+4 x an der Stelle x=3x=3 mit der hh-Methode.

See Solution

Problem 30018

Berechne f(3) f^{\prime}(3) für die Funktion f(x)=0,5x2+4x f(x)=-0,5x^2+4x mit dem Differenzenquotienten.

See Solution

Problem 30019

Evaluate the integral: 14dy2y(1+y)2\int_{1}^{4} \frac{d y}{2 \sqrt{y}(1+\sqrt{y})^{2}}

See Solution

Problem 30020

Find the derivative of the function y=3x+92xy=\frac{3x+9}{2-x}.

See Solution

Problem 30021

Calculate the integral 24dxxlnx\int_{2}^{4} \frac{d x}{x \ln x}.

See Solution

Problem 30022

Calculate the limit: limx1e11x2\lim _{x \rightarrow-1^{-}} e^{\frac{-1}{1-x^{2}}}. If it doesn't exist, state that.

See Solution

Problem 30023

Find the integral of 1x2\frac{1}{x^{2}} with respect to xx.

See Solution

Problem 30024

Find the integral of x3+5x2\frac{x^{3}+5}{x^{2}} with respect to xx.

See Solution

Problem 30025

Calculate the integral 12x4x2dx\int_{1}^{2} \frac{x-4}{x^{2}} d x.

See Solution

Problem 30026

Find the derivative: ddx(02xln(t3+1)dt)\frac{d}{d x}\left(\int_{0}^{2 x} \ln \left(t^{3}+1\right) d t\right) for x>0x>0.

See Solution

Problem 30027

Calculate the integral from -1 to 3 of the function x22xx^{2}-2x. What is 13(x22x)dx\int_{-1}^{3}\left(x^{2}-2 x\right) d x?

See Solution

Problem 30028

Find F(x)F^{\prime}(x) if F(x)=4x2tdtF(x)=\int_{4}^{x^{2}} \sqrt{t} dt for x>0x>0.

See Solution

Problem 30029

Determine if the series n=1cos(n)n2\sum_{n=1}^{\infty} \frac{\cos (n)}{n^{2}} converges or diverges.

See Solution

Problem 30030

Find the limit: limnln(4n2+a2n2+1)2n21\lim _{n \rightarrow \infty} \ln \left(\frac{4 n^{2}+a}{2 n^{2}+1}\right) \cdot 2 n^{2}-1.

See Solution

Problem 30031

A ball is dropped from a height of 3.5 m3.5 \mathrm{~m}. Calculate the time it takes to hit the sidewalk.

See Solution

Problem 30032

A stone is thrown upward at 20.0 m/s20.0 \mathrm{~m/s} from a 50.0 m50.0 \mathrm{~m} building. Find its velocity after 5.00 s5.00 \mathrm{~s}.

See Solution

Problem 30033

Find the radius of convergence for the series n=1(3n(n!)2(2n)!)xn\sum_{n=1}^{\infty}\left(\frac{3^{n}(n !)^{2}}{(2 n) !}\right) x^{n}.

See Solution

Problem 30034

Find points where the tangent line to y=f(x)=exxy=f(x)=\sqrt{e^{x}-x} is horizontal and the tangent line at (1,e1)(1, \sqrt{e-1}).

See Solution

Problem 30035

Find the speed of a roller coaster at points B, C, and D, starting from 120 m high with g=10 m/s2g=10 \mathrm{~m/s}^2.

See Solution

Problem 30036

Găsiți valoarea marginală și elasticitatea cererii pentru funcțiile: Q=a+bp Q = a + b \cdot p , Q=aep Q = a \cdot e^{p} , Q=apb+p Q = \frac{a p}{b + p} , Q=6+8p+3p2 Q = 6 + 8 p + 3 p^{2} , Q=32+p3+p Q = 3 \cdot \frac{2 + p}{3 + p} .

See Solution

Problem 30037

Determine the intervals where the function is increasing, given its max of 6 at x=3x=3 and min of -2 at x=5x=-5.

See Solution

Problem 30038

A paint brush falls from a ladder. How do its velocity and acceleration change? Choose two answers for each.

See Solution

Problem 30039

Studiați funcția de cerere C(p)=5002pC(p)=500-2p. Determinați elasticitatea EC(5)E_{C}(5) și analizați elasticitatea cererii.

See Solution

Problem 30040

Find T1(x),T2(x),,T5(x)T_{1}(x), T_{2}(x), \ldots, T_{5}(x) for f(x)=exf(x)=e^{x} at a=1a=1.

See Solution

Problem 30041

Gegeben ist die Funktion f(t)=21,15tf(t) = 2 \cdot 1,15^{t}. Zeichne den Graphen für 0t80 \leq t \leq 8 und berechne die mittlere Änderungsrate für die Intervalle [0;2][0; 2] und [5;8][5; 8].

See Solution

Problem 30042

Find the max at x=3x=3, min at x=5x=-5. Identify intervals of increase/decrease, domain, and range of the function.

See Solution

Problem 30043

Fie funcția R(p)=pC(p)R(p)=p \cdot C(p). Arătați că: a) dacă cererea e elastică, RR e descrescătoare; b) dacă e inelastică, RR e crescătoare. Indiciu: R(p)=C(p)(1Ec(p))R^{\prime}(p)=C(p)(1-E_{c}(p)).

See Solution

Problem 30044

Calculați derivatele parțiale pentru funcțiile date în punctele (1, 1) și (1, 1, 1).

See Solution

Problem 30045

Calculate the integral π/4π/2cottdt\int_{\pi / 4}^{\pi / 2} \cot t \, dt.

See Solution

Problem 30046

Find the average rate of change of g(x)=5x32g(x)=-5 x^{3}-2 from x=4x=-4 to x=3x=3.

See Solution

Problem 30047

Calculați derivatele parțiale pentru funcțiile date în punctele (1,1)(1,1) și (1,1,1)(1,1,1). Răspunsuri incluse.

See Solution

Problem 30048

Gegeben ist die Funktion f(t)=21,15tf(t)=2 \cdot 1,15^{t}. a) Zeichne den Graphen für 0t80 \leq t \leq 8. b) Berechne die mittlere Änderungsrate für die Intervalle [0;2][0 ; 2] und [5;8][5 ; 8].

See Solution

Problem 30049

Find the average rate of change of g(x)=7x3+5x2g(x)=7x^{3}+\frac{5}{x^{2}} on the interval [2,1][-2,1].

See Solution

Problem 30050

Find the value of c for which limx2f(x)\lim _{x \rightarrow 2} f(x) exists, where f(x)={12x+c,x<2x+9,x>2f(x)=\begin{cases} \frac{1}{2} x+c, & x<2 \\ -x+9, & x>2 \end{cases}.

See Solution

Problem 30051

Evaluate the integral: sinθθcos3θdθ\int \frac{\sin \sqrt{\theta}}{\sqrt{\theta \cos ^{3} \sqrt{\theta}}} d \theta

See Solution

Problem 30052

Bestimmen Sie die Ableitung der Funktion y=13(x36x2+1)y=\frac{1}{3}(x^{3}-6 x^{2}+1).

See Solution

Problem 30053

Bestimmen Sie die erste Ableitung von y=(4x2)(x7)y=(4 x-2)(x-7).

See Solution

Problem 30054

Find the simplified difference quotient for f(x)=x2f(x)=x^{2} and complete the table for x=5x=5 and various hh values. f(x+h)f(x)h=\frac{f(x+h)-f(x)}{h}=

See Solution

Problem 30055

Find the difference quotient for f(x)=x2f(x)=x^{2} and fill in the table for x=5x=5 and various hh values.

See Solution

Problem 30056

(a) Simplify the difference quotient for f(x)=x2f(x)=x^{2}. (b) Complete the table for x=5x=5 and various hh values.

See Solution

Problem 30057

(a) Simplify the difference quotient for f(x)=5x2f(x)=-5x^{2} and (b) complete the table for x=3x=3 and various hh values.

See Solution

Problem 30058

Calculați productivitățile marginale pentru funcțiile de producție la punctul (1,1,2)(1,1,2): (a) f(x,y,z)=3x2y4z3f(x, y, z)=3 x^{2} y^{4} z^{3}, (b) f(p,q,r)=4p2qrf(p, q, r)=4 p^{2} \sqrt{q} r, (c) f(x,y,z)=2x+y5zf(x, y, z)=2 x+y-5 z.

See Solution

Problem 30059

(a) Simplify the difference quotient for f(x)=5x+2f(x)=-5x+2. (b) Complete the table for x=4x=4 and various hh values.

See Solution

Problem 30060

Find the tangent line equation for f(x)=4xf(x)=\frac{4}{x} at the point (8,12)\left(-8,-\frac{1}{2}\right). Use y=y=\square.

See Solution

Problem 30061

Find the tangent line to f(x)=x3f(x)=x^{3} at the point (2,8)(2,8). The equation is y=y=\square.

See Solution

Problem 30062

Finde die Tangentengleichung der Funktion f(x)=x25x+4+2ln(x)f(x) = x^2 - 5x + 4 + 2\ln(x) bei x=1x = 1.

See Solution

Problem 30063

Find the tangent line equation for f(x)=33x2f(x)=-3-3 x^{2} at the point (5,78)(-5,-78). It's y=y=\square in terms of x\mathrm{x}.

See Solution

Problem 30064

Find the tangent line to f(x)=2xf(x)=\frac{2}{x} at the point (9,29)\left(9, \frac{2}{9}\right). The equation is y=y=\square.

See Solution

Problem 30065

Find the tangent line equation to f(x)=42x2f(x)=4-2 x^{2} at the point (4,28)(4,-28). The equation is y=y=\square.

See Solution

Problem 30066

Find the limit: limh0(1+2(a+h)2)3(1+2a2)3h\lim _{h \rightarrow 0} \frac{\left(1+2(a+h)^{2}\right)^{3}-\left(1+2 a^{2}\right)^{3}}{h}. Options: a. 12a(1+2a2)212 a\left(1+2 a^{2}\right)^{2}, b. 4a(1+2a2)24 a\left(1+2 a^{2}\right)^{2}, c. (1+2a2)3\left(1+2 a^{2}\right)^{3}, d. None.

See Solution

Problem 30067

Find the tangent line equation for f(x)=2x3f(x)=2 x^{3} at the point (2,16)(-2,-16). The equation is y=y=\square.

See Solution

Problem 30068

Find the derivative f(x)f^{\prime}(x) using f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} for f(x)=2x2f(x)=2x^2 and calculate f(6)f^{\prime}(6).

See Solution

Problem 30069

Calculaţi derivatele parţiale de ordinul 1, 2 şi 3 pentru funcţiile: (a) f(x,y)=2x2y4f(x, y)=2 x^{2} y^{4} la a=(2,2)a=(-2,2); (b) f(x,y)=2xyf(x, y)=2 \sqrt{x} y la a=(1,1)a=(1,1).

See Solution

Problem 30070

Find the derivative f(x)f^{\prime}(x) of the function f(x)=53xf(x)=\frac{5}{3-x}.

See Solution

Problem 30071

Find the derivative f(x)f^{\prime}(x) of the function f(x)=4x2f(x)=4 x^{2}.

See Solution

Problem 30072

Find the derivative g(t)g^{\prime}(t) of the function g(t)=9t4g(t)=\frac{9}{t^{4}}.

See Solution

Problem 30073

Find the derivative H(x)H^{\prime}(x) of the function H(x)=3x+1H(x)=\frac{3}{\sqrt{x+1}}.

See Solution

Problem 30074

Find the derivative g(t)g^{\prime}(t) of the function g(t)=2t3g(t)=\frac{2}{t^{3}}. What is g(t)=?g^{\prime}(t)=?

See Solution

Problem 30075

Find the derivative f(x)f^{\prime}(x) of the function f(x)=11x4f(x)=11 x^{4}.

See Solution

Problem 30076

Find the derivative H(x)H^{\prime}(x) of the function H(x)=9x+2H(x)=\frac{9}{\sqrt{x+2}}.

See Solution

Problem 30077

Find f(5)f^{\prime}(5) using f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} for f(x)=6x2f(x)=6 x^{2}.

See Solution

Problem 30078

Graph f(x)=2x6f(x)=|2x-6| and find limx3f(x)\lim_{x \to 3} f(x) and limx1f(x)\lim_{x \to 1} f(x). State if any limit does not exist.

See Solution

Problem 30079

Find the derivative f(x)f^{\prime}(x) of the function f(x)=26xf(x)=\frac{2}{6-x}.

See Solution

Problem 30080

Gegeben sind die Funktionen f1(t)=100e0,2tf_{1}(t)=100 e^{-0,2 t} und f2(t)=10050e0,4tf_{2}(t)=100-50 e^{-0,4 t}. Bestimme die Ableitungen und deren Graphen.

See Solution

Problem 30081

Znajdź promień zbieżności szeregu potęgowego n=1(1+1n)n2xn.\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}} x^{n}.

See Solution

Problem 30082

Find f(g(x))f(g'(x)) for f(x)=12xf(x)=1-2x and g(x)=3x2xg(x)=3x^2-x. What is the result? A. 16x2x1-6x^2-x B. (6x22x1)-(6x^2-2x-1) C. 12x210x+212x^2-10x+2 D. (6x2+2x+1)-(6x^2+2x+1) E. 6x3+5x2x-6x^3+5x^2-x

See Solution

Problem 30083

Find the derivative of (7x25)10(7x^2 - 5)^{10} with respect to xx.

See Solution

Problem 30084

Graph g(x)=x23g(x)=x^{2}-3 and find limx1g(x)\lim _{x \rightarrow-1} g(x) and limx2g(x)\lim _{x \rightarrow-2} g(x).

See Solution

Problem 30085

Graph the function F(x)={3x+11 for x<4;x for x4}F(x)=\{3x+11 \text{ for } x<-4; x \text{ for } x \geq-4\} and find the limits at x=4x=-4.

See Solution

Problem 30086

Berechnen Sie die Ableitung der Funktion C(x)=(7x25)10C(x) = (7x^2 - 5)^{10}.

See Solution

Problem 30087

Berechne die Grenzwerte von k(x)k(x) und h(x)h(x) für große xx. Ab wann ist das Kunststoffleitwerk günstiger?

See Solution

Problem 30088

Calculate the limit: limh0(1h13)2=\lim _{h \rightarrow 0}\left(\frac{1}{h^{\frac{1}{3}}}\right)^{2}=

See Solution

Problem 30089

Graph f(x)=x2f(x)=|x-2| and find limx2f(x)\lim _{x \rightarrow 2} f(x) and limx2f(x)\lim _{x \rightarrow-2} f(x). Limit may not exist.

See Solution

Problem 30090

Find the derivative f(x)f^{\prime}(x) of the function f(x)=49x2f(x)=\frac{4}{9 x^{2}}.

See Solution

Problem 30091

Graph the function g(x)=x28g(x)=x^{2}-8 and find the limits: limx2g(x)\lim _{x \rightarrow 2} g(x) and limx3g(x)\lim _{x \rightarrow-3} g(x).

See Solution

Problem 30092

Calculați derivatele parțiale de ordinul 1, 2 și 3 pentru funcțiile date și valorile lor în punctele specificate.

See Solution

Problem 30093

Find the derivative of the function y=5x32+8x12+x67y=5 x^{-\frac{3}{2}}+8 x^{-\frac{1}{2}}+x^{6}-7. What is y=?y^{\prime}=?

See Solution

Problem 30094

Graph the function F(x)={3x8,x<2x,x2F(x)=\begin{cases} 3x-8, & x<2 \\ x, & x \geq 2 \end{cases} and find limx2F(x)\lim_{x \to 2^{-}} F(x), limx2+F(x)\lim_{x \to 2^{+}} F(x), limx2F(x)\lim_{x \to 2} F(x).

See Solution

Problem 30095

Calculați derivatele parțiale de ordin 1, 2 și 3 pentru funcțiile date la punctele specificate.

See Solution

Problem 30096

Find the average rate of change of f(x)=2xf(x)=\sqrt{2 x} from x=2x=2 to x=8x=8. Options: a. 16 b. 12 c. 60 d. 13\frac{1}{3}

See Solution

Problem 30097

Find the derivative of x58x\sqrt[5]{x} - \frac{8}{x}. What is ddx(x58x)\frac{d}{d x}\left(\sqrt[5]{x}-\frac{8}{x}\right)?

See Solution

Problem 30098

Differentiate the function: y=x44xy=\frac{x}{4}-\frac{4}{x}. Find ddx(x44x)\frac{d}{dx}\left(\frac{x}{4}-\frac{4}{x}\right).

See Solution

Problem 30099

Calculaţi derivatele parţiale 1, 2 şi 3 pentru funcţiile: (c) f(x,y)=3x52xy2+y3f(x, y)=3 x^{5}-2 x y^{2}+y^{3} la a=(2,1)a=(2,1); (d) f(x,y)=x3y+xy3f(x, y)=x^{3} y+x y^{3} la a=(1,1)a=(-1,1); (e) f(x,y)=2xyyxf(x, y)=\frac{2 x}{y}-\frac{y}{\sqrt{x}} la a=(1,1)a=(1,1).

See Solution

Problem 30100

Find the derivative of y=x11y = x^{-11} with respect to xx: dydx=\frac{d y}{d x} =

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord