Calculus

Problem 26401

Find the limit limx1xexex1\lim _{x \rightarrow 1} \frac{x e^{x}-e}{x-1} using L'Hopital's rule. Choose (A) e-e, (B) 2e2 e, (C) ee, or (D) 1.

See Solution

Problem 26402

Find the limit: limx+2x2+x5x23\lim _{x \rightarrow+\infty} \frac{2 x^{2}+x-5}{x^{2}-3}. Choose from (A) 23-\frac{2}{3}, (B) 2, (C) 1, (D) 53\frac{5}{3}.

See Solution

Problem 26403

A plane is at 4 km4 \mathrm{~km} altitude and traveling at 500 m/s500 \mathrm{~m/s}.
a) When does the bomb hit the ground? b) What is its final velocity?

See Solution

Problem 26404

Bestimme die Tangentengleichung der Funktion f(x)=x3f(x) = x^{3} bei a=2a = 2.

See Solution

Problem 26405

Find the limit as xx approaches -6 for the expression 2x2+12xx+6\frac{2 x^{2}+12 x}{x+6}.

See Solution

Problem 26406

Find the second derivative of f(x)=1sinxf(x)=\frac{1}{\sin x}. Which is correct: (A) f(x)=1cos2xsin3xf^{\prime \prime}(x)=\frac{1-\cos ^{2} x}{\sin ^{3} x}, (B) f(x)=1+cos2xsin3xf^{\prime \prime}(x)=\frac{1+\cos ^{2} x}{\sin ^{3} x}, (C) f(x)=1+2cos2xsin3xf^{\prime \prime}(x)=\frac{1+2 \cos ^{2} x}{\sin ^{3} x}, or (D) f(x)=12cos2xsin3xf^{\prime \prime}(x)=\frac{1-2 \cos ^{2} x}{\sin ^{3} x}?

See Solution

Problem 26407

Find the limit as xx approaches 6 from the left for 2xx236\frac{2x}{x^2 - 36}. What is the value?

See Solution

Problem 26408

Find the derivatives of the following functions:
a) f(x)=2x3+5x2f(x) = 2x^3 + 5x^2, d) f(x)=0.25x4x3f(x) = 0.25x^4 - x^3, 8) f(x)=15x53x32f(x) = \frac{1}{5}x^5 - 3x^3 - 2.

See Solution

Problem 26409

Given f(1)=3f(1) = 3, find g(3)g'(3) where gg is the inverse of ff. Options: (A) 113\frac{1}{13} (B) 14\frac{1}{4} (C) 1 (D) 4 (E) 13.

See Solution

Problem 26410

Given the table of values for a function ff and its derivative, find g(3)g^{\prime}(3) where gg is the inverse of ff. Choices: (A) 113\frac{1}{13} (B) 14\frac{1}{4} (C) 1 (D) 4 (E) 13

See Solution

Problem 26411

Find the value of bb in the tangent line equation y=ax+by=ax+b for y=x3y=\sqrt[3]{x} at x=8x=8.

See Solution

Problem 26412

Evaluate the limit as xx approaches π4\frac{\pi}{4}: limxπ4tanx1xπ4\lim_{x \to \frac{\pi}{4}} \frac{\tan x - 1}{x - \frac{\pi}{4}}.

See Solution

Problem 26413

Find the derivative h(2)h'(2) for h(x)=16f(x)g(x)h(x) = 16 f(x) - g(x) given f(2)=5f(2) = 5, g(2)=8g(2) = -8, f(2)=18f'(2) = \frac{1}{8}, g(2)=5g'(2) = -5.

See Solution

Problem 26414

Find the sum of the series: k=1(49)k\sum_{k=1}^{\infty}\left(-\frac{4}{9}\right)^{k}.

See Solution

Problem 26415

Find dy/dxdy/dx for cos(xy)=y1\cos(xy) = y - 1 at x=π/2x = \pi/2, y=1y = 1. Options: (A) 22π\frac{-2}{2-\pi} (B) 22+π\frac{-2}{2+\pi} (C) 0 (D) 22π\frac{2}{2-\pi} (E) 22+π\frac{2}{2+\pi}.

See Solution

Problem 26416

Given that g(x)=f1(x)g(x)=f^{-1}(x), find g(4)g^{\prime}(4) using values from the table. Options: (A) 13-\frac{1}{3}, (B) 14-\frac{1}{4}, (C) 3100-\frac{3}{100}, (D) 14\frac{1}{4}, (E) 13\frac{1}{3}.

See Solution

Problem 26417

Find dydx\frac{d y}{d x} for the equation x3+3xy+2y3=17x^{3}+3 x y+2 y^{3}=17. Choose from options (A) to (E).

See Solution

Problem 26418

Find w(0)w'(0) for w(x)=3f(x)g(x)w(x) = 3 f(x) g(x) given f(0)=3f(0) = 3, g(0)=2g(0) = -2, f(0)=12f'(0) = \frac{1}{2}, g(0)=3g'(0) = 3.

See Solution

Problem 26419

Find g(3)g^{\prime}(3) for g(x)=f1(x)g(x)=f^{-1}(x) given f(3)=15f(3)=15, f(6)=3f(6)=3, f(3)=8f^{\prime}(3)=-8, f(6)=2f^{\prime}(6)=-2.

See Solution

Problem 26420

Find dydx\frac{d y}{d x} for the equation 3x2+2xy+y2=13 x^{2}+2 x y+y^{2}=1. Choose the correct option from (A) to (E).

See Solution

Problem 26421

Is it true or false that the function f(x)f(x) defined as
f(x)={16x4,x<6x2,x=63x,x>6 f(x)=\left\{\begin{array}{ll} \frac{1}{6} x-4, & x<6 \\ -\frac{x}{2}, & x=6 \\ 3-x, & x>6 \end{array}\right.
satisfies limx6f(x)=limx6+f(x)=f(6)\lim _{x \rightarrow 6^{-}} f(x)=\lim _{x \rightarrow 6^{+}} f(x)=f(6)?

See Solution

Problem 26422

Find the value of cc such that 0<c<20 < c < 2 and g(x)=πg(x) = -\pi given the conditions for g(x)g(x) and its derivatives.

See Solution

Problem 26423

Find the derivative of y=tan1(3x)y=\tan^{-1}(3x) at x=1x=1: what is y(1)y'(1)?

See Solution

Problem 26424

Find the derivative of the function f(x)f(x) given that ddxf(x)=ddx2x\frac{d}{dx}f(x) = \frac{d}{dx}2^{x}.

See Solution

Problem 26425

For 0<c<20<c<2, what must be true for g(x)=πg(x)=-\pi regarding continuity and differentiability?

See Solution

Problem 26426

Bestimmen Sie die Ableitung der Funktionen: a) f(x)=x5f(x)=x^{-5}, b) f(x)=3x4f(x)=3x^{-4}, c) f(x)=13x6f(x)=-\frac{1}{3}x^{-6}, d) f(x)=x4x+1/x3f(x)=x^{4}-x+1/x^{3}.

See Solution

Problem 26427

Find dydx\frac{dy}{dx} for exyy2=e4e^{xy} - y^2 = e - 4 at x=12x = \frac{1}{2}, y=2y = 2. Options: (A) e4\frac{e}{4}, (B) e2\frac{e}{2}, (C) 4e8e\frac{4e}{8-e}, (D) 4e4e\frac{4e}{4-e}, (E) 84ee\frac{8-4e}{e}.

See Solution

Problem 26428

Sand forms a pile with volume V=r33V=\frac{r^{3}}{3}. If circumference increases at 5π5\pi ft/hr, find dV/dtdV/dt when circumference is 8π8\pi.

See Solution

Problem 26429

A sphere's cross-sectional area increases at 2 cm2/sec2 \mathrm{~cm}^{2} / \mathrm{sec}. Find the volume change rate when r=4 cmr=4 \mathrm{~cm}.

See Solution

Problem 26430

Ein Superheld schießt aus der Höhe f(x)=30e0,1x+52f(x)=30 e^{-0,1 x}+52 auf den Schurken in P(3052)P(30|52).
a) Bestimme die Projektilfunktion. b) Höhe beim Schuss: 56,06m56,06 m. c) Finde die Funktion g(x)=abx+60g(x)=a \cdot b^{x}+60 für den Weg von Q(4052,55)Q(40|52,55) nach R(700)R(70|0).

See Solution

Problem 26431

Find the derivative of the inverse function at 5, using (f1)(y)=1f(x) \left(f^{-1}\right)^{\prime}(y) = \frac{1}{f^{\prime}(x)} .

See Solution

Problem 26432

Find the rate of change of fuel consumption F(s)=6e(20s22m0)F(s)=6 e^{\left(\frac{\cdot}{20}-\frac{s^{2}}{2 m 0}\right)} at s=50s=50 mph, ds/dt=20ds/dt=20 mph2^2. Choices: (A) 0.215 (B) 4.299 (C) 9.793 (D) 25.793 (E) 515.855.

See Solution

Problem 26433

Find the rate of change of fuel consumption F(s)=6e(120222000)F(s)=6 e^{\left(\frac{1}{20}-\frac{2^{2}}{2000}\right)} at 50 mph with s=20s' = 20 mph².

See Solution

Problem 26434

Find dydx\frac{d y}{d x} at the point where x=1x=-1 for the equation x3x2y+y2=11x^{3}-x^{2} y+y^{2}=11.

See Solution

Problem 26435

Find the rate of change of fuel consumption F(s)=6e(s20s22000)F(s)=6 e^{\left(\frac{s}{20}-\frac{s^{2}}{2000}\right)} at s=50s=50 mph with ds/dt=20ds/dt=20 mph².

See Solution

Problem 26436

Find (f1)(5)\left(f^{-1}\right)^{\prime}(5) given f(0)=3f(0)=3, f(1)=4f(1)=4, f(2)=5f(2)=5, f(0)=12f'(0)=\frac{1}{2}, f(1)=14f'(1)=\frac{1}{4}, f(2)=18f'(2)=\frac{1}{8}.

See Solution

Problem 26437

1. For the bird's height h(t)h(t), explain what h(4)=2h^{\prime}(4)=2 means in context.
2. For university enrollment s(t)s(t), explain s(2.5)=370s^{\prime}(2.5)=370 in context.

See Solution

Problem 26438

In a triangle, if θ\theta increases at 3 radians/min, how fast is xx increasing when x=3x=3 units? Hypotenuse is 5.

See Solution

Problem 26439

Find the area increase rate when the circumference is 20π20 \pi m, with radius growing at 0.2 m/s. Options: (A) 0.04πm2/sec0.04 \pi \mathrm{m}^{2}/\mathrm{sec} or 0.4πm2/sec0.4 \pi \mathrm{m}^{2}/\mathrm{sec}.

See Solution

Problem 26440

Finde die Stelle, an der die Steigung der Funktion f(x)=x9f(x)=x^{9} gleich 9 ist. Gib nur eine Lösung an.

See Solution

Problem 26441

1. Interpret h(4)=2h^{\prime}(4)=2: At 4 seconds, the bird ascends at 2 meters/second.
2. Interpret s(2.5)=370s^{\prime}(2.5)=370: At 2.5 years, student enrollment increases by 370/year.
3. Interpret f(10)=27f^{\prime}(10)=27: At 10 minutes, the submarine descends at 27 feet/minute.
4. Interpret s(7)=10,000s^{\prime}(7)=10,000: On day 7, stock sales increase by 10,000 stocks/day.
5. Interpret w(20)=100w^{\prime}(20)=-100: At 20 seconds, water flow decreases by 100 gallons/second.

See Solution

Problem 26442

1. For h(t)h(t), h(4)=2h^{\prime}(4)=2 means the bird ascends at 2 m/s at 4 seconds.
2. For s(t)s(t), s(2.5)=370s^{\prime}(2.5)=370 means enrollment increases by 370 students/year at 2.5 years.
3. For f(t)f(t), interpret f(10)=27f^{\prime}(10)=27 as the submarine descends at 27 ft/min at 10 minutes.
4. For s(d)s(d), s(7)=10,000s^{\prime}(7)=10,000 means 10,000 stocks are sold per day at 7 days.

See Solution

Problem 26443

Evaluate the integral: 0exdx\int_{0}^{\infty} e^{-x} dx

See Solution

Problem 26444

Bestimme die Tangentengleichung von f(x)=x6f(x)=x^{6} bei x0=2x_{0}=2.

See Solution

Problem 26445

Finde die Stelle, an der die Steigung des Graphen von f(x)=x4f(x)=x^{4} gleich 3232 ist.

See Solution

Problem 26446

Evaluate the integral: 02x2+4x+3dx\int_{0}^{\infty} \frac{2}{x^{2}+4 x+3} d x

See Solution

Problem 26447

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for y=1x34x5+3xy=\frac{1}{x^{3}}-4 x^{5}+3 x. Simplify first!

See Solution

Problem 26448

Calculate the average rate of change of f(x)=3x+2f(x)=\frac{3}{x+2} from x=1x=1 to x=4x=4. Options: A. -28 B. 16-\frac{1}{6} C. -2 D. 12\frac{1}{2}

See Solution

Problem 26449

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for y=1x34x5+3xy=\frac{1}{x^{3}}-4 x^{5}+3 x and dydx=y3x2\frac{d y}{d x}=y^{3} x^{2}.

See Solution

Problem 26450

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for y=1x34x5+3xy=\frac{1}{x^{3}}-4 x^{5}+3 x and dydx=y3x2\frac{d y}{d x}=y^{3} x^{2}.

See Solution

Problem 26451

Determine if the particle with velocity v(t)=tsin3(5t)v(t)=t \sin^{3}(5t) at t=2t=2 is speeding up or slowing down.

See Solution

Problem 26452

What are the units of the derivative R(t)R'(t) if R(t)R(t) is in gallons/hour? Options: 1) 12-\frac{1}{2} 2) 0.6530.653 3) 38\frac{3}{8} 4) 34-\frac{3}{4}

See Solution

Problem 26453

Find the second derivative: 1. For f(x)=x53+xf(x)=x^{\frac{5}{3}}+x, calculate f(8)f^{\prime \prime}(8). 2. For dydx=y2(34x)\frac{d y}{d x}=y^{2}(3-4 x), find d2ydx2\frac{d^{2} y}{d x^{2}} at (1,12)\left(1, \frac{1}{2}\right).

See Solution

Problem 26454

Strontium-85 has a half-life of 65 days.
a. How long for radiation to drop to 14\frac{1}{4} of its original level? b. How long for radiation to drop to 18\frac{1}{8} of its original level?

See Solution

Problem 26455

How long does it take for an oscillation's amplitude to drop from 80 cm80 \mathrm{~cm} to 5 cm5 \mathrm{~cm} in 4 seconds?

See Solution

Problem 26456

A roller coaster starts at 2.5 m/s2.5 \mathrm{~m/s} at 25 m25 \mathrm{~m}. Find its speed at 20 m20 \mathrm{~m}, 10 m10 \mathrm{~m}, and ground level.

See Solution

Problem 26457

Berechne die Ableitung von f(x)=xe2x f(x) = x e^{2-x} mit der Produktregel. Was ist f(x) f'(x) ?

See Solution

Problem 26458

A satellite of mass m=1371 kgm=1371 \mathrm{~kg} falls from R=3.8R=3.8 Earth radii. Find its speed before hitting Earth.

See Solution

Problem 26459

Find the maximum acceleration of an object in simple harmonic motion given x=2.70sin(0.413t+2.38)x=2.70 \sin(0.413 t + 2.38).

See Solution

Problem 26460

Find the limit: limx2x2+5x+6x+2\lim _{x \rightarrow-2} \frac{x^{2}+5 x+6}{x+2}

See Solution

Problem 26461

Find the limit: limx2x+22x2\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2}.

See Solution

Problem 26462

A 0.422 kg mass on a 0.303 m string swings with a 6.96° amplitude. Find the maximum speed of the mass.

See Solution

Problem 26463

Find the intervals where the function gg is decreasing, given f(x)=4xf(x)=4-x and g(x)=f(x)f(x)(x2)g'(x)=f(x) f'(x)(x-2).

See Solution

Problem 26464

Calculate the curve length for x=5sint+5tx=5 \sin t + 5 t, y=5costy=5 \cos t, where 0tπ0 \leq t \leq \pi.

See Solution

Problem 26465

Find the value of d2ydx2\frac{d^{2} y}{d x^{2}} at t=1t=1 where x=6t23x=6 t^{2}-3 and y=t3y=t^{3}.

See Solution

Problem 26466

Find limx2+f(x)\lim _{x \rightarrow-2^{+}} f(x) for the piecewise function: f(x)={2x+7,x<2x212,x2f(x)=\begin{cases}2 x+7, & x<-2 \\ -\frac{x}{2}-\frac{1}{2}, & x \geq-2\end{cases}.

See Solution

Problem 26467

Find the tangent line equation to the curve at t=3π4t=\frac{3 \pi}{4} for x=7sintx=7 \sin t, y=7costy=7 \cos t.

See Solution

Problem 26468

Find if the water in the gutter is increasing or decreasing at t=4t=4 hours using G(t)=10sin(t230)G(t)=10 \sin \left(\frac{t^{2}}{30}\right) and D(t)=0.02t3+0.05t2+0.87tD(t)=-0.02 t^{3}+0.05 t^{2}+0.87 t.

See Solution

Problem 26469

Bestimme die Tangentengleichung der Funktion f(x)=1xf(x) = \frac{1}{x} bei a=3a = -3.

See Solution

Problem 26470

Find the tangent line to f(x)=x+9f(x)=\sqrt{x+9} with slope 14\frac{1}{4}.

See Solution

Problem 26471

How many years does it take for an investment to double at a continuous growth rate of 14%14\%? Round to one decimal place.

See Solution

Problem 26472

Find the slope of the curve r=53cosθr=5-3 \cos \theta at θ=π2\theta=\frac{\pi}{2}.

See Solution

Problem 26473

Determine which statements about a continuous function f(x)f(x) on [a,b][a, b] are NOT necessarily true: I, II, III.

See Solution

Problem 26474

Given the function v(t)=t35t2+6tv(t)=t^{3}-5 t^{2}+6 t on [0,5][0,5], find when motion is positive/negative, displacement, and distance traveled.

See Solution

Problem 26475

What continuous compounding rate is needed to triple an investment in 7 years? Find the rate as %\square \%.

See Solution

Problem 26476

Definieren Sie eine Stammfunktion und nennen Sie drei Beispiele dafür.

See Solution

Problem 26477

Calculate the curve length for r=3secθr=3 \sec \theta where 0θπ40 \leq \theta \leq \frac{\pi}{4}.

See Solution

Problem 26478

Determine which statements about a differentiable function ff are true: I, II, or III. Options include combinations of these statements.

See Solution

Problem 26479

If f(x)f(x) is continuous on [3,7][-3,7] and differentiable on (3,7)(-3,7) with f(3)=4f(-3)=4 and f(7)=2f(7)=2, find cc such that f(c)=1/5f'(c)=1/5, f(c)=1/5f'(c)=-1/5, f(c)=5f'(c)=5, f(c)=5f'(c)=-5, or f(c)=0f(c)=0.

See Solution

Problem 26480

Find the derivative of the integral: ddx3x4(lnt)2dt\frac{d}{d x} \int_{3 x}^{4}(\ln t)^{2} d t. What is the result?

See Solution

Problem 26481

Find the linearization L(x)L(x) of f(x)=x2x+8f(x)=\frac{x}{2x+8} at x=0x=0.

See Solution

Problem 26482

Find dy/dt for y=t7(t3+8)5y=t^{7}(t^{3}+8)^{5}.

See Solution

Problem 26483

Find local min, max, absolute min, max, and inflection points for y=2x3+15x2+24xy=2x^{3}+15x^{2}+24x on [6,2][-6,2]. Use first and second derivative tests.

See Solution

Problem 26484

Find the average value of 3x3x over the interval [1,5][1, 5]. Options: 36, 9, 4, 18, 3.

See Solution

Problem 26485

Finde die Stammfunktion von f(x)=x25+2f(x) = \frac{x^2}{5} + 2.

See Solution

Problem 26486

Solve the differential equation dydx=1x3+x\frac{d y}{d x}=\frac{1}{x^{3}}+x for x>0x>0 with the initial condition y(3)=2y(3)=2.

See Solution

Problem 26487

Given the function v(t)=t35t2+6tv(t)=t^{3}-5 t^{2}+6 t for t[0,5]t \in [0,5], find when the motion is positive/negative, displacement, and distance.

See Solution

Problem 26488

Finde die Stammfunktion von f(x)=6x2+2f(x) = \frac{6}{x^{2}} + 2.

See Solution

Problem 26489

Berechne den Flächeninhalt unter der Funktion f(x)=x25+1f(x)=\frac{x^{2}}{5}+1 im Intervall [0;4][0;4].

See Solution

Problem 26490

Berechne den Flächeninhalt der Funktion f(x)=32x+1f(x)=\frac{3}{2} \sqrt{x}+1 im Intervall [1;4][1;4].

See Solution

Problem 26491

Berechne den Flächeninhalt von f(x)=4x2+1f(x)=\frac{4}{x^{2}}+1 im Intervall [2;3][2;3].

See Solution

Problem 26492

A child has a 20 m20 \mathrm{~m} string for a kite. The angle with the ground decreases by 55^{\circ}/s. Find horizontal speed at 7676^{\circ}.

See Solution

Problem 26493

Berechne das Wasser im oberen Becken um 12:18, wenn die Durchflussrate durch f(t)=6t3120t2+240t+1800f(t)=6 t^{3}-120 t^{2}+240 t+1800 gegeben ist und zu Beginn 20000 m320000 \mathrm{~m}^{3} vorhanden sind.

See Solution

Problem 26494

Finde die Stammfunktion von f(t)=6t3120t2+180t+2400f(t) = 6t^3 - 120t^2 + 180t + 2400.

See Solution

Problem 26495

Calculate the integral from 0 to π2\frac{\pi}{2} of xSin(2x)x \operatorname{Sin}(2 x).

See Solution

Problem 26496

Finde die Stammfunktion von f(t)=36t3288t2+540tf(t) = 36t^3 - 288t^2 + 540t.

See Solution

Problem 26497

Find the left and right limits of f(x)f(x) as xx approaches 1 and state the limit if it exists.
f(x)={x1, if x1x3, if x=1 f(x)=\left\{\begin{array}{ll} |x|-1, & \text { if } x \neq 1 \\ x^{3}, & \text { if } x=1 \end{array}\right.

See Solution

Problem 26498

Bestimmen Sie die Ableitungen für: a) f(x)=x3f(x)=x^{3}, b) f(x)=x5f(x)=x^{5}, c) f(x)=x2nf(x)=x^{2 n}, d) f(x)=xf(x)=x, e) f(x)=xn+4f(x)=x^{n+4}, f) f(x)=x2016f(x)=x^{2016}.

See Solution

Problem 26499

Use a graphing tool to find the left and right limits of f(x)f(x) as xx approaches 1. State the limit or DNE.
f(x)={x1, if x1x3, if x=1 f(x)=\left\{\begin{array}{ll} |x|-1, & \text { if } x \neq 1 \\ x^{3}, & \text { if } x=1 \end{array}\right.
limx1f(x)=limx1+f(x)=limx1f(x)= \lim _{x \rightarrow 1^{-}} f(x)= \\ \lim _{x \rightarrow 1^{+}} f(x)= \\ \lim _{x \rightarrow 1} f(x)=

See Solution

Problem 26500

Bestimme den Benzinverbrauch eines Autos auf 50 km mit v(s)=0,0000006s3+0,00006s20,0017s+0,06v(s) = -0,0000006 s^{3} + 0,00006 s^{2} - 0,0017 s + 0,06.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord