Calculus

Problem 8101

Show that if f(x)=tan(x)f(x)=\tan(x), then f(x)=sec2(x)f'(x)=\sec^2(x) using the definition of the derivative directly.

See Solution

Problem 8102

Bestimmen Sie die Bedingungen für Wendepunkte und notieren Sie alternative hinreichende Bedingungen.

See Solution

Problem 8103

For f(x)=(3x1)(5x+3)f(x)=(3 x-1)(5 x+3), compare the derivative using the product rule vs. expanding and using the power rule.

See Solution

Problem 8104

Find the derivative dydx\frac{d y}{d x} for the function y=6x31xy=\frac{6 x^{3}-1}{x}.

See Solution

Problem 8105

Find the derivative of y=sinxcosxy=\sin x \cos x. What is dydx\frac{d y}{d x}?

See Solution

Problem 8106

A rock dropped from a bridge takes 5 seconds to hit water. What is its velocity before impact? A) 5 m/s5 \mathrm{~m/s} B) 2 m/s2 \mathrm{~m/s} C) 50 m/s50 \mathrm{~m/s} D) 125 m/s125 \mathrm{~m/s}

See Solution

Problem 8107

Find the derivative of y=(2t21)(3t+4)y=(2t^2-1)(3t+4). Which of the following is correct? y=18t2+16t4y' = 18t^2 + 16t - 4 y=16t2+18t3y' = 16t^2 + 18t - 3 y=8t2+16t3y' = 8t^2 + 16t - 3 y=18t2+16t3y' = 18t^2 + 16t - 3 y=15t2+20t5y' = 15t^2 + 20t - 5

See Solution

Problem 8108

A rock falls from rest. How far has it fallen when its speed is 39.2 m/s? (Neglect friction.) A) 19.6 m19.6 \mathrm{~m} B) 44.1 m44.1 \mathrm{~m} C) 78.3 m78.3 \mathrm{~m} D) 123 m123 \mathrm{~m}

See Solution

Problem 8109

Prove the mean residual-life function: e(x)=xS(t)dtS(x)\mathrm{e}(\mathrm{x})=\frac{\int_{x}^{\infty} S(t) d t}{S(x)}, with S(t)S(t) as the survival function.

See Solution

Problem 8110

Find the rate of change of the area of a rectangle with length 6t+56t + 5 and height t\sqrt{t} over time tt.

See Solution

Problem 8111

Gegeben ist die Funktion f(x)=(x1)e0,5xf(x)=(x-1)e^{-0,5x}. Finde die Tangente an der Nullstelle und prüfe ihre Eigenschaften.

See Solution

Problem 8112

Gegeben ist die Funktion f(x)=(x1)e0,5xf(x)=(x-1) \cdot e^{-0,5 x}. Bestimme die Tangentengleichung g\mathrm{g} an der Nullstelle x0\mathrm{x}_{0}.

See Solution

Problem 8113

Find the derivative of y=7sin(sin(sinx))y=-7 \sin (\sin (\sin x)).

See Solution

Problem 8114

Differentiate the function f(x)=ln(e7x+6)f(x)=\ln(e^{7x}+6). Find f(x)f^{\prime}(x).

See Solution

Problem 8115

Untersuchen Sie das Verhalten der Funktion 1x\frac{1}{x} für x+x \to +\infty und xx \to -\infty.

See Solution

Problem 8116

Untersuchen Sie das Verhalten von 2x22^{x-2} für xx \to \infty.

See Solution

Problem 8117

Differentiate the function g(x)=ln(xe8x)g(x)=\ln(x e^{-8x}). Find g(x)g^{\prime}(x).

See Solution

Problem 8118

Find the derivative f(x)f^{\prime}(x) of the function f(x)=11xsin(x)+cos(x)f(x)=\frac{-11 x}{\sin (x)+\cos (x)} at x=πx=-\pi.

See Solution

Problem 8119

Geben Sie Gegenbeispiele für die falschen Aussagen a), b) und c) über die Monotonie und Krümmung von ff.

See Solution

Problem 8120

Untersuche das Verhalten der Funktionen für xx \rightarrow-\infty und x+x \rightarrow+\infty: a) f(x)=2x54x2+3f(x)=-2 x^{5}-4 x^{2}+3 b) f(x)=3x4+2x2+x+10f(x)=3 x^{4}+2 x^{2}+x+10 c) f(x)=1x2f(x)=\frac{1}{x^{2}} d) f(x)=3x3f(x)=3^{x-3}

See Solution

Problem 8121

Find the missing expression to complete: ddxex8+7=ex8+7?\frac{\mathrm{d}}{\mathrm{dx}} e^{\mathrm{x}^{8}+7}=e^{\mathrm{x}^{8}+7} ?

See Solution

Problem 8122

Find the derivative f(x)f^{\prime}(x) of the function f(x)=xex2f(x)=\frac{x}{e^{x^{2}}}.

See Solution

Problem 8123

Find the derivative yy' for y=(8+7x3x2)exy=(8+7x-3x^2)e^x and simplify.

See Solution

Problem 8124

Berechnen Sie die dritte Ableitung von k(x)=250xe0.5x+20k(x)=250 x \cdot e^{-0.5 x}+20.

See Solution

Problem 8125

Find the rectangle with the largest area under the parabola y=8x2y=8-x^{2}, with its base on the xx-axis.

See Solution

Problem 8126

Find the tangent line equation for f(x)=19ex+8xf(x)=19 e^{x}+8 x at x=0x=0. What is y=y=?

See Solution

Problem 8127

Nach einem Brand steigt die PFT-Konzentration im See. Berechne mit k(x)=250xe0,5x+20k(x)=250 x \cdot e^{-0,5 x}+20 verschiedene Werte.

See Solution

Problem 8128

Use the Intermediate Value Theorem to show there's a root for x4+x4=0x^{4}+x-4=0 in (1,2)(1,2). Calculate f(1)f(1) and f(2)f(2).

See Solution

Problem 8129

Find derivatives from the given data:
a) If h(x)=f(3x)h(x)=f(3x), then h(2)=15h'(2)=15. b) If y=f(x2+2)y=f(x^2+2), find yx=1y'|_{x=1}.

See Solution

Problem 8130

Determine the end behavior of the function f(x)=162+18x26x3+54xf(x) = -162 + 18x^{2} - 6x^{3} + 54x.

See Solution

Problem 8131

Find the derivative f(a)f^{\prime}(a) for the function f(t)=2t+4t+3f(t)=\frac{2 t+4}{t+3}.

See Solution

Problem 8132

Find the derivative of the function f(x)=ex2f(x)=e^{x^{2}}.

See Solution

Problem 8133

Find the average rate of change of f(x)=2x2+5f(x)=2x^{2}+5 between x=2x=-2 and x=0x=0. Simplify your answer.

See Solution

Problem 8134

Calculate the limit: limtt+t24tt2\lim _{t \rightarrow \infty} \frac{\sqrt{t}+t^{2}}{4 t-t^{2}}. Enter \infty, -\infty, or DNE if it doesn't exist.

See Solution

Problem 8135

Find the rate of change of concentration C(t)=4.35etC(t)=4.35 e^{-t} after 2 and 4 hours, and graph CC.

See Solution

Problem 8136

Find the xx-value where ff is discontinuous and its continuity type: right, left, or neither.
f(x)={2+x2 if x08x if 0<x8(x8)2 if x>8 f(x)=\left\{\begin{array}{ll} 2+x^{2} & \text { if } x \leq 0 \\ 8-x & \text { if } 0<x \leq 8 \\ (x-8)^{2} & \text { if } x>8 \end{array}\right.

See Solution

Problem 8137

Find the limit: limx0tan(5x)sin(8x)\lim _{x \rightarrow 0} \frac{\tan (5 x)}{\sin (8 x)} using l'Hospital's Rule or another method.

See Solution

Problem 8138

Find the limit using I'Hospital's Rule if needed: limx0x4x4x1\lim _{x \rightarrow 0} \frac{x 4^{x}}{4^{x}-1}

See Solution

Problem 8139

Find the limit: limt0e9t1sin(t)\lim _{t \rightarrow 0} \frac{e^{9 t}-1}{\sin (t)} using I'Hospital's Rule or a simpler method.

See Solution

Problem 8140

Find the tangent line equation for the curve y=9x(x+1)2y=\frac{9 x}{(x+1)^{2}} at the point (0,0)(0,0).

See Solution

Problem 8141

Find the limit using l'Hospital's Rule or another method: limx4ln(x4)4x\lim _{x \rightarrow 4} \frac{\ln \left(\frac{x}{4}\right)}{4-x}

See Solution

Problem 8142

Find the limit using l'Hospital's Rule if needed: limx0+(7x7tan(x))\lim _{x \rightarrow 0^{+}}\left(\frac{7}{x}-\frac{7}{\tan (x)}\right)

See Solution

Problem 8143

Evaluate the limits for indeterminate forms given:
1. limxaf(x)=0\lim _{x \rightarrow a} f(x)=0
2. limxag(x)=0\lim _{x \rightarrow a} g(x)=0
3. limxah(x)=1\lim _{x \rightarrow a} h(x)=1
4. limxap(x)=\lim _{x \rightarrow a} p(x)=\infty
5. limxaq(x)=\lim _{x \rightarrow a} q(x)=\infty

(a) limxa[f(x)p(x)]\lim _{x \rightarrow a}[f(x)-p(x)] (b) limxa[p(x)q(x)]\lim _{x \rightarrow a}[p(x)-q(x)] (c) limxa[p(x)+q(x)]\lim _{x \rightarrow a}[p(x)+q(x)]

See Solution

Problem 8144

Evaluate the integral 01exxdx\int_{0}^{1} \frac{e^{-x}}{x} dx for convergence using Taylor series near x=0x=0.

See Solution

Problem 8145

A diver jumps from a 3 m3 \mathrm{~m} board at 5.4 m/s5.4 \mathrm{~m/s}. Sketch position, velocity, and acceleration vs. time graphs.

See Solution

Problem 8146

Analyze the integral 01cos2xxdx\int_{0}^{1} \frac{\cos ^{2} x}{\sqrt{x}} dx for convergence or divergence near x=0x=0.

See Solution

Problem 8147

Find the leading term of x+33x3\frac{\sqrt[3]{x+3}}{x^{3}} as x+x \rightarrow+\infty to check integral convergence: 1+x+33x3dx\int_{1}^{+\infty} \frac{\sqrt[3]{x+3}}{x^{3}} dx.

See Solution

Problem 8148

Solve the differential equation by separation of variables: exydydx=ey+e2xye^{x} y \frac{d y}{d x}=e^{-y}+e^{-2 x-y}.

See Solution

Problem 8149

Solve the differential equation dydx(sinx)y=2sinx\frac{d y}{d x} - (\sin x) y = 2 \sin x.

See Solution

Problem 8150

Find the derivative of f(x)=3x34xf(x)=3 x^{3}-4 x using the limit definition: f(x)=limh0f(x+h)f(x)hf^{\prime}(x) =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}.

See Solution

Problem 8151

Calculate the integral 13(1x21)dx\int_{1}^{3}\left(\frac{1}{x^{2}}-1\right) d x.

See Solution

Problem 8152

Berechne mit J0(x)=13x3\mathrm{J}_{0}(\mathrm{x})=\frac{1}{3} \mathrm{x}^{3} die Integrale: a) 06t2dt\int_{0}^{6} \mathrm{t}^{2} \mathrm{dt}, b) 01,5x2dx\int_{0}^{1,5} x^{2} dx, c) 23x2dx\int_{2}^{3} x^{2} dx, d) 47z2dz\int_{4}^{7} z^{2} dz, e) 88x2dx\int_{8}^{8} x^{2} dx.

See Solution

Problem 8153

Berechnen Sie die Ableitung von ff an x0x_{0} mit dem Differenzenquotienten für hh nahe 0 für die folgenden Funktionen: a) f(x)=x3f(x)=x^{3}, x0=3x_{0}=3; b) f(x)=x42x3f(x)=x^{4}-2x^{3}, x0=1,5x_{0}=1,5; c) f(x)=2xf(x)=2^{x}, x0=1x_{0}=-1; d) f(x)=0,7x1f(x)=0,7x-1, x0=0x_{0}=0; e) f(x)=1xf(x)=\frac{1}{x}, x0=2x_{0}=2; f) f(x)=xf(x)=\sqrt{x}, x0=4x_{0}=4.

See Solution

Problem 8154

Find the value of aa (not an integer) such that aa2(ax27a2x7a33)dx=0\int_{a}^{a^{2}} (a x^{2}-7 a^{2} x-\frac{7 a^{3}}{3}) \mathrm{d} x=0.

See Solution

Problem 8155

Vervollständigen Sie die Ableitung von f(x)f(x) in den folgenden Aufgaben.
a) f(x)=x3(4x+3)f(x)=x^{3}(4x+3), f(x)=(4x+3)+x3f'(x)=\square(4x+3)+x^{3}\cdot b) f(x)=2xexf(x)=2x e^{x}, f(x)=ex+2xf'(x)=\square e^{x}+2x c) f(x)=(x2+1)xf(x)=(x^{2}+1)\sqrt{x}, f(x)=x+(x2+1)f'(x)=\square\sqrt{x}+(x^{2}+1) d) f(x)=1xexf(x)=\frac{1}{x}e^{x}, f(x)=ex+1xf'(x)=\cdot e^{x}+\frac{1}{x}\cdot e) f(x)=1x2(x22x)f(x)=\frac{1}{x^{2}}(x^{2}-2x), f(x)=(x22x)+1x2f'(x)=\square(x^{2}-2x)+\frac{1}{x^{2}} f) f(x)=(2x34x2)x1f(x)=(2x^{3}-4x^{2})x^{-1}, f(x)=x1+(2x34x2)f'(x)=\square x^{-1}+(2x^{3}-4x^{2})

See Solution

Problem 8156

Berechne den Flächeninhalt unter f(x)=(x+1)cos(x)f(x) = (x+1) \cdot \cos(x) und über der xx-Achse im Intervall [2,5][-2, 5].

See Solution

Problem 8157

Berechne die Ableitung von f(x)=2x+x2f(x)=\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{2}.

See Solution

Problem 8158

Find f(12),f(1),f(2)f^{\prime}\left(\frac{-1}{2}\right), f^{\prime}(-1), f^{\prime}(-2), and f(3)f^{\prime}(-3) for f(x)=x3f(x)= x^3. Round to one decimal place.

See Solution

Problem 8159

A rare insect's population after transfer is P(t)=50+25t2+0.01tP(t)=\frac{50+25 t}{2+0.01 t}. Find the yy-intercept and limtP(t)\lim_{t \rightarrow \infty} P(t).

See Solution

Problem 8160

Find the first and second derivatives yy' and yy'' of the function y=(4+x)3y=(4+\sqrt{x})^{3}.

See Solution

Problem 8161

Find y=(4+x)3y=(4+\sqrt{x})^{3} and its derivatives y=34+1x212x12y' = 34 + \frac{1}{x} 2 \frac{1}{2} x^{-\frac{1}{2}}, y=1y''=1.

See Solution

Problem 8162

Rex throws a vase up at 26.2 m/s26.2 \mathrm{~m/s}. Find the maximum height reached when Vf=0 m/sV_{f}=0 \mathrm{~m/s}.

See Solution

Problem 8163

Find the derivative of f(x)=4+8x6x2f(x)=4+8x-6x^{2} using the definition. Also, state the domains of f(x)f(x) and f(x)f'(x) in interval notation.

See Solution

Problem 8164

Find the derivative of g(x)=(2x2+7)18(3x4+4)14g(x)=\left(2 x^{2}+7\right)^{18}\left(3 x^{4}+4\right)^{14}. What is g(x)g^{\prime}(x)?

See Solution

Problem 8165

Find the derivative of g(x)=19+xg(x)=\frac{1}{9+\sqrt{x}} and state the domains of g(x)g(x) and g(x)g'(x) in interval notation.

See Solution

Problem 8166

Gegeben ist f(t)=12t32tf(t)=\frac{1}{2} t^{3}-2 t. a) Skizzieren Sie ff. b) Finden Sie FF mit F(4)=0F(4)=0 und zeigen Sie F(4)=0F(-4)=0. c) Bestimmen Sie die Konstante zwischen FF und F0(x)=0x(12t32t)dxF_{0}(x)=\int_{0}^{x}(\frac{1}{2} t^{3}-2 t) \mathrm{d} x. d) Bestimmen Sie die Extrempunkte von F0F_{0}.

See Solution

Problem 8167

Zwei Funktionen F(x)=x+12F(x)=\sqrt{x+1}-2 und G(x)=x1+x+1G(x)=\frac{x}{1+\sqrt{x+1}} sind gegeben. Zeigen Sie, dass sie Stammfunktionen einer Funktion ff sind und geben Sie sie als axf(t)dt\int_{a}^{x} f(t) \mathrm{d} t an. Was unterscheidet die Integrale geometrisch?

See Solution

Problem 8168

Find the derivative of the function f(x)=7sin5xf(x)=-7 \sin ^{5} x, expressed as f(x)=f^{\prime}(x)=.

See Solution

Problem 8169

Find the derivative of the function f(x)=7sin(cosx)f(x)=7 \sin (\cos x), denoted as f(x)f^{\prime}(x).

See Solution

Problem 8170

Find the derivative of the function f(x)=tan1(sin(2x))f(x) = \tan^{-1}(\sin(2x)). What is f(x)f'(x)?

See Solution

Problem 8171

Differentiate the function f(x)=ln(4x2+8x+1)f(x)=\ln(4x^{2}+8x+1) without simplifying the derivative. Find f(x)=f^{\prime}(x)=.

See Solution

Problem 8172

Find the limit: limx2x(x1)(x+2)2(x+1)(x1)(x+2)3\lim _{x \rightarrow-2} \frac{x(x-1)(x+2)^{2}}{(x+1)(x-1)(x+2)^{3}}.

See Solution

Problem 8173

Differentiate the function G(x)=x4ln(abs(7x))G(x)=x^{4} \ln (\operatorname{abs}(7 x)). Find G(x)=G^{\prime}(x)=.

See Solution

Problem 8174

Find the derivative of the function f(x)=tan1(2x)f(x)=\tan^{-1}(2^x). What is f(x)f'(x)?

See Solution

Problem 8175

Find the derivative of y=arcsin(3x)y=\arcsin(3x): dydx=\frac{dy}{dx}=\square

See Solution

Problem 8176

Find f(x)f^{\prime}(x) for f(x)=5xarcsin(x)f(x)=5 x \arcsin(x) and calculate f(0.5)f^{\prime}(0.5), rounding to the nearest hundredth.

See Solution

Problem 8177

Differentiate f(x)=arccos(4x)f(x)=\arccos(4x) without approximation. Find f(x)=f'(x)=.

See Solution

Problem 8178

Find the derivative of ln(2x+4)\ln(2x + 4).

See Solution

Problem 8179

Find the derivative of the function f(x)=7sin1(x3)f(x)=7 \sin ^{-1}\left(x^{3}\right). What is f(x)f^{\prime}(x)?

See Solution

Problem 8180

Find the derivative dydx\frac{d y}{d x} for y=ln(5x+8)9e4xy=\frac{\ln (5 x+8)}{9 e^{4 x}}.

See Solution

Problem 8181

Find the derivative of the function f(x)=ln(x24x+8)f(x)=\ln(x^{2}-4x+8). What is f(x)f^{\prime}(x)?

See Solution

Problem 8182

Find the derivative of 2ln(x)2 \ln (x) with respect to xx.

See Solution

Problem 8183

Find the derivative of g(t)=ln(12t3)g(t)=\ln(12 t^{3}). What is g(t)=?g^{\prime}(t)=?

See Solution

Problem 8184

Find dAdR\frac{d A}{d R} for the area function A(R)=πR2A(R) = \pi R^{2}.

See Solution

Problem 8185

Find f(x)f'(x) for f(x)=4xarcsin(x)f(x)=4x \arcsin(x) and calculate f(0.5)f'(0.5), rounding to the nearest hundredth.

See Solution

Problem 8186

Find ΔG\Delta G^{\circ} at 75C75^{\circ}C for A(aq)+B(aq)C(aq)+D(aq)A(aq) + B(aq) \leftrightarrow C(aq) + D(aq) with K=24.0K=24.0 at 25C25^{\circ}C and K=37.0K=37.0 at 50C50^{\circ}C. Use ΔG=RTln(K)\Delta G^{\circ} = -RT \ln(K) and the van't Hoff equation.

See Solution

Problem 8187

Differentiate the function f(x)=x3ln(abs(15x))f(x)=x^{3} \ln (a b s(15 x)) without simplifying the derivative. f(x)=f^{\prime}(x)=

See Solution

Problem 8188

Differentiate the function f(x)=x3ln(abs(15x))f(x)=x^{3} \ln (\operatorname{abs}(15 x)). Find f(x)f^{\prime}(x).

See Solution

Problem 8189

Find the derivative f(x)f'(x) for f(x)=4xarcsin(x)f(x)=4x \arcsin(x) and compute f(0.7)f'(0.7) rounded to the nearest hundredth.

See Solution

Problem 8190

Find the velocity of an object at t=0t=0 and t=5t=5 given s(t)=t3t+1s(t)=t^{3}-t+1.

See Solution

Problem 8191

Find the derivative of f(t)=t3f(t)=\sqrt[3]{t} at a0a \neq 0: f(a)=f^{\prime}(a)=

See Solution

Problem 8192

Find the first four derivatives of the function f(x)=2x2x3f(x)=2 x^{2}-x^{3}.

See Solution

Problem 8193

Find the average rate of change of f(x)=x2f(x)=x^{2} for these intervals: (a) [0,2][0,2], (b) [2,4][2,4], (c) [4,6][4,6]. Explain the graph's trend.

See Solution

Problem 8194

Show that f(x)=x4f(x)=|x-4| is not differentiable at 4 by evaluating the right and left limits as xx approaches 4.

See Solution

Problem 8195

Find the formula for ff^{\prime} of f(x)=x4f(x)= |x-4| and sketch its graph, noting it's not differentiable at x=4x=4.

See Solution

Problem 8196

Show that f(x)=x4f(x)=|x-4| is not differentiable at 4 by comparing the limits from both sides. Find ff'.

See Solution

Problem 8197

An object is launched upwards with an initial speed of 39.2 m/s39.2 \mathrm{~m/s}. Given s(t)=4.9t2+39.2ts(t)=-4.9t^2+39.2t, find:
(a) velocity at time tt (b) time to reach max height (c) max height (d) acceleration at time tt (e) total time in air (f) impact velocity and speed (g) total distance traveled

See Solution

Problem 8198

Find the derivative of the function defined by xy2+x2y53x3=6x y^{2}+x^{2} y^{5}-3 x^{3}=6 with respect to xx.

See Solution

Problem 8199

Find the average rate of change of f(x)=2x27x+1f(x)=-2 x^{2}-7 x+1 from x=1x=1 to x=4x=4. Calculate: Average rate of change ==

See Solution

Problem 8200

Find the limit as xx approaches 3 for the expression x2+3x2x^{2} + 3x - 2.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord