Calculus

Problem 30301

Leiten Sie die Funktionen ab und bestimmen Sie die ersten Ableitungen für die angegebenen f(x)f(x):
1. a) f(x)=ex+x3f(x)=e^{x}+x^{3} b) f(x)=4x2exf(x)=4 x^{2}-e^{x} c) f(x)=2ex14x4f(x)=2 e^{x}-\frac{1}{4} x^{4} d) f(x)=ex+4f(x)=-e^{x}+4
2. Leiten Sie zweimal ab: a) f(x)=ex+12x2f(x)=-e^{x}+\frac{1}{2} x^{2} b) f(x)=3ex+2x3x+5f(x)=3 e^{x}+2 x^{3}-x+5 c) f(x)=2x3exf(x)=\frac{2}{x}-3 e^{x} d) f(x)=0,3exxf(x)=0,3 e^{x}-\sqrt{x}
3. Bestimmen Sie die erste Ableitung für aa und bb reelle Zahlen: a) f(x)=exax2f(x)=e^{x}-a x^{2} b) f(x)=aex+xbf(x)=a e^{x}+x^{b} c) f(x)=exa+b2x2f(x)=\frac{e^{x}}{a}+b^{2} x^{2} d) f(x)=aex+af(x)=-a e^{x}+a

See Solution

Problem 30302

Find limf(x)\lim \sqrt{f(x)} as xx approaches cc if limf(x)=4\lim f(x) = 4.

See Solution

Problem 30303

Find the limit: limxarctanx\lim _{x \rightarrow -\infty} \arctan x.

See Solution

Problem 30304

Find the limit as xx approaches -\infty for the function exe^{x}.

See Solution

Problem 30305

Find the limit as xx approaches -\infty for 1xp\frac{1}{x^{p}} where pp is a positive integer constant.

See Solution

Problem 30306

Find the limit: limnln(4n2+a4n2+1)12n21\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{4 n^{2}+a}{4 n^{2}+1}\right)}{\frac{1}{2 n^{2}-1}}.

See Solution

Problem 30307

Find the limit: limxarctanx\lim _{x \rightarrow \infty} \arctan x.

See Solution

Problem 30308

Calculate the integral x53x3+x2dx\int \frac{x^{5}-3 x^{-3}+x}{2} dx.

See Solution

Problem 30309

Find the limit: limx2x21+2x\lim _{x \rightarrow \infty} \frac{2-x^{2}}{1+2 x}.

See Solution

Problem 30310

Find the function yy if dydx=16x2\frac{d y}{d x}=\frac{1}{6 x^{2}}.

See Solution

Problem 30311

Bestimmen Sie die Wendestellen und das Krümmungsverhalten für die Funktionen: a) f(x)=x33x2f(x)=x^{3}-3 x^{2}, b) f(x)=x424x2+8xf(x)=x^{4}-24 x^{2}+8 x, c) f(x)=x4+24x2+8xf(x)=x^{4}+24 x^{2}+8 x, d) f(x)=112x4+16x3x2+5xf(x)=\frac{1}{12} x^{4}+\frac{1}{6} x^{3}-x^{2}+5 x, e) f(x)=x412x2+4xf(x)=x^{4}-12 x^{2}+4 x, f) f(x)=6x515x4+10x3f(x)=6 x^{5}-15 x^{4}+10 x^{3}.

See Solution

Problem 30312

Calculate the limit: limn46+94+145++(5n1)(n+2)n3.\lim _{n \rightarrow \infty} \frac{4 \cdot 6+9 \cdot 4+14 \cdot 5+\cdots+(5 n-1)(n+2)}{n^{3}}.

See Solution

Problem 30313

Find the limit: limn(4n2+a4n2+1)2n21=e5\lim _{n \rightarrow \infty}\left(\frac{4 n^{2}+a}{4 n^{2}+1}\right)^{2 n^{2}-1}=e^{5}.

See Solution

Problem 30314

Find the limit as xx approaches infinity for 1xr\frac{1}{x^{r}} where pp is a positive integer and rr is a positive real number.

See Solution

Problem 30315

Find the limit as xx approaches 0 from the right of 1xp\frac{1}{x^{p}}.

See Solution

Problem 30316

Find the partial derivatives of f(x,y)=x34xy2+3yf(x, y)=x^{3}-4xy^{2}+3y: fxx,fyy,fyxf_{xx}, f_{yy}, f_{yx}.

See Solution

Problem 30317

Find possible values of kk given that 12kx2+adx=11\int_{1}^{2} k x^{2}+a \, dx=11 and 1k6x2dx=a\int_{1}^{k} \frac{6}{x^{2}} \, dx=a.

See Solution

Problem 30318

Express f(x)=6+xx3\mathrm{f}(x)=\frac{6+x}{\sqrt[3]{x}} as axn+bxma x^{n}+b x^{m} and find 6+xx3 dx\int \frac{6+x}{\sqrt[3]{x}} \mathrm{~d} x.

See Solution

Problem 30319

Find the partial derivative fyf_{y} of the function f(x,y)=2x4y2+8xf(x, y) = 2 x^{4} y^{2} + 8 x.

See Solution

Problem 30320

Find the mixed partial derivative fxyf_{xy} for the function f(x,y)=2x4y2+8xf(x, y)=2 x^{4} y^{2}+8 x.

See Solution

Problem 30321

Find the partial derivative fxf_x of the function f(x,y)=2x4y2+8xf(x, y)=2 x^{4} y^{2}+8 x.

See Solution

Problem 30322

Find the second partial derivative fxxf_{xx} of the function f(x,y)=2x4y2+8xf(x, y) = 2x^4y^2 + 8x.

See Solution

Problem 30323

Find the slope of the tangent line for y=2cosxy=2^{\cos x} at x=π2x=\frac{\pi}{2}. Choices: ln2\ln 2, ln12\ln \frac{1}{2}, 1/ln31 / \ln 3, 1/ln21 / \ln 2.

See Solution

Problem 30324

Calculate the sum: k=11071(1k51(k+1)5)\sum_{k=1}^{10^{7}-1}\left(\frac{1}{k^{5}}-\frac{1}{(k+1)^{5}}\right)

See Solution

Problem 30325

Find the slope of the tangent line for y=3cosxy=3^{\cos x} at x=π2x=\frac{\pi}{2}.

See Solution

Problem 30326

Find df1dx\frac{d f^{-1}}{d x} at x=5x=5 for f(x)=x23x+5f(x)=x^{2}-3x+5, with x2x \geq 2. Options: 1/51/5, 1/31/3, 1/41/4, 1/61/6.

See Solution

Problem 30327

Calculate 12lnx3xdx\int_{1}^{2} \frac{\ln x^{3}}{x} d x. What is the result?

See Solution

Problem 30328

Find the slope of the tangent line of y=3sinxy=3^{\sin x} at x=0x=0. Choose from: ln2\ln 2, ln3\ln 3, 1/ln31 / \ln 3, 1/ln21 / \ln 2.

See Solution

Problem 30329

Evaluate the integral 1221/xx2dx\int_{1}^{2} \frac{2^{1 / x}}{x^{2}} d x. What is the result?

See Solution

Problem 30330

Evaluate the integral 142xxdx\int_{1}^{4} \frac{2^{\sqrt{x}}}{\sqrt{x}} d x. What is the result?

See Solution

Problem 30331

Find the slope of the tangent line for y=3cosxy=3^{\cos x} at x=π2x=\frac{\pi}{2}.

See Solution

Problem 30332

Find the tangent line equation to f1(x)f^{-1}(x) at x=12.282x=12.282 for f(x)=3x14+5f(x)=3^{\frac{x-1}{4}}+5.

See Solution

Problem 30333

Calculate the average growth rate of h(t)=2601+24(0.9)th(t)=\frac{260}{1+24(0.9)^{t}} over 30 days and the instantaneous rate at t=90t=90 days.

See Solution

Problem 30334

Find the limit as xx approaches 2 from the left for the expression xx\frac{|x|}{x}.

See Solution

Problem 30335

Evaluate the integral from π3\frac{\pi}{3} to π6\frac{\pi}{6} of cosxxsinxxcosxdx\frac{\cos x - x \sin x}{x \cos x} \, dx and choose the answer.

See Solution

Problem 30336

Find df1dx\frac{d f^{-1}}{d x} at x=f(2)x=f(2) for f(x)=2x3f(x)=2 x^{3}. Options: a. 16 b. 124\frac{1}{24} c. none d. 4 e. 18\frac{1}{8}

See Solution

Problem 30337

Evaluate the integral π/3π/6cosxxsinxxcosxdx=\int_{\pi / 3}^{\pi / 6} \frac{\cos x-x \sin x}{x \cos x} d x= a. ln32ln2-\frac{\ln 3}{2}-\ln 2 b. ln32+ln2-\frac{\ln 3}{2}+\ln 2 c. ln32+ln2\frac{\ln 3}{2}+\ln 2 d. none e. ln32ln2\frac{\ln 3}{2}-\ln 2

See Solution

Problem 30338

If f(x)=3x1f'(x) = 3x - 1, find df1dx\frac{d f^{-1}}{d x} at x=f(2)x = f(2). Choices: a) 3, b) 15\frac{1}{5}, c) 5, d) none, e) 13\frac{1}{3}.

See Solution

Problem 30339

Evaluate the integral 2e21+lnxxlnxdx=\int_{2}^{e^{2}} \frac{1+\ln x}{x \ln x} d x= a. 1ln21-\ln 2 b. 1+ln21+\ln 2 c. 3+ln23+\ln 2 d. 2ln(ln2)2-\ln (\ln 2)

See Solution

Problem 30340

Which statement is true for the graph of y=lnxy=|\ln x|? a. Asymptotic to negative xx-axis b. Range (,)(-\infty, \infty) c. Crosses y=cy=c once d. Crosses y-axis once e. Domain (0,)(0, \infty)

See Solution

Problem 30341

Find the derivative yy', where y=ln((x2+1)51x)y=\ln \left(\frac{(x^{2}+1)^{5}}{\sqrt{1-x}}\right).

See Solution

Problem 30342

Find the limit as hh approaches 0 for x+h+9x+9h\frac{\sqrt{x+h+9} - \sqrt{x+9}}{h}.

See Solution

Problem 30343

Find the derivative yy', where y=ln(x)1+ln(x)y=\frac{\ln (x)}{1+\ln (x)}. Choose from the options given.

See Solution

Problem 30344

Simplify the expression: 9(x+h)+59x+5h\frac{\frac{-9}{(x+h)+5} - \frac{-9}{x+5}}{h}.

See Solution

Problem 30345

Calculate the integral π/3π/6cosxxsinxxcosxdx\int_{\pi / 3}^{\pi / 6} \frac{\cos x - x \sin x}{x \cos x} dx. Choose the correct answer from options a-e.

See Solution

Problem 30346

Find yy^{\prime} if y=ln(x)1+ln(x)y=\frac{\ln (x)}{1+\ln (x)}. Choose from: a. 1(1+ln(x))2\frac{1}{(1+\ln (x))^{2}}, b. x(1+ln(x))2\frac{x}{(1+\ln (x))^{2}}, c. 1x(1+ln(x))2\frac{1}{x(1+\ln (x))^{2}}, d. 1x(1+ln(x))2-\frac{1}{x(1+\ln (x))^{2}}, e. x(1+ln(x))2-\frac{x}{(1+\ln (x))^{2}}.

See Solution

Problem 30347

Find the limit as xx approaches infinity for x+7sinx2x+13\frac{x+7 \sin x}{-2 x+13}.

See Solution

Problem 30348

Set up RnR_{n} and find limnRn\lim _{n \rightarrow \infty} R_{n} for f(x)=1x2f(x)=1-x^{2} on the interval [0,2][0,2].

See Solution

Problem 30349

Find the limit: limx0sinxx\lim _{x \rightarrow 0} \frac{|\sin x|}{x}.

See Solution

Problem 30350

Find the limit: limx4ex+e2x+2=\lim _{x \rightarrow \infty} \frac{4}{e^{-x}+e^{-2 x}+2}= a. \infty b. 0 c. 2 d. none e. 4

See Solution

Problem 30351

Find the limit: limx(53x)22x2+5x+1\lim _{x \rightarrow \infty} \frac{(5-3 x)^{2}}{2 x^{2}+5 x+1}. What is the value?

See Solution

Problem 30352

Set up RNR_{N} and find limNRN\lim_{N \rightarrow \infty} R_{N} for a.) f(x)=1x2f(x)=1-x^{2} over [0,1][0,1].

See Solution

Problem 30353

Given a continuous function g(x)g(x) on [0,1][0,1] with g(0)=1g(0)=1 and g(1)=0g(1)=0, which statement is NOT necessarily true? a. If a=ba=b, then g(a)=g(b)g(a)=g(b) b. There exists hh in [0,1][0,1] such that g(h)=12g(h)=\frac{1}{2} c. There exists hh in [0,1][0,1] such that g(h)=32g(h)=\frac{3}{2} d. none e. For hh in (0,1)(0,1), limxhg(x)=g(h)\lim_{x \to h} g(x)=g(h)

See Solution

Problem 30354

Let g(x)g(x) be continuous on [0,1][0,1] with g(0)=1g(0)=1 and g(1)=0g(1)=0. Which is NOT necessarily true? a. g(h)=12g(h)=\frac{1}{2} for some hh in [0,1][0,1]. b. limxhg(x)=g(h)\lim_{x \to h} g(x)=g(h) for all hh in (0,1)(0,1). c. If a=ba=b, then g(a)=g(b)g(a)=g(b) for all a,ba,b in [0,1][0,1]. d. none. e. There exists hh in [0,1][0,1] such that...

See Solution

Problem 30355

Find the limit: limx0x2secxsinx=\lim _{x \rightarrow 0} \frac{x^{2} \sec x}{\sin x}= a. 2 b. 0 c. none d. 1 e. 3

See Solution

Problem 30356

A continuous function ff on [3,6][-3,6] with f(3)=1f(-3)=-1 and f(6)=3f(6)=3 must satisfy which statement? a, b, c, d, or e?

See Solution

Problem 30357

Find the limit: limx0x2esin(1x)\lim _{x \rightarrow 0} x^{2} e^{\sin \left(\frac{1}{x}\right)}.

See Solution

Problem 30358

Given a continuous function g(x)g(x) on [0,1][0,1] with g(0)=1g(0)=1 and g(1)=0g(1)=0, which statement is NOT necessarily true? a. limxhg(x)=g(h)\lim _{x \rightarrow h} g(x)=g(h) for all hh in (0,1)(0,1) b. none c. h[0,1]\exists h \in [0,1] such that g(h)=32g(h)=\frac{3}{2} d. h[0,1]\exists h \in [0,1] such that g(h)=12g(h)=\frac{1}{2} e. a=b    g(a)=g(b)a=b \implies g(a)=g(b) for all a,b[0,1]a,b \in [0,1]

See Solution

Problem 30359

Find the derivative of the function y=3x3x2+4x1y=3 x^{3}-x^{2}+4 x-1. What is dydx\frac{d y}{d x}?

See Solution

Problem 30360

Find the derivative yy^{\prime} of y=lnty=\sqrt{\ln \sqrt{t}}. Choose from the options given.

See Solution

Problem 30361

Find the derivative of y=sin1(x2)y=\sin^{-1}(x^2). What is dydx\frac{d y}{d x}?

See Solution

Problem 30362

Find the derivative of y=tan1(5x2)y=\tan^{-1}(\sqrt{5-x^{2}}). What is dydx\frac{d y}{d x}?

See Solution

Problem 30363

Find where the graph of y=x3+x227xy=x^{3}+x^{2}-27 x is concave down: a. x13x \geq \frac{-1}{3} b. x0x \leq 0 c. x0x \geq 0 d. 6x2-6 \geq x \geq 2 e. None.

See Solution

Problem 30364

Find the derivative of y=x3x7y=x^{3} \cdot x^{7} using the Product Rule and select the correct answer.

See Solution

Problem 30365

Find the derivative of y=x5x3y=\frac{x^{5}}{x^{3}} using the Quotient Rule. Choose the correct answer from the options.

See Solution

Problem 30366

Find the derivative of y=x5x3y=\frac{x^{5}}{x^{3}} using the Quotient Rule or by dividing first.

See Solution

Problem 30367

Divide x5x^{5} by x3x^{3}, simplify to get x2x^{2}, then find dydx\frac{d y}{d x} and verify both methods give the same result.

See Solution

Problem 30368

A dog slows from 16 m/s16 \mathrm{~m/s} [S] to 4.0 m/s4.0 \mathrm{~m/s} [S] in 4.0 s4.0 \mathrm{~s}. Find its displacement.

See Solution

Problem 30369

Find the derivative of y=x5x3y=\frac{x^{5}}{x^{3}} using the Quotient Rule or by dividing first.

See Solution

Problem 30370

Divide x8x^{8} by x4x^{4} and simplify. Then find the derivative dydx\frac{d y}{d x} and check if both results match.

See Solution

Problem 30371

Identify uu and dvd v for the integral ln(2x)dx\int \ln (2 x) d x using integration by parts.

See Solution

Problem 30372

Find the rate of change of average cost for producing xx belts, given C(x)=780+31x0.062x2C(x)=780+31x-0.062x^2, at x=174x=174.

See Solution

Problem 30373

Find the derivative of y=x8x4 y=\frac{x^{8}}{x^{4}} using the Quotient Rule and select the correct expression.

See Solution

Problem 30374

Divide x8x^{8} by x4x^{4}, simplify to get x4x^{4}. Find its derivative and confirm dydx=\frac{d y}{d x}=\square.

See Solution

Problem 30375

Find the integral using the tabular method. Include constant C. x2(x2)3/2dx \int x^{2}(x-2)^{3 / 2} d x

See Solution

Problem 30376

Find the derivative of y=x8x4y=\frac{x^{8}}{x^{4}} using the Quotient Rule and select the correct derivative form.

See Solution

Problem 30377

Wasserbecken: Gegeben ist z(t)=t312t2+35tz(t)=t^{3}-12 t^{2}+35 t für t[0;8]t \in [0 ; 8].
a) Finde Zeitpunkte, wo Wasser nicht fließt und Intervalle für Zu- bzw. Abfluss. b) Bestimme den Zeitpunkt der maximalen Zulaufrate. c) Finde den Zeitpunkt der stärksten Änderung der Zulaufrate. d) Skizziere den Graphen von z(t)z(t). e) Berechne die Wassermenge nach 4 Stunden. f) Gibt es einen Zeitpunkt mit der Anfangswassermenge? g) Bestimme die maximale Wassermenge und wann sie erreicht wird.

See Solution

Problem 30378

Find the rate of change of average cost when producing 174 belts, given C(x)=780+31x0.062x2C(x)=780+31x-0.062x^{2}.

See Solution

Problem 30379

Evaluate the limit: limh0(8(4+h)2+1)(8(4)2+1)h.\lim _{h \rightarrow 0} \frac{(8(4+h)^{2}+1)-(8(4)^{2}+1)}{h}.

See Solution

Problem 30380

Given the temperature function T(t)=4tt2+3+986T(t)=\frac{4 t}{t^{2}+3}+986, find: (a) T(t)T'(t), (b) T(1)T(1), (c) T(1)T'(1).

See Solution

Problem 30381

Compute the integral: 17arctanxdx\int 17 \arctan x \, dx using the simplest method and include the constant CC.

See Solution

Problem 30382

Find the temperature function T(t)=6tt2+1+986T(t)=\frac{6t}{t^2+1}+986.
(a) Compute T(t)T'(t). (b) Determine T(1)T(1). (c) Find T(1)T'(1).

See Solution

Problem 30383

Differentiate the function y=(5x+8)5y=(5x+8)^{5}. What is dydx=\frac{dy}{dx}=\square?

See Solution

Problem 30384

Find the instantaneous rate of change of water volume V(t)=(120t)29V(t)=\frac{(120-t)^{2}}{9} after 60 minutes. Include units.

See Solution

Problem 30385

Differentiate the function y=(8x)73y=(8-x)^{73}. What is dydx\frac{d y}{d x}?

See Solution

Problem 30386

Differentiate y=23xy=\sqrt{2-3 x} using the Chain Rule. Find dydx=\frac{d y}{d x}=

See Solution

Problem 30387

Differentiate the function y=1(7x+9)4y=\frac{1}{(7 x+9)^{4}}. Find dydx\frac{d y}{d x}.

See Solution

Problem 30388

Differentiate the function y=(2x26)12y=(2x^{2}-6)^{-12}. Find dydx\frac{dy}{dx}.

See Solution

Problem 30389

Differentiate the function G(x)=x7+2x4G(x)=\sqrt[4]{x^{7}+2 x}. Find G(x)=G^{\prime}(x)=\square.

See Solution

Problem 30390

Evaluate the integral from ee to e2e^{2} of 1+lnxxlnxdx\frac{1+\ln x}{x \ln x} dx and choose the correct option.

See Solution

Problem 30391

Găsiți valorile lui xx, yy, zz pentru profit maxim din f(x,y,z)=xy2z3(14x2y3z)f(x, y, z)=x y^{2} z^{3}(14-x-2 y-3 z).

See Solution

Problem 30392

Differentiate the function y=x2+3y=\sqrt{x^{2}+3}. Find dydx\frac{d y}{d x}.

See Solution

Problem 30393

Find yy^{\prime} for y=xln(x)1+ln(x)y=\frac{x \ln (x)}{1+\ln (x)}. Choose from the options: a, b, c, d, e.

See Solution

Problem 30394

Differentiate the function f(x)=(x+3x+1)4f(x)=\left(\frac{x+3}{x+1}\right)^{4}. Find f(x)f^{\prime}(x).

See Solution

Problem 30395

Differentiate the function y=(19x)52y=(19-x)^{52}. Find dydx=\frac{d y}{d x}=\square.

See Solution

Problem 30396

Găsiți valorile x,y,zx, y, z pentru profit maxim dat de f(x,y,z)=xy2z3(14x2y3z)f(x, y, z)=x y^{2} z^{3}(14-x-2 y-3 z). Răspuns: fmax=128f_{\max }=128 pentru x=y=z=2x=y=z=2.

See Solution

Problem 30397

Differentiate the function G(x)=x7+3x5G(x)=\sqrt[5]{x^{7}+3x}. Find G(x)G^{\prime}(x).

See Solution

Problem 30398

Differentiate the function y=1(3x16)4y=\frac{1}{(3 x-16)^{4}}. Find dydx=\frac{d y}{d x}=\square.

See Solution

Problem 30399

Differentiate the function f(x)=(x5x+6)9f(x)=\left(\frac{x-5}{x+6}\right)^{9}. Find f(x)f^{\prime}(x).

See Solution

Problem 30400

Find the curve equation with dydx=72yx17\frac{d y}{d x}=72 y x^{17} and yy-intercept 2. What is y(x)=y(x)=?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord