Calculus

Problem 13701

Find the derivative of the constant function f(x)=5f(x)=5 using first principles.

See Solution

Problem 13702

Finde die Stammfunktionen für:
a) f(x)=2x43x+57f(x)=2 x^{4}-3 x+\frac{5}{7}
b) f(x)=3cos(x)+e2xf(x)=-3 \cos (x)+e^{2 x}
c) f(x)=(2x3)5f(x)=-(2 x-3)^{5}

See Solution

Problem 13703

Bestimme das Globalverhalten von f(x)=x2exf(x)=x^{2} \cdot e^{-x}.

See Solution

Problem 13704

Bestimmen Sie die Tangentengleichung der Funktion 12x2+3-\frac{1}{2} x^{2}+3 bei x0=2x_0 = -2.

See Solution

Problem 13705

Bestimme das Verhalten von f(x)=x2exf(x)=x^{2} \cdot e^{-x} für xx \rightarrow-\infty und xx \rightarrow\infty.

See Solution

Problem 13706

Bestimme das Globalverhalten von f(x)=(x21)exf(x)=(x^{2}-1) \cdot e^{-x} für xx \rightarrow -\infty und x+x \rightarrow +\infty.

See Solution

Problem 13707

Welche Aussagen sind korrekt zum Verhalten von f(x)=x2exf(x)=x^{2} \cdot e^{-x} für x±x \rightarrow \pm \infty?

See Solution

Problem 13708

Approximate the displacement of an object with velocity v=1(4t+1)v=\frac{1}{(4t+1)} for 0t80 \leq t \leq 8 using 4 subintervals.

See Solution

Problem 13709

Does the right Riemann sum underestimate or overestimate the area under a positive decreasing function? Explain.
A. Underestimate; rectangles fit under the curve. B. Overestimate; rectangles do not fit under the curve. C. Overestimate; rectangles fit under the curve. D. Underestimate; rectangles do not fit under the curve.

See Solution

Problem 13710

Finde die Stellen xx, wo der Anstieg von h(x)=x2x1h(x)=x^{2}-x-1 gleich 1 ist, und die Gleichung der Normalen in diesem Punkt.

See Solution

Problem 13711

Approximate the displacement of an object with velocity v=1(4t+1)v=\frac{1}{(4t+1)} from t=0t=0 to t=8t=8 using 4 subintervals. Displacement: \square m.

See Solution

Problem 13712

Gegeben ist die Funktion f(x)=x42x2+2f(x)=x^{4}-2 x^{2}+2. Bestimme Extrempunkte und Achsenschnittpunkte. Gibt es Wendepunkte?

See Solution

Problem 13713

Bestimme das Globalverhalten von f(x)=xexf(x)=x \cdot e^{-x} für xx \rightarrow -\infty und x+x \rightarrow +\infty.

See Solution

Problem 13714

Gegeben ist die Funktion f(x)=0.5x2f(x)=0.5x^2.
a) Bestimme die Untersumme U4U_{4} für das Intervall [0;3] in 4 Teile.
b) Finde den Inhalt der Fläche zwischen f(x)f(x) und der x-Achse.

See Solution

Problem 13715

Approximate the displacement of an object with velocity v=23t2+6(ft/s)v=\frac{2}{3} t^{2}+6(f t / s) on 0t180 \leq t \leq 18 using n=6n=6.

See Solution

Problem 13716

Gegeben ist die Funktion f(x)=x42x2+2f(x)=x^{4}-2x^{2}+2: a) Bestimme Extrempunkte und Achsenschnittpunkte. b) Gibt es Wendepunkte? c) Finde die Sekanten-Gleichung im Intervall [0,4][0,4] und beschreibe, was sie darstellt.

See Solution

Problem 13717

Aufgabe 1: Untersuchen Sie f(x)=x35x26xf(x)=x^{3}-5 x^{2}-6 x vollständig (Ableitungen, Nullstellen, Extremstellen, etc.).
Aufgabe 2: a) Bestimmen Sie die Untersumme U4\mathrm{U}_{4} für [0;3] in 4 Teile. b) Berechnen Sie die Fläche.
Aufgabe 3: Finden Sie eine Stammfunktion für jede Funktion: a) f(x)=3xf(x)=3 x, b) f(x)=2x5f(x)=2 x-5, c) f(x)=3(x3)3f(x)=3(x-3)^{3}, d) f(x)=ab3x2f(x)=a b^{3} x^{2}, e) f(b)=ab3x2f(b)=a b^{3} x^{2}, f) f(x)=xn1f(x)=x^{n-1}, g) f(x)=(x14)2f(x)=(x-14)^{2}, h) f(x)=5x4f(x)=\frac{5}{x^{4}}, i) f(x)=xf(x)=\sqrt{x}, j) f(x)=9xf(x)=\sqrt{9 x}, k) f(x)=15xf(x)=\frac{1}{5 \sqrt{x}}, l) f(x)=13x+1x2f(x)=\frac{1}{3} x+\frac{1}{x^{2}}.
Aufgabe 4: a) Finden Sie die Schnittpunkte von f(x)=2x25x+5f(x)=-2 x^{2}-5 x+5 und g(x)=x22x1g(x)=x^{2}-2 x-1. b) Skizzieren Sie die Graphen. c) Berechnen Sie die Fläche zwischen den Graphen.
Aufgabe 5: Bestimmen Sie die Fläche, die vom Graphen f(x)=x34x2+x+6f(x)=x^{3}-4 x^{2}+x+6 und der X-Achse eingeschlossen wird.

See Solution

Problem 13718

Bestimmen Sie, ob die Funktion f(x,t)=1x2e2txf(x, t) = \frac{1}{x^{2}} \cdot e^{\frac{2 t}{x}} integriert, abgeleitet oder grenzwertig untersucht werden soll.

See Solution

Problem 13719

Find dydx\frac{d y}{d x} using first principles for: a) y=8xy=8 x, b) y=3x22xy=3 x^{2}-2 x, c) y=7x2y=7-x^{2}, d) y=x(4x+5)y=x(4 x+5).

See Solution

Problem 13720

Find dydx\frac{d y}{d x} using first principles for: a) y=8xy=8 x, b) y=3x22xy=3 x^{2}-2 x, c) y=7x2y=7-x^{2}, d) y=x(4x+5)y=x(4 x+5), e) y=(2x1)2y=(2 x-1)^{2}.

See Solution

Problem 13721

Solve the differential equation y=3ex+x24y^{\prime}=3 e^{x}+x^{2}-4 with the initial condition y(0)=5y(0)=5.

See Solution

Problem 13722

Find the derivative f(x)f^{\prime}(x) using first principles for the function y=(2x1)2y=(2x-1)^{2}.

See Solution

Problem 13723

Find the general antiderivative of f(x)=15+5x2f(x)=\frac{1}{5+5 x^{2}} using CC as an arbitrary constant.

See Solution

Problem 13724

Find the general antiderivative of f(x)=(23x2)2f(x)=(2-3x^{2})^{2} on interval II, using CC for the constant of integration.

See Solution

Problem 13725

Expand (x+h)4(x+h)^{4} and differentiate y=x4y=x^{4}, y=2x4y=2x^{4}, y=3x4y=3x^{4} using first principles. Identify and predict patterns.

See Solution

Problem 13726

Bestimme das höchste Fieber und den Zeitpunkt, wann es auftritt. Finde den Zeitpunkt des stärksten Fieberabfalls und die durchschnittliche Temperatur in 12 Stunden.

See Solution

Problem 13727

Find dydx\frac{d y}{d x} for the curve x(t)=etx(t)=e^{-t} and y(t)=e2t1y(t)=e^{2 t}-1 at t=13t=\frac{1}{3}.

See Solution

Problem 13728

Berechne die Ableitung von f(x)=7x72x2f^{\prime}(x)=\frac{\sqrt{7 x-7}}{2 x-2} unter Verwendung der Ketten- und Quotientenregel.

See Solution

Problem 13729

Find the derivative of yy with respect to xx using logarithmic differentiation for y=x9sinxy = x^{9} \sin x.

See Solution

Problem 13730

Find the integral expression for the volume of the solid formed by rotating the region bounded by y=x5y=x^{5}, x=1x=-1, x=2x=2, and the yy-axis around the yy-axis.

See Solution

Problem 13731

A 30 ft ladder slides down a wall at 10 ft/s. How fast is the bottom sliding out when the top is 18 ft high?

See Solution

Problem 13732

Find the integral for the volume of the solid formed by rotating the region bounded by y=x5y=x^{5}, x=1x=-1, x=2x=2, and the yy-axis around the yy-axis.

See Solution

Problem 13733

A cone filter is 20 in tall and 5 in radius. Liquid flows out at 4 in³/s. Find depth and surface area change at 12 in deep.

See Solution

Problem 13734

Find the derivative of f(x)=3x42x7f(x)=3 x^{-4}-2 x^{7}.

See Solution

Problem 13735

Determine if the integral 4x4+13x2dx\int_{4}^{\infty} \frac{\sqrt[3]{x^{4}+1}}{x^{2}} d x converges or diverges using comparison or Big-O notation.

See Solution

Problem 13736

Given xy=2xy=2, find dy/dtd y / d t when x=2x=2, dx/dt=10d x / d t=10 and dx/dtd x / d t when x=1x=1, dy/dt=8d y / d t=-8.

See Solution

Problem 13737

Given y=xy=\sqrt{x}, find dy/dtd y / d t when x=1x=1 and dx/dt=6d x / d t=6, and dx/dtd x / d t when x=49x=49 and dy/dt=5d y / d t=5.

See Solution

Problem 13738

Bestimme aa so, dass die Fläche unter f(x)=x2f(x)=x^{2} von 00 bis 44 im Verhältnis 1:71:7 durch x=ax=a geteilt wird.

See Solution

Problem 13739

Calculez la dérivée de S(t)=3.1ln[1210(t+10)]S(t)=3.1 \ln [1210(t+10)] pour trouver le taux de variation en 2005 (t=3t=3).

See Solution

Problem 13740

Profit annuel P(q)=500q+10qP(q)=500 \sqrt{q}+10 q avec q(n)=10000n100n2n3q(n)=10000 n-100 n^{2}-n^{3}. Trouvez dPdn\frac{d P}{d n} et évaluez-le pour n=25n=25. Justifiez l'embauche de travailleurs.

See Solution

Problem 13741

Find the volume of the solid formed by rotating the area between y=sin(x)y=\sin(x) and the xx-axis (π2xπ\frac{\pi}{2} \leq x \leq \pi) around y=1y=-1.

See Solution

Problem 13742

Calculez le profit marginal dPdn\frac{d P}{d n} à partir de P(q)=500q+10qP(q)=500 \sqrt{q}+10 q et q(n)=10000n100n2n3q(n)=10000 n-100 n^{2}-n^{3}.

See Solution

Problem 13743

Find the derivative of f(x)=sinx3exf(x)=\frac{\sin x}{3 e^{x}}.

See Solution

Problem 13744

Calculez le profit marginal P(q)P'(q) pour 25 travailleurs, sachant que P(q)=500q+10qP(q)=500 \sqrt{q}+10 q et q(n)=10000n100n2n3q(n)=10000 n-100 n^{2}-n^{3}.

See Solution

Problem 13745

Find the tangent line equation for f(x)=5x2(32x)3f(x)=\frac{5 x^{2}}{(3-2 x)^{3}} at x=2x=2: y=y=

See Solution

Problem 13746

Find the second derivative d2y/dx2d^{2} y / d x^{2} for the function y=xcos(5x)sin2(x)y=x \cos (5 x)-\sin ^{2}(x).

See Solution

Problem 13747

Find the derivative f(x)f^{\prime}(x) of the function f(x)=(8x5)3(4x2+2)2f(x)=(8x-5)^{3}(4x^{2}+2)^{2}.

See Solution

Problem 13748

Find the population N(9)N(9) of a city after 9 years if dNdt=900+600t\frac{dN}{dt}=900+600\sqrt{t} and N(0)=5000N(0)=5000.

See Solution

Problem 13749

Find the total cost function M(x)M(x) for drilling an oil well, given M(x)=2000+80xM^{\prime}(x)=2000+80x and M(0)=40000M(0)=40000. M(x)=M(x)=\square

See Solution

Problem 13750

Find the population N(16)N(16) after 16 years if dNdt=600+300t\frac{d N}{d t}=600+300 \sqrt{t} and N(0)=3000N(0)=3000.

See Solution

Problem 13751

Find the total cost function M(x)M(x) for drilling an oil well, given M(x)=2000+80x\mathrm{M}^{\prime}(x)=2000+80x and fixed cost $40,000\$ 40,000.

See Solution

Problem 13752

Fonction f(x)=xe12x2f(x)=x e^{1-2 x^{2}} : a) Trouver limxf(x)\lim_{x \to -\infty} f(x) et limxf(x)\lim_{x \to \infty} f(x). b) Identifier et classifier les extremums de ff.

See Solution

Problem 13753

Find g(x)g(x) if g(x)dx=(2x2+9)4+C\int g(x) dx = (2x^2 + 9)^4 + C.

See Solution

Problem 13754

Find f(x)f(x) if f(x)dx=(x+3)3ex+ln(x)+C\int f(x) d x=(x+3)^{3} e^{x}+\ln (|x|)+C.

See Solution

Problem 13755

Find f(x)f(x) if f(x)dx=(x+3)ln(x3)+C\int f(x) dx = (x+3) \ln (|x-3|) + C.

See Solution

Problem 13756

Find the company's worth in 2000 if its growth rate is given by f(t)=18708t2f^{\prime}(t)=1870-8t^{2} and f(0)=75000f(0)=75000.

See Solution

Problem 13757

Find the integral of 1(4x9)5\frac{1}{(4 x-9)^{5}} with respect to xx.

See Solution

Problem 13758

Find the integral (1+2x2)ex2dx\int(1+2 x^{2}) e^{x^{2}} dx. Which option is correct? A, B, or C?

See Solution

Problem 13759

Find the total cost for producing 22 units given the marginal cost C(q)=3q218q+78C^{\prime}(q)=3 q^{2}-18 q+78 and C(0)=490C(0)=490.

See Solution

Problem 13760

Find f(3)f(3) given that f(t)=3t2+etf^{\prime}(t)=3 t^{2}+e^{t} and f(0)=4f(0)=4.

See Solution

Problem 13761

A bike manufacturer has a marginal cost function C(q)=7000.8q+6C'(q)=\frac{700}{0.8 q+6}.
a) With fixed costs of \$3400, find total cost for 25 bikes.
b) If selling price is \$300 each, what is profit/loss for 25 bikes?
c) What is the marginal profit for bike 26?

See Solution

Problem 13762

Find the distance traveled by a car with velocity v(t)=10t+(364)t2v(t)=10 t+\left(\frac{3}{64}\right) t^{2} from t=0t=0 to t=4t=4.

See Solution

Problem 13763

Una moneda cae desde una mesa y tarda 9.1 segundos en llegar al suelo. ¿Cuál es su velocidad de caída? (5 puntos)

See Solution

Problem 13764

A 25 ft ladder leans against a wall. Base moves away at 2 ft/sec. Find top's velocity at 7, 15, and 20 ft from the wall. Also, rate of angle change at 15 ft.

See Solution

Problem 13765

Find the profit formula P(x)P(x) given P(x)=300+0.6xP^{\prime}(x)=300+0.6x and P(0)=3000P(0)=-3000.

See Solution

Problem 13766

A bike manufacturer has a marginal cost function C(q)=7000.8q+6C^{\prime}(q)=\frac{700}{0.8 q+6}.
a) Total cost for 25 bikes with fixed cost \$ 3400?
b) Profit/loss on first 25 bikes sold at \$ 300 each?
c) Marginal profit on bike 26?

See Solution

Problem 13767

Find the limit of f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=1x+1f(x)=\frac{1}{x+1}.

See Solution

Problem 13768

Find the rates of change of area A=xyA = xy and diagonal d=x2+y2d = \sqrt{x^2 + y^2} for given xx and yy values.

See Solution

Problem 13769

Find the rate of change of area A=xyA = xy when x=3 cmx=3 \mathrm{~cm}, y=4 cmy=4 \mathrm{~cm}, with rates dx/dt=3dx/dt = -3 and dy/dt=2dy/dt = 2.

See Solution

Problem 13770

The radius rr is shrinking at 2 cm/sec2 \mathrm{~cm/sec}, and height hh is growing at 1 cm/sec1 \mathrm{~cm/sec}. Find A(t)A'(t) for A=2πrhA=2 \pi r h when r=1 cmr=1 \mathrm{~cm} and h=3 cmh=3 \mathrm{~cm}.

See Solution

Problem 13771

Evaluate the limit as xx approaches 2 from the right: limx2+(ln(x1)(x2)2)\lim _{x \rightarrow 2^{+}}\left(\frac{\ln (x-1)}{(x-2)^{2}}\right).

See Solution

Problem 13772

Show that limx0(sin(x)x)=1\lim _{x \rightarrow 0}\left(\frac{\sin (x)}{x}\right)=1 using l'Hopital's Rule.

See Solution

Problem 13773

Find the horizontal asymptote of the function f(x)=3x4+55x42f(x)=\frac{3 x^{4}+5}{5 x^{4}-2}.

See Solution

Problem 13774

Evaluate the limit as xx approaches infinity: limx(x2ex)\lim _{x \rightarrow \infty}\left(x^{2}-e^{x}\right).

See Solution

Problem 13775

Trouvez l'équation de la tangente à y=x2+2x1y=\frac{x^{2}+2}{x-1} au point x=0x=0 et tracez-la sur le graphique.

See Solution

Problem 13776

Find the limit: limx(x+1x1)x\lim _{x \rightarrow \infty}\left(\frac{x+1}{x-1}\right)^{x}.

See Solution

Problem 13777

Déterminez limxxe12x2\lim _{x \rightarrow-\infty} x e^{1-2 x^{2}} et limxxe12x2\lim_{x \rightarrow \infty} x e^{1-2 x^{2}}.

See Solution

Problem 13778

A 700 g isotope decays as A(t)=700e0.045tA(t)=700 e^{-0.045 t}. Find: (a) amount left after 30 years, (b) time to half decay.

See Solution

Problem 13779

Pour la fonction f(x)=xe12x2f(x)=x e^{1-2 x^{2}}, calculez les limites limxf(x)\lim _{x \rightarrow-\infty} f(x) et limxf(x)\lim _{x \rightarrow \infty} f(x). Ensuite, trouvez et classez les extremums de ff.

See Solution

Problem 13780

A dinosaur's bones weigh 170 lbs and are 9 ft long. Show A=A0e0.50228tA=A_{0} e^{-0.50228 t} using decay rate kk.

See Solution

Problem 13781

Calculate the left and right Riemann sums for f(x)=2x+3f(x)=\frac{2}{x}+3 on [1,5][1,5] with n=4n=4.

See Solution

Problem 13782

Invest \18,755at6.9%interest,compoundedcontinuously.Findthefunctionforamountaftertime18,755 at 6.9\% interest, compounded continuously. Find the function for amount after time t$, and balances for 1, 2, 5, 10 years, plus doubling time.

See Solution

Problem 13783

Calculate the left and right Riemann sums for f(x)=2x+3f(x)=\frac{2}{x}+3 on [1,5][1,5] with n=4n=4.

See Solution

Problem 13784

Find the area between the curves y=2x3+18y=2 x^{3}+18 and y=2x3+x23xy=2 x^{3}+x^{2}-3 x at their intersection points.

See Solution

Problem 13785

Calculate the area under the curve y=12x2y=12 x^{2} from x=1x=1 to x=2x=2.

See Solution

Problem 13786

Calculate the area between the curves y=x3+6y=x^{3}+6 and y=x3+3x23xy=x^{3}+3 x^{2}-3 x where they intersect.

See Solution

Problem 13787

Find the derivative of the function f(x)=2x+1f(x)=\sqrt{2x+1}. What is f(x)f'(x)?

See Solution

Problem 13788

Find the value(s) of cc from the Mean Value Theorem for Integrals for f(x)=cosxf(x)=\cos x on [π3,π3][-\frac{\pi}{3}, \frac{\pi}{3}]. Round to four decimal places.

See Solution

Problem 13789

Find cc from the Mean Value Theorem for Integrals for f(x)=cosxf(x)=\cos x over [π3,π3]\left[-\frac{\pi}{3}, \frac{\pi}{3}\right].

See Solution

Problem 13790

Calculate the left and right Riemann sums for f(x)=3x+2f(x)=\frac{3}{x}+2 on [1,5][1,5] with n=4n=4.

See Solution

Problem 13791

Find dydx\frac{d y}{d x} and d2ydx2\frac{d^{2} y}{d x^{2}}. When is the curve concave upward for x=t2+at+a2x=t^{2}+a t+a^{2}, y=13t32at2y=\frac{1}{3} t^{3}-2 a t^{2}?

See Solution

Problem 13792

Find the derivative of f(x)=18ex+14x6+x8exf(x)=\frac{1}{8} e^{x}+14 x^{6}+\frac{x}{8} e^{x}.

See Solution

Problem 13793

Find dydx\frac{dy}{dx} and d2ydx2\frac{d^2y}{dx^2}. For which tt is the curve concave upward? Given x=t2+at+a2x=t^2+at+a^2, y=13t32at2y=\frac{1}{3}t^3-2at^2 (a>0a>0).

See Solution

Problem 13794

Analyze the function y=xx2+49y=\frac{x}{x^{2}+49}. Find intercepts, extrema, inflection points, and asymptotes.

See Solution

Problem 13795

Find values of tt where the curve of the function (2t4a)(2t+a)(t24ab(2))(2t+a)3\frac{(2 t-4 a)(2 t+a)-\left(t^{2}-4 a b(2)\right)}{(2 t+a)^{3}} is increasing.

See Solution

Problem 13796

Analyze the function y=xx2+49y=\frac{x}{x^{2}+49}. Find intercepts, extrema, inflection points, and asymptotes.

See Solution

Problem 13797

Determine if the curve defined by x=c2cosat,y=sin2atx=c^{2 \cos a t}, y=\sin^{2} a t has no horizontal tangent for a>0a>0. True or false?

See Solution

Problem 13798

How long does it take for a basketball dropped from 24 m24 \mathrm{~m} to hit the ground?

See Solution

Problem 13799

Find the rate of change for f(x)=3x+1f(x)=3x+1 and g(x)=3x+1g(x)=3^x+1 over [1,4][1,4] and determine which grows faster.

See Solution

Problem 13800

Berechne die Halbwertszeit von Cäsium, wenn nach 1 Jahr 2,3\% zerfallen sind. Bestimme auch den Rest nach 60 Jahren. Jod mit 8 Tagen Halbwertszeit: Wie lange bis 0,1\% übrig?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord