Calculus

Problem 25801

Find the exact value of these integrals: (a) 23xdx\int_{-2}^{3}|x| dx and 01(5x3+2x23)dx\int_{0}^{1}(5x^{3}+2x^{2}-3) dx.

See Solution

Problem 25802

Find the derivative f(x)f^{\prime}(x) for f(x)=lnx84x2f(x)=\ln x^{8}-4 x^{2}.

See Solution

Problem 25803

Find the tangent line equation at x=7x=7 for f(x)=6x2f(x)=6-x^{2}. Choose the correct option: A, B, C, or D.

See Solution

Problem 25804

What are the units of the integral 020f(t)dt\int_{0}^{20} f(t) dt if y=f(x)y=f(x) is in Newtons and xx in meters?

See Solution

Problem 25805

Find the min and max of f(x)=xe2xf(x)=x e^{-2 x} for 0x20 \leq x \leq 2. Min at x=x=\square, Max at x=x=.

See Solution

Problem 25806

Find the tangent line equation at x=7x=7 for f(x)=6x2f(x)=6-x^{2} in the form y=mx+by=m x+b. Options: A, B, C, D.

See Solution

Problem 25807

Find limx9000C(x)x\lim_{x \rightarrow 9000} \frac{C(x)}{x} for C(x)=9000+9xC(x)=9000+9x. Options: A. 6 B. 10 C. 14 D. Does not exist.

See Solution

Problem 25808

Rewrite the integral using uu and dudu, then evaluate: (u)2du,u=8x+21\int (u)^{-2} du, \quad u=8x+21

See Solution

Problem 25809

Find f(5)f(5) for the function with f(x)=5x+10sin(x)f^{\prime \prime}(x)=5 x+10 \sin (x), given f(0)=2f(0)=2 and f(0)=2f^{\prime}(0)=2.

See Solution

Problem 25810

Find the antiderivative F(t)F(t) of f(t)=4sec2(t)6t2f(t)=4 \sec ^{2}(t)-6 t^{2} with F(0)=0F(0)=0. Calculate F(0.9)F(0.9).

See Solution

Problem 25811

C-14 half-life is 5730 years. If a skeleton lost 85% of C-14, find decay rate kk and age in years, rounded to whole number.

See Solution

Problem 25812

Differentiate y=x3x1y=\frac{x^{3}}{x-1} and find dydx\frac{d y}{d x}. Choose the correct option from A, B, C, D.

See Solution

Problem 25813

Find the missing expression to make the equation valid: ddxln(x7+5)=1x7+5?\frac{d}{d x} \ln \left(x^{7}+5\right)=\frac{1}{x^{7}+5} ? The missing expression is \square.

See Solution

Problem 25814

9. Given the death rate model f(t)f(t) for SARS in Singapore in 2003, answer the following: (a) What are the units of 028f(t)dt\int_{0}^{28} f(t) dt? (b) What does 028f(t)dt\int_{0}^{28} f(t) dt represent? (c) Estimate 028f(t)dt\int_{0}^{28} f(t) dt using a Riemann sum.

See Solution

Problem 25815

Find the absolute max and min of p(x)=x22p(x)=x^{2}-2 on [2,3][-2,3]. A. Min is \square at x=x=\square. B. No min. Max: \square at x=x=\square.

See Solution

Problem 25816

Given 27f(x)dx=12\int_{2}^{7} f(x) d x=12 and 24(f(x)+5)dx=8\int_{2}^{4}(f(x)+5) d x=8, find 74f(x)dx\int_{7}^{4} f(x) d x.

See Solution

Problem 25817

Rewrite the integral using uu and dudu, then evaluate: x3x+4dx,u=3x+4\int x \sqrt{3x+4} \, dx, \quad u=3x+4

See Solution

Problem 25818

Find the absolute maximum and minimum of p(x)=x22p(x)=x^{2}-2 on the interval [2,3][-2,3]. A. Max is \square at x=x=\square. B. No min.

See Solution

Problem 25819

Find the limit: limx0x0t2+4dtx\lim _{x \rightarrow 0} \frac{\int_{x}^{0} \sqrt{t^{2}+4} d t}{x}. What is it equal to? Options: \infty, 2-2, 2, -\infty.

See Solution

Problem 25820

Find the average value of f(x)=50060xf(x)=500-60x over [0,2][0,2]. Graph f(x)f(x) in red and its average in blue.

See Solution

Problem 25821

Find the derivative f(x)f^{\prime}(x) for f(x)=6x2+8x3+11xf(x)=6 x^{-2}+8 x^{3}+11 x. Choose the correct option.

See Solution

Problem 25822

Find the values of the following integrals given the conditions on ff and gg:
(a) 77g(x)dx=\int_{7}^{7} g(x) d x= (b) 13f(x)dx=\int_{1}^{-3} f(x) d x= (c) 15g(x)dx=\int_{1}^{5} g(x) d x= (d) 31(4f(x)+7g(x))dx=\int_{-3}^{1}(4 f(x)+7 g(x)) d x=

See Solution

Problem 25823

Find the limit as xx approaches -1 for 6x+55x6\frac{6x+5}{5x-6}. Choices: A. -11 B. 111\frac{1}{11} C. 1 D. 111-\frac{1}{11}

See Solution

Problem 25824

Define 03f(x)dx\int_{0}^{3} f(x) d x as a limit without simplifying or evaluating it.

See Solution

Problem 25825

Find an antiderivative of the function f(x)=151x2f(x)=\frac{-15}{\sqrt{1-x^{2}}}.

See Solution

Problem 25826

Find f(π/6)f(\pi / 6) given f(x)=16sin(4x)f^{\prime \prime}(x)=-16 \sin(4x), f(0)=2f^{\prime}(0)=-2, and f(0)=3f(0)=3.

See Solution

Problem 25827

Calculate the integrals: (c) 14(13x)2dx\int_{1}^{4}\left(1-\frac{3}{x}\right)^{2} dx and (d) 483e6x7dx\int_{4}^{8} 3 e^{6x-7} dx.

See Solution

Problem 25828

Find the average rate of change of the function gg from x=5x = -5 to x=3x = -3 using g(5)=1g(-5) = -1 and g(3)=1g(-3) = 1.

See Solution

Problem 25829

Find the absolute max and min of f(x)=x352x22x+1f(x)=x^{3}-\frac{5}{2} x^{2}-2 x+1 on the interval [1,3][-1,3].

See Solution

Problem 25830

Find the derivative dydx\frac{d y}{d x} for y=13x3+x710y=\frac{1}{3 x^{3}}+\frac{x^{7}}{10}. Options: A, B, C, D.

See Solution

Problem 25831

Find the derivative dydx\frac{d y}{d x} for y=13x3+x710y=\frac{1}{3 x^{3}}+\frac{x^{7}}{10}. Options: A, B, C, D.

See Solution

Problem 25832

Find S(3)S(3) and S(3)S^{\prime}(3) for S(t)=800tt+2S(t)=\frac{800 t}{t+2}. What do the results mean?

See Solution

Problem 25833

Find the derivative f(x)f^{\prime}(x) for f(x)=5ex4x2f(x)=5 e^{x}-4 x^{2}. Options: A. 5ex8x5 e^{x}-8 x, B. 5ex8x25 e^{x}-8 x^{2}, C. 5xex18x25 x e^{x-1}-8 x^{2}, D. 5ex2x5 e^{x}-2 x.

See Solution

Problem 25834

Find the derivative f(x)f^{\prime}(x) for f(x)=(4x2+3x)2f(x)=(4x^{2}+3x)^{2}. Choose the correct option.

See Solution

Problem 25835

Evaluate the integral: 9xdx=\int \frac{9}{x} dx = \square

See Solution

Problem 25836

Find the derivative of f(x)=x2(x5)t(x2+2)2f(x)=\frac{x^{2}(x-5)^{t}}{(x^{2}+2)^{2}} using logarithmic differentiation. Calculate f(5)f'(5).

See Solution

Problem 25837

Find the derivative dydx\frac{d y}{d x} for: 1) y=ln(2x10xx2+14)y=\ln\left(\frac{2x-10}{x\sqrt[4]{x^2+1}}\right) and 2) y=xcos(x)y=x^{\cos(x)}.

See Solution

Problem 25838

Find the general antiderivative of f(x)=ex+3sec2(x)f(x)=e^{x}+3 \sec ^{2}(x) for π2<x<π2-\frac{\pi}{2}<x<\frac{\pi}{2}. Use CC for constants. F(x)= F(x)=

See Solution

Problem 25839

Find the expression for f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} where f(x)=x23x+9f(x)=x^{2}-3x+9 for h0h \neq 0. Choices: (A) h23hh^{2}-3h, (B) h3h-3, (C) 2a+h2a+h, (D) 2a+h32a+h-3.

See Solution

Problem 25840

Find the function ff where f(x)=2cos(x)+sec2(x)f^{\prime}(x)=2 \cos (x)+\sec ^{2}(x) for π/2<x<π/2-\pi / 2<x<\pi / 2 and f(π/3)=6f(\pi / 3)=-6.

See Solution

Problem 25841

Find the missing expression ? to make the equation valid: ddx(7x+8)3=3(7x+8)2?\frac{d}{d x}(7 x+8)^{3}=3(7 x+8)^{2} ?

See Solution

Problem 25842

Find ff given f(x)=2cos(x)+sec2(x)f'(x) = 2 \cos(x) + \sec^2(x) for π/2<x<π/2-\pi/2 < x < \pi/2 and f(π/3)=6f(\pi/3) = -6.

See Solution

Problem 25843

Determine the horizontal asymptotes for the function f(x)=4x4+3x+55x4+3x2f(x)=\frac{4 x^{4}+3 x+5}{5 x^{4}+3 x-2}.

See Solution

Problem 25844

Find yy^{\prime} using implicit differentiation and match it with the correct expression from the options given.

See Solution

Problem 25845

Compute 1πf(x)dx\int_{-1}^{\pi} f(x) dx where f(x)=x2f(x) = x^2 for x0x \leq 0 and f(x)=sinx+Cf(x) = -\sin x + C for x>0x > 0.

See Solution

Problem 25846

How long for \$8400 to grow to \$14,600 at a 9.4% continuous interest rate? Round to the nearest hundredth.

See Solution

Problem 25847

Analyze the function f(x)=x3x24f(x)=\frac{x^{3}}{x^{2}-4}.
A. Identify vertical asymptotes: x=2,2x=-2,2. B. Find local max at xmax=x_{\max }=\square and min at xmin=x_{\min }=\square. C. Determine if f(x)f(x) is INC or DEC on (,max)(-\infty, \max). D. Find intervals where f(x)f(x) is concave up: \square. E. Locate the inflection point at x=x=\square. F. Sketch and bring the graph to class.

See Solution

Problem 25848

Find the time for \$8400 to grow to \$14,600 at a 9.4% continuous interest rate. Round to the nearest hundredth.

See Solution

Problem 25849

Find the rate of change of the base of a triangle given the altitude is 10 cm, area is 84 cm², height increases at 3 cm/min, and area at 5 cm²/min.

See Solution

Problem 25850

Evaluate the integral: 013x3dx=\int_{0}^{1} 3 \sqrt[3]{x} \, dx = \square (Provide the exact simplified answer.)

See Solution

Problem 25851

For the function f(x)=6x23x6f(x)=6 x^{2}-3 x-6, find f(x+h)f(x+h) and simplify f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}.

See Solution

Problem 25852

Find the limit: limx+(1+16x)2x=\lim _{x \rightarrow+\infty}\left(1+\frac{1}{6 x}\right)^{-2 x}=\square. Enter "DNE" if it doesn't exist.

See Solution

Problem 25853

Find critical numbers A<BA<B for f(x)=ln(x)x5f(x)=\frac{\ln (x)}{x^{5}} and determine if f(x)f^{\prime}(x) is + or - in (A,B)(A, B) and (B,)(B, \infty). Conclude if f(x)f(x) has a local MAX or MIN at BB.

See Solution

Problem 25854

Find the critical number AA for f(x)=5(x3)23f(x)=5(x-3)^{\frac{2}{3}} and state if it's a local MAX or MIN.

See Solution

Problem 25855

Find the time xx that maximizes drug concentration given by K(x)=3.0xx2+25K(x)=\frac{3.0 x}{x^{2}+25}. Round to nearest tenth.

See Solution

Problem 25856

Find the xx-coordinate of the absolute minimum for f(x)=exx4f(x)=\frac{e^{x}}{x^{4}}, where x>0x>0. What is it?

See Solution

Problem 25857

Find the xx-coordinate of the absolute maximum for f(x)=2+6ln(x)xf(x)=\frac{2+6 \ln (x)}{x}, where x>0x>0.

See Solution

Problem 25858

Find critical values and intervals where f(x)=x3+3x224x+6f(x)=x^{3}+3 x^{2}-24 x+6 is increasing or decreasing.

See Solution

Problem 25859

Find the absolute min and max of f(x)=xe2xf(x)=x e^{-2 x} for 0x20 \leq x \leq 2. What are their values and where do they occur?

See Solution

Problem 25860

Find the derivative f(x)f'(x) of the function f(x)=9x5(x46)f(x)=9x^5(x^4-6).

See Solution

Problem 25861

Find critical numbers AA and BB for f(x)=x2e10xf(x)=x^{2} e^{10 x}. Determine the sign of f(x)f^{\prime}(x) in given intervals and classify extrema.

See Solution

Problem 25862

Evaluate the integral from 4 to 4 of (x25x+6)10(x^{2}-5x+6)^{10}. What is the result?

See Solution

Problem 25863

Soit la fonction f(x)=xarctan(x+1)f(x)=|x| \arctan (x+1) : (a) Écrivez f(x)f(x) comme fonction par morceaux. (b) Est-elle continue en x=0x=0 ? Justifiez. (c) Est-elle dérivable en x=0x=0 ? Justifiez. (d) Que concluez-vous sur le point (0,f(0))(0, f(0)) ? Justifiez.

See Solution

Problem 25864

Check if the Mean Value Theorem applies to f(x)=3sin1xf(x)=3 \sin^{-1} x on [1,1][-1,1]. If yes, find cc values; else, enter DNE.

See Solution

Problem 25865

Check if the Mean Value Theorem applies to f(x)=12lnx+7f(x)=12 \ln x+7 on [1,7][1,7]. If so, find cc values in [1,7][1,7]. If not, enter DNE. c=(c=\square( Separate multiple answers by commas.)

See Solution

Problem 25866

Find the average slope of f(x)=2x39x260x+1f(x)=2 x^{3}-9 x^{2}-60 x+1 on [5,7][-5,7] and list cc values where f(c)f'(c) equals this slope.

See Solution

Problem 25867

Find all values of c\mathrm{c} satisfying Rolle's Theorem for f(x)=5xx+2f(x)=5 x \sqrt{x+2} on [2,0][-2,0].

See Solution

Problem 25868

Find all values of c\mathrm{c} for the Mean Value Theorem for f(x)=e3xf(x)=e^{-3x} on [0,3][0,3]. Use N\mathrm{N} for unused blanks.

See Solution

Problem 25869

Which identity about g(x)=f(x)dxg(x)=\int f(x) d x is TRUE? Options include derivatives involving f(x)f(x) and constants.

See Solution

Problem 25870

Approximate 233sin(π3x)dx\int_{2}^{3} 3 \sin \left(\frac{\pi}{3} x\right) d x using midpoint rule with n=6n=6. Round to four decimals.

See Solution

Problem 25871

Evaluate the integral 1f(xm)xm1dx\int_{1}^{\infty} f\left(x^{m}\right) x^{m-1} \, dx for m<0m < 0 given F(1)=5F(1)=5 and limxF(x)=\lim _{x \rightarrow \infty} F(x)=\infty.

See Solution

Problem 25872

Which polynomial function f(x)f(x) has limits -\infty as xx \to -\infty and xx \to \infty? (A) 2x4+3x32x12 x^{4}+3 x^{3}-2 x-1 (B) 2x34x2+3x+72 x^{3}-4 x^{2}+3 x+7 (C) 2x4+3x32x1-2 x^{4}+3 x^{3}-2 x-1 (D) 2x34x2+3x+7-2 x^{3}-4 x^{2}+3 x+7

See Solution

Problem 25873

Evaluate the integral 0812(x1/3)dx\int_{0}^{8} \frac{1}{2\left(x^{1 / 3}\right)} d x and determine if it converges or diverges.

See Solution

Problem 25874

Given a continuous function ff on (0,)(0, \infty) with limx0+f(x)=\lim_{x \to 0^{+}} f(x)=\infty and limxf(x)=0\lim_{x \to \infty} f(x)=0, and g(x)f(x)g(x) \geq f(x), which statement is always TRUE?

See Solution

Problem 25875

Which statement is TRUE by the Comparison Test regarding integrals? Consider e10lnxxdx\int_{e^{10}}^{\infty} \frac{\ln x}{x} dx and others.

See Solution

Problem 25876

Find the derivative of G(x)=xex(costt+1+C)dtG(x)=\int_{x}^{e^{x}}\left(\frac{\cos t}{t+1}+C\right) d t.

See Solution

Problem 25877

Solve for x=f(t)x=f(t) in the equation (t2+4t)dxdt=4x+4(t^{2}+4 t) \frac{d x}{d t}=4 x+4, given f(1)=2f(1)=2.

See Solution

Problem 25878

A guitar string's frequency ff changes with a 1.50%1.50\% increase in tension. Find the new frequency change in percentage.

See Solution

Problem 25879

Find critical points of f(x)=x31xf(x)=\frac{x^{3}-1}{x} and identify local maxima and minima.

See Solution

Problem 25880

Find the derivative of sinxcosxetdt\int_{\sin x}^{\cos x} e^{t} d t. What is it?

See Solution

Problem 25881

Find H(x)H^{\prime}(x) for H(x)=1sin(x)f(t)dtH(x)=\int_{1}^{\sin (x)} f(t) dt. Options: (a) f(sin(x))-f(\sin (x)), (b) f(x)f(x), (c) f(sin(x))cos(x)f(\sin (x)) \cos (x), (d) f(sin(x))f(1)f(\sin (x))-f(1), (e) f(sin(x))cos2(x)f(sin(x))sin(x)f^{\prime}(\sin (x)) \cos ^{2}(x)-f(\sin (x)) \sin (x).

See Solution

Problem 25882

Find the limit: limx0xsin2x(ex1)2\lim _{x \rightarrow 0} \frac{x \sin 2 x}{(e^{x}-1)^{2}}

See Solution

Problem 25883

Calculate the integral 35f(x)dx\int_{3}^{5} f^{\prime}(x) \, dx using the given values of ff and ff^{\prime}.

See Solution

Problem 25884

Evaluate the improper integral 11xdx\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx. What is its value? (a) -1 (b) 0 (c) 1 (d) 2 (e) Diverges.

See Solution

Problem 25885

Evaluate the integral x3(x410)43dx\int x^{3}(x^{4}-10)^{43} dx using the substitution u=x410u=x^{4}-10.

See Solution

Problem 25886

Evaluate the integral of (2x+3)(x2+3x+4)4dx(2x+3)(x^2+3x+4)^4 \, dx using the substitution u=x2+3x+4u=x^2+3x+4. +C+C

See Solution

Problem 25887

Approximate the integral 133sin(π3x)dx\int_{1}^{3} 3 \sin \left(\frac{\pi}{3} x\right) d x using the Trapezoid Rule with n=6n=6. Round to four decimal places.

See Solution

Problem 25888

Find the limit: limx0+ddx(ln(lnx))\lim _{x \rightarrow 0^{+}} \frac{d}{d x}(\ln (\ln x))

See Solution

Problem 25889

Find the limit: limx0+sinx(ddx(ln(lnx)))\lim _{x \rightarrow 0^{+}} \sin x\left(\frac{d}{d x}(\ln (\ln x))\right).

See Solution

Problem 25890

Find the xx-value(s) for local maxima/minima of f(x)=ln(x)xf(x)=\frac{\ln (x)}{x}. Answer: x=1x=1

See Solution

Problem 25891

Find f(π)f(\pi) if f(0)=4f(0)=4 and f(x)=sin(x)+ex+3x2f^{\prime}(x)=\sin (x)+e^{-x}+3 x^{2}. Options: 7+eπ+π37+e^{\pi}+\pi^{3}, 7+eπ+π37+e^{-\pi}+\pi^{3}, 7eπ+π37-e^{\pi}+\pi^{3}, 1+eπ+π31+e^{\pi}+\pi^{3}, 7eπ+π37-e^{-\pi}+\pi^{3}.

See Solution

Problem 25892

Find the xx-value(s) where the local maxima/minima of the function f(x)=23x3+5x28x5f(x)=-\frac{2}{3} x^{3}+5 x^{2}-8 x-5 occur. x=x=

See Solution

Problem 25893

Find g(x)g'(x) for g(x)=2x3sin(t)etdtg(x)=\int_{2}^{x^{3}} \sin (t) e^{t} dt. Options include 3x2sin(x3)ex33 x^{2} \sin (x^{3}) e^{x^{3}} and others.

See Solution

Problem 25894

Evaluate the integral 1e25xdx\int_{1}^{e^{2}} \frac{5}{x} \mathrm{dx} using trapezoid and Simpson's rules with n=4n=4. Find errors.

See Solution

Problem 25895

Approximate e5e^{-5} to four decimal places.

See Solution

Problem 25896

Let ff be continuous on [1,)[1, \infty) with F(1)=5F(1)=5, F(0)=6F(0)=-6, and limxF(x)=\lim_{x \to \infty} F(x)=\infty. If m<0m<0, find the value of 1f(xm)xm1dx\int_{1}^{\infty} f(x^{m}) x^{m-1} dx. Options are: 11m-\frac{11}{m}, 11-11, diverges, or 00.

See Solution

Problem 25897

Evaluate the integral: 3sin2(x)cos(x)dx=+C\int 3 \sin^{2}(x) \cos(x) \, dx = +C

See Solution

Problem 25898

Evaluate the integral: 3sin2(x)cos(x)dx=+c\int 3 \sin ^{2}(x) \cos (x) d x=\square+c

See Solution

Problem 25899

Find yy^{\prime \prime} given x4+y4=16x^{4}+y^{4}=16. First, calculate yy^{\prime}.

See Solution

Problem 25900

Approximate the integral 0π2cosx13/5cosxdx\int_{0}^{\pi} \frac{2 \cos x}{13 / 5-\cos x} d x using Simpson's rule. Find the smallest nn from 4,8,16,324, 8, 16, 32 for error < 10310^{-3}.
n= n=\square

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord