Calculus

Problem 13201

Find the function f(x)f(x) such that f(x)=5xf^{\prime}(x)=\frac{5}{x} and it passes through the point (1,2)(1,2).

See Solution

Problem 13202

Evaluate the integral I₁ = ∫₀² 3√(4 - x²) dx using known areas.

See Solution

Problem 13203

Express the limit as a definite integral: limni=1n(2xisinxi)Δx\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(2 x_{i}^{*} \sin x_{i}^{*}\right) \Delta x for nn subintervals in [1,7][1,7].

See Solution

Problem 13204

Untersuchen Sie die Funktion fa(x)=x33a2x+2a3f_{a}(x)=x^{3}-3 a^{2} x+2 a^{3} auf Extrema und Wendepunkte.

See Solution

Problem 13205

Find the value of the definite integral I=abf(x)dxI=\int_{a}^{b} f(x) d x given the Riemann sum i=1nf(xi)Δxi=3n26n+56n2\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}=\frac{3 n^{2}-6 n+5}{6 n^{2}}.

See Solution

Problem 13206

Find the marginal-cost function and its values for q=225q=225 and q=450q=450 given cˉ=2250eq450q\bar{c}=\frac{2250 e^{\frac{q}{450}}}{q}.

See Solution

Problem 13207

Finde die Stelle, an der die Funktion f(x)=12x2f(x)=\frac{1}{2} x^{2} den Steigungswinkel α=45\alpha=45^{\circ} hat.

See Solution

Problem 13208

Finde die Stelle, an der die Funktion f(x)=2xf(x)=2 \sqrt{x} den Steigungswinkel a=30a=30^{\circ} hat.

See Solution

Problem 13209

Untersuche die Funktion fa(x)=x33a2x+2a3f_{a}(x)=x^{3}-3 a^{2} x+2 a^{3} auf Extrema und Wendepunkte und zeige, dass x=2ax=-2 a eine Nullstelle ist.

See Solution

Problem 13210

A balloon's radius decreases at 15 cm/min15 \mathrm{~cm/min}. Find the volume change rate when volume is 972πcm3972 \pi \mathrm{cm}^{3}. Volume formula: V=43πr3V=\frac{4}{3} \pi r^{3}.

See Solution

Problem 13211

Leite die Funktion ff ab und beantworte folgende Fragen:
1. Produktregel: a) f(x)=x2sin(x)f(x)=x^{2} \cdot \sin (x) b) f(x)=(3x+2)xf(x)=(3 x+2) \cdot \sqrt{x} c) f(x)=4xcos(x)f(x)=\frac{4}{x} \cdot \cos (x)
2. Kettenregel: a) f(x)=2(3x1)2f(x)=2 \cdot(3 x-1)^{2} b) f(x)=18xf(x)=\sqrt{1-8 x} c) f(x)=3(2x+3)2f(x)=\frac{3}{(2 x+3)^{2}}
3. Produkt- und Kettenregel: a) f(x)=3xsin(4x1)f(x)=3 x \cdot \sin (4 x-1) b) f(x)=0,5x(2x+1)f(x)=\sqrt{0,5 x} \cdot(2 x+1) c) f(x)=152xcos(x)f(x)=\frac{1}{5-2 x} \cdot \cos (x)
4. Gegeben: f(x)=x(2x+1)f(x)=-x \cdot(2 x+1) a) Leite ab und vereinfache. b) Bestimme die Steigung im Punkt P(1f(1))P(1 \mid f(1)) und die Tangentengleichung. c) Gibt es waagrechte Tangenten? d) Wo ist die Tangente parallel zu g:y=x+3g: y=x+3? Bestimme die Tangentengleichungen.

See Solution

Problem 13212

Find the marginal-cost function for the average cost cˉ=5500eq550q\bar{c}=\frac{5500 e^{\frac{q}{550}}}{q} at q=275q=275 and q=550q=550.

See Solution

Problem 13213

Simplify the difference quotient for the function f(x)=23x1f(x)=\frac{2}{3x-1}.

See Solution

Problem 13214

Untersuchen Sie die Funktion fa(x)=x33a2x+2a3f_{a}(x)=x^{3}-3 a^{2} x+2 a^{3} auf Extrema, Nullstellen und Symmetrie. Zeichnen Sie die Graphen.

See Solution

Problem 13215

Find if the limit limn1n2{k=1n(3+2k)}\lim _{n \rightarrow \infty} \frac{1}{n^{2}}\left\{\sum_{k=1}^{n}(3+2 k)\right\} exists and its value.

See Solution

Problem 13216

Find the limit of the sum as nn \to \infty: k=1n(6n3k24n2k+3n)\sum_{k=1}^{n}\left(\frac{6}{n^{3}} k^{2}-\frac{4}{n^{2}} k+\frac{3}{n}\right).

See Solution

Problem 13217

Calculate these indefinite integrals: (a) x6dx\int x^{6} dx, (b) x8/11dx\int x^{8/11} dx, (c) x3xdx\int x^{-3} \sqrt{x} dx.

See Solution

Problem 13218

Consider the quadratic f(x)=ax2+bx+cf(x) = ax^2 + bx + c.
(a) Show that the average rate of change on [r,s][r, s] is a(r+s)+ba(r+s) + b.
(b) Is there a point in [r,s][r, s] where the average rate equals the instantaneous rate? Explain.

See Solution

Problem 13219

Find the general antiderivative of the function (3x46x6+12)\left(\frac{3}{x^{4}}-\frac{6}{x^{6}}+12\right).

See Solution

Problem 13220

Find the general antiderivative of the function 16u\frac{1}{6 \sqrt{u}}. Antiderivative == +C+C.

See Solution

Problem 13221

Find h(1)h^{\prime}(1) for h(x)=xf(x)cos(x)h(x)=x f(x) \cos (x) given f(1)=7f(1)=7 and f(1)=6f^{\prime}(1)=6. Round to three decimals.

See Solution

Problem 13222

Untersuchen Sie die Funktion fa(x)=x33a2x+2a3f_{a}(x)=x^{3}-3 a^{2} x+2 a^{3} auf Extrema, Nullstellen und Symmetrie.

See Solution

Problem 13223

Given f(4)=10f(4)=10 and f(4)=9f^{\prime}(4)=9, find (fh)(4)(f h)^{\prime}(4) where h(x)=xh(x)=\sqrt{x}. Round to two decimal places.

See Solution

Problem 13224

Find the antiderivative C(x)C(x) where C(x)=3x25xC^{\prime}(x)=3 x^{2}-5 x and C(0)=8000.C(0)=8000.

See Solution

Problem 13225

Find the limit: limx0f(x)sin(3x)\lim _{x \rightarrow 0} \frac{f(x)}{\sin (3 x)} if limx0f(x)=0\lim _{x \rightarrow 0} f(x)=0 and limx0f(x)=2\lim _{x \rightarrow 0} f^{\prime}(x)=2.

See Solution

Problem 13226

Find the antiderivative C(x)C(x) such that C(x)=6x27xC'(x)=6x^2-7x and C(0)=2000.C(0)=2000.

See Solution

Problem 13227

Bei einer Verkehrszählung wurde die Funktion f(x)=11010x51130000x3+16x+6f(x)=\frac{1}{10^{10}} x^{5}-\frac{1}{130000} x^{3}+\frac{1}{6} x+6 verwendet.
a) Bestimmen Sie die Uhrzeit mit der höchsten Verkehrsdichte. b) Berechnen Sie die Fahrzeuge zwischen 6 und 9 Uhr. c) Ermitteln Sie den durchschnittlichen Fahrzeugstrom zwischen 6 und 8 Uhr.

See Solution

Problem 13228

Find the antiderivative x(t)x(t) for dxdt=2et8\frac{d x}{d t}=2 e^{t}-8 with the condition x(0)=6x(0)=6.

See Solution

Problem 13229

An oil tank drains oil with volume V(t)=0.2(25t)3V(t)=0.2(25-t)^{3} for t[0,25]t \in[0,25].
a) Find initial oil volume. b) Calculate average volume change in the first and last 10 minutes.

See Solution

Problem 13230

Given f(x)f(x) with f(1)=f(0)=f(1)=0f^{\prime \prime}(-1)=f^{\prime \prime}(0)=f^{\prime \prime}(1)=0 and specific concavity, which is true?

See Solution

Problem 13231

Evaluate the integral 23(7x+11)9dx\int \frac{23}{(7 x+11)^{9}} dx using the substitution u=7x+11u=7 x+11.

See Solution

Problem 13232

Evaluate the integral 23(7x+11)9dx\int \frac{23}{(7 x+11)^{9}} d x using the substitution u=7x+11u=7 x+11.

See Solution

Problem 13233

Evaluate the integral xex2dx\int x e^{x^2} dx. Include the constant +C+\mathrm{C}.

See Solution

Problem 13234

Find the limit: limx0+(f(x)+1)1/sin(2x)\lim _{x \rightarrow 0^{+}}(f(x)+1)^{1 / \sin (2 x)} given limx0+f(x)=0\lim _{x \rightarrow 0^{+}} f(x)=0 and limx0+f(x)=2\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=2.

See Solution

Problem 13235

Evaluate the integral: 4sin6(x)cos(x)dx\int 4 \sin ^{6}(x) \cos (x) d x

See Solution

Problem 13236

Find the derivative of A(x)=(13x+2)2A(x)=\left(\frac{1}{3} x+2\right)^{2}.

See Solution

Problem 13237

Find the average and instantaneous rates of change for the boat's distance function d(t)=0.002t3+0.05t2+0.3td(t)=0.002 t^{3}+0.05 t^{2}+0.3 t at t=10t=10. Interpret both results.

See Solution

Problem 13238

A person 1.7 m tall walks away from a 2.55 m pole at 2 m/s. Find the speed of the tip of his shadow when 8 m from the pole.

See Solution

Problem 13239

Two cars are moving towards an intersection. Car A is 300 m east at 60 km/h, and Car B is 400 m south at 75 km/h. Find the rate of distance change.

See Solution

Problem 13240

Bestimme die Stammfunktion von 11ee(xex)dx=\int_{-1}^{1} e^{e} \cdot (x \cdot e^{x}) \, dx =

See Solution

Problem 13241

Berechne den Flächeninhalt des Segels, das von f(x)=x+632x2f(x)=x+6-\frac{32}{x^{2}}, der xx-Achse und der Geraden gg gebildet wird.

See Solution

Problem 13242

Bestimme die Stammfunktion von 11[e:ex(eex)]dx\int_{-1}^{1}\left[e: e^{x}-\left(e \cdot e^{x}\right)\right] d x.

See Solution

Problem 13243

Find the correct assertion from the Taylor polynomial T3(x)=2+(x+π)3(x+π)2(x+π)3T_{3}(x)=2+(x+\pi)-3(x+\pi)^{2}-(x+\pi)^{3}.

See Solution

Problem 13244

Berechne den Flächeninhalt zwischen f(x)=2xf(x)=2 \sqrt{x} und g(x)=2x4g(x)=2x-4 für x0x \geq 0.

See Solution

Problem 13245

Determine the intervals where the function f(x)=x222x+(3+2x)lnx+cf(x)=\frac{x^{2}}{2}-2 x+(3+2 x) \ln x+c is concave up.

See Solution

Problem 13246

Two cars start from the same point: one goes east at 75 km/h75 \mathrm{~km/h}, the other north at 40 km/h40 \mathrm{~km/h}. Find the distance increase rate after 1 hour.

See Solution

Problem 13247

Given Boyle's Law PV=CPV=C, find the rate of volume decrease when V=450 cm3V=450 \mathrm{~cm}^{3}, P=160kPaP=160 \mathrm{kPa}, and dPdt=20kPamin\frac{dP}{dt}=20 \frac{\mathrm{kPa}}{\min}.

See Solution

Problem 13248

A cylinder with diameter 12 cm leaks water at 0.5 cm/min. Find the leak rate in cm³/min when water is 4 cm high.

See Solution

Problem 13249

Calculate the area between the lines y=x+4y=x+4 and y=9x2+xy=9x^{2}+x from x=1x=1 to x=2x=2.

See Solution

Problem 13250

Insect population P(t)=700e0.08t\mathrm{P}(t)=700 e^{0.08 t}: (a) Find P(0)\mathrm{P}(0). (b) What is the growth rate? (c) Find P(10)\mathrm{P}(10). (d) When is P=980\mathrm{P}=980? (e) When does P\mathrm{P} double?

See Solution

Problem 13251

A trebuchet launches a projectile from 47ft47 \mathrm{ft} at 40ft/s40 \mathrm{ft/s}. Find the time to reach 60ft60 \mathrm{ft} and return.

See Solution

Problem 13252

Differentiate f(x)=2x1f(x)=\frac{2}{x}-1 and check if it's differentiable at x=1x=1.

See Solution

Problem 13253

Bestimmen Sie die Steigung von KrK_{r} bei x=1x=-1 und den Schnittpunkten von f(x)=3x25xf(x)=3 x^{2}-5 x mit der x\mathrm{x}-Achse.

See Solution

Problem 13254

Is the tangent line to f(x)=xexf(x)=x e^{-x} at x=1x=1 above or below the graph? Explain why.

See Solution

Problem 13255

Berechne die Integrale für die Funktion ff und gib die Formeln an. a) 14x2dx\int_{1}^{4} x^{2} d x b) 35xdx\int_{3}^{5} x d x c) 783dx\int_{7}^{8} 3 d x

See Solution

Problem 13256

Find the function S(t)S(t) for monthly sales declining at S(t)=10t23S^{\prime}(t)=-10 t^{\frac{2}{3}} from 920 to 500 computers.

See Solution

Problem 13257

Un gérant veut construire un enclos rectangulaire de 48 m². Trois côtés coûtent 18 \$/m² et un côté 80 \$/m². Trouver les dimensions minimales.

See Solution

Problem 13258

Bestimme die Integrationsgrenze bb für a) 0bxdx=2\int_{0}^{b} x \, dx = 2 und b) 0bx2dx=9\int_{0}^{b} x^{2} \, dx = 9.

See Solution

Problem 13259

Bestimme die Grenze bb für 0bx2dx=5\int_{0}^{b} x^{2} d x=5.

See Solution

Problem 13260

Find the first and second derivatives of f(x)=2x2cos(x)f(x) = \sqrt{2}x - 2\cos(x) and verify if f(x)=25xf''(x) = 25x is correct.

See Solution

Problem 13261

Find the derivative of f(x)=4x2x25x2x22x2f(x)=\frac{4x^2}{x^2}-\frac{5x^2}{x^2}-\frac{2}{x^2}.

See Solution

Problem 13262

A cylinder with diameter 12 cm leaks water at 0.5 cm/min. Find the leak rate in cm³/min when water is 4 cm high.

See Solution

Problem 13263

Given f(3)=8f(3)=8, f(3)=5f'(3)=5, g(3)=9g(3)=9, g(3)=7g'(3)=7, find ddx(f(x)g(x))x=3\left.\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)\right|_{x=3}. Round to 2 decimals.

See Solution

Problem 13264

Find the domain of f(x)=x2lnxf(x)=x^{2} \ln x, critical points, intervals of increase/decrease, and inflection point.

See Solution

Problem 13265

Given f(5)=2f(5)=2, f(5)=8f'(5)=8, g(5)=9g(5)=9, and g(5)=3g'(5)=3, find ddx(2f(x)3g(x)+4)x=5\left.\frac{d}{d x}(2 f(x)-3 g(x)+4)\right|_{x=5}. Round to 2 decimal places.

See Solution

Problem 13266

Given f(2)=4f(-2)=4, f(2)=10f'(-2)=10, g(2)=5g(-2)=5, g(2)=7g'(-2)=7, find ddx(f(x)g(x))x=2\left.\frac{d}{d x}(f(x) \cdot g(x))\right|_{x=-2}.

See Solution

Problem 13267

Find which statement is true based on the Taylor polynomial T3(x)=2+(x+π)3(x+π)2(x+π)3T_{3}(x)=2+(x+\pi)-3(x+\pi)^{2}-(x+\pi)^{3}.

See Solution

Problem 13268

Find values of aa and bb for f(x)=ax3+x2+bx2f(x)=a x^{3}+x^{2}+b x-2 to have a max at x=3x=3 and min at x=2x=2.

See Solution

Problem 13269

Determine where the function f(x)=x222x+(3+2x)lnx+cf(x)=\frac{x^{2}}{2}-2 x+(3+2 x) \ln x+c is concave up: (0.5,3)(0.5,3), (0,1)(0,1), (1,)(1, \infty), (0,0.5)(0,0.5) and (1,)(1, \infty), or never.

See Solution

Problem 13270

Find the integral of 2x21+x2dx\frac{2 x^{2}}{1+x^{2}} \, dx.

See Solution

Problem 13271

Finde den Punkt auf dem Graphen von h(x)=4x33x2+5x7h(x)=4 x^{3}-3 x^{2}+5 x-7, wo die Steigung m=65m=65 ist.

See Solution

Problem 13272

Find the critical points of f(x)=(27x)8xf(x)=\frac{(2-7 x)}{8^{x}}. Provide exact answers, stating if there are no critical points.

See Solution

Problem 13273

A firm has a price of \5.00andaproductionfunction5.00 and a production function Q=f(L, K)=20 \times L^{0.25} \times K^{0.5}.Findtheprofitmaximizinginputs. Find the profit-maximizing inputs (\bar{L}, \bar{K})$.

See Solution

Problem 13274

Evaluate the integral: (3x+e3x)dx=?\int\left(\frac{3}{x}+e^{3 x}\right) d x=?

See Solution

Problem 13275

Two cars move from the same point: one east at 72 km/h72 \mathrm{~km/h}, the other north at 30 km/h30 \mathrm{~km/h}. Find the distance increase rate after 5 hours.

See Solution

Problem 13276

How many years to triple an investment with continuous compounding at 8.2%8.2\%?

See Solution

Problem 13277

Oil leaks from a tanker at r=18e3tr=18 e^{3 t} gallons/hour. Find the integral for 3 hours and estimate using a left sum with 3 parts.

See Solution

Problem 13278

Bestimmen Sie die Ableitung der Funktion f(x)=14ex2,5xf(x)=\frac{1}{4} e^{x}-2,5 x.

See Solution

Problem 13279

Find the derivative of f(x)=2x34x2+3xf(x)=\frac{2 x^{3}-4 x^{2}+3}{x}.

See Solution

Problem 13280

Find the derivative of f(x)=sin(arccos(x))f(x) = \sin(\arccos(x)) using two methods and verify they match.

See Solution

Problem 13281

Determine if the series n=1(1)nln(n5)n2\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln(n^{5})}{n^{2}} converges absolutely, conditionally, or diverges.

See Solution

Problem 13282

Find the xx of the critical point for f(x)=x2x2+2f(x)=\frac{x^{2}}{x^{2}+2} with f(x)=4x(x2+2)2f^{\prime}(x)=\frac{4 x}{(x^{2}+2)^{2}}. Identify intervals of increase/decrease and classify the critical point.

See Solution

Problem 13283

Find local min and max of ff where f(x)=(x28)exf^{\prime}(x)=(x^{2}-8)e^{x} and concavity in the interval ( \square ).

See Solution

Problem 13284

Ein Würfel hat Kanten von 60 cm60 \mathrm{~cm}. Kanten verkürzen sich um 2 cm2 \mathrm{~cm}/Minute. Was bedeuten f(t)=(602t)3f(t)=(60-2 t)^{3} und f(2)f^{\prime}(2)?

See Solution

Problem 13285

Find the derivative of c(x)=0.5x100xc(x)=\frac{0.5 x}{100-x} at x=80x=80, x=90x=90, x=95x=95, and x=99x=99. Calculate c(80)c'(80), c(90)c'(90), c(95)c'(95), c(99)c'(99).

See Solution

Problem 13286

Find local min and max of f(x)f(x) given f(x)f'(x) has critical points at x=2,4x=-2, 4 and concavity conditions.

See Solution

Problem 13287

Find the limit of the cost function cˉ(x)=2.2+2500x\bar{c}(x)=2.2+\frac{2500}{x} as xx approaches infinity.

See Solution

Problem 13288

Compute f(x)=x2+1f(x)=x^{2}+1 for x=1.9,1.99,1.999,2.001,2.01,2.1x=1.9, 1.99, 1.999, 2.001, 2.01, 2.1 to estimate limx2f(x)\lim _{x \rightarrow 2} f(x).

See Solution

Problem 13289

Analyze the series n=21n2n(ln(n))2\sum_{n=2}^{\infty} \frac{1}{n 2^{n}(\ln (n))^{2}} for convergence using three tests: Alternating Series, Comparison, and Ratio.

See Solution

Problem 13290

A firm produces output QQ with Q=f(L,K)=100+30×lnL+20×lnKQ=f(L, K)=100+30 \times \ln L+20 \times \ln K. Given w=$6w=\$ 6, r=$10r=\$ 10, P=$4P=\$ 4, which statement is true? A. Hessian is 0.375 B. Inputs (8,20)(8,20) C. MPP of labor is 30 D. Max output Q=100\overline{Q}=100 E. MPP value is 120.

See Solution

Problem 13291

Find the xx values for local min and max of f(x)f(x), and the interval where f(x)f(x) is concave up, given f(x)=cosxsinx2f'(x)=\frac{\cos x}{\sin x-2} and f(x)=1+2sinx(sinx2)2f''(x)=\frac{-1+2 \sin x}{(\sin x-2)^{2}} for x[0,2π]x \in [0, 2\pi].

See Solution

Problem 13292

A firm produces output QQ using LL and KK with Q=f(L,K)=100+30×lnL+20×lnKQ=f(L, K)=100+30 \times \ln L+20 \times \ln K. Given w=$6w=\$ 6, r=$10r=\$ 10, and P=$4P=\$ 4, determine which statement is true about profit maximization.

See Solution

Problem 13293

Gegeben ist die Funktion f(x)=x4+2x2f(x)=-x^{4}+2 x^{2}.
a) Zeige, dass f(a)=42f^{\prime}(a)=-4 \sqrt{2} für Nullstellen a gilt. Was ist die Steigung an weiteren Nullstellen?
b) Finde alle Stellen mit Steigung Null und beschreibe die Punkte.

See Solution

Problem 13294

Identify the region with area given by  area =limni=1nπ5ncos(iπ5n)\text { area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{5 n} \cos \left(\frac{i \pi}{5 n}\right) without calculating the limit.

See Solution

Problem 13295

Estimate where the function with two "upside-down U" shapes is increasing or decreasing based on its graph.

See Solution

Problem 13296

Find the limit: limx6x47x2+13x4+x3+x2+x+1\lim _{x \rightarrow \infty} \frac{6 x^{4}-7 x^{2}+1}{3 x^{4}+x^{3}+x^{2}+x+1}.

See Solution

Problem 13297

Find the derivative of f(x)=x32x2+7f(x)=\frac{x^{3}-2}{x^{2}+7}.

See Solution

Problem 13298

Find h(1)h^{\prime}(1) for h(x)=xf(x)cos(x)h(x)=x f(x) \cos (x) given f(1)=7f(1)=7 and f(1)=7f^{\prime}(1)=7. Round to three decimal places.

See Solution

Problem 13299

Find g(6)g^{\prime}(6) for g(x)=f(x)1+f(x)g(x)=\frac{f(x)}{1+f(x)} given f(6)=7f(6)=7 and f(6)=5f^{\prime}(6)=5. Round to three decimal places.

See Solution

Problem 13300

Find the derivative of f(x)=3x11+t3dtf(x)=\int_{3}^{x} \frac{1}{1+t^{3}} dt. What is f(x)f'(x)?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord