Calculus

Problem 32901

Determine values of aa for which limxaf(x)\lim _{x \rightarrow a} f(x) exists based on the piecewise function described.

See Solution

Problem 32902

Find the local maximum of f(x)=0.8x3+3x21f(x)=-0.8 x^{3}+3 x^{2}-1 between x=2x=2 and 33. Options: A) (2.5,-5.25) B) (2.5,5.25) C) (0,-1) D) (-1,0)

See Solution

Problem 32903

Bestimmen Sie die Stammfunktion von f(x)=2sin(π2x)f(x) = 2 \sin\left(\frac{\pi}{2} x\right): 2sin(π2x)dx\int 2 \sin\left(\frac{\pi}{2} x\right) \, dx

See Solution

Problem 32904

Finde die Punkte, an denen die Tangente von ff den Steigungswinkel 21,821,8^{\circ} hat. a) f(x)=5x2f(x)=5 x^{2} b) f(x)=40xf(x)=-\frac{40}{x} c) f(x)=56x3f(x)=\frac{5}{6} x^{3} d) f(x)=0,15x20,2xf(x)=0,15 x^{2}-0,2 x

See Solution

Problem 32905

What value do the fractions approach as the pattern continues? 13,25,37,49, \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \ldots

See Solution

Problem 32906

Determine where the function y=x+45sinxy=\frac{x+4}{5 \sin x} is continuous. Choose A, B, or C and fill in any blanks.

See Solution

Problem 32907

Bestimmen Sie die Uhrzeit mit dem größten Besucherandrang, die Zuschauerzahl beim Anpfiff und den Durchschnitt von 16 bis 18 Uhr.

See Solution

Problem 32908

Bei einer Virusepidemie beschreibt k(t)=0,04t41,25t3+9t2k(t)=0,04 t^{4}-1,25 t^{3}+9 t^{2} die Neuinfektionen. Analysiere den Graphen und berechne die Infektionen in den ersten 4 Wochen und in der 5. bis 8. Woche. Bestimme die Gesamtzahl der Erkrankten.

See Solution

Problem 32909

Bestimme die Ableitung f(x)f^{\prime}(x) für die Funktionen: a) (x+1)ex(x+1)e^{x}, b) x2e0,25xx^{2}e^{-0,25x}, c) (x+1)e2x(x+1)e^{-2x}, d) (32x)e0,5x(3-2x)e^{-0,5x}, e) (x+2)e2x(x+2)e^{2x}, f) (x+3)e4x3(x+3)e^{4x-3}.

See Solution

Problem 32910

Nach einem Brand steigt die PFT-Konzentration im See. Berechnen Sie:
a) Maximalen Wert und Zeitpunkt von k(x)=250xe0.5x+20k(x)=250 x \cdot e^{-0.5 x}+20. b) Zeitpunkt, wann k(x)<50384k(x)<50 \frac{\sqrt{38}}{4}. c) Zeitpunkt der stärksten Abnahme. d) Langfristige PFT-Konzentration.

See Solution

Problem 32911

Evaluate the limit as θ\theta approaches π2\frac{\pi}{2} for 5θsinθ5 \theta \sin \theta.

See Solution

Problem 32912

Find the limit: limh03(a+h)23a2h\lim _{h \rightarrow 0} \frac{3(a+h)^{2}-3 a^{2}}{h}.

See Solution

Problem 32913

Find the limit: limh08a+h8ah\lim _{h \rightarrow 0} \frac{\frac{8}{a+h}-\frac{8}{a}}{h}.

See Solution

Problem 32914

Zeigen Sie, dass FF eine Stammfunktion von ff ist und finden Sie drei weitere Stammfunktionen für die gegebenen ff.

See Solution

Problem 32915

Find the limit: limx10x10x31000\lim _{x \rightarrow 10} \frac{x-10}{x^{3}-1000}.

See Solution

Problem 32916

Bestimmen Sie eine Vermutung für die vierte Ableitung von f(x)=xexf(x)=x e^{-x}.

See Solution

Problem 32917

Find the limit: limh5(a+h)5ah\lim _{h \rightarrow \infty} \frac{\sqrt{5(a+h)}-\sqrt{5 a}}{h}.

See Solution

Problem 32918

Find the limit: limh05(a+h)5ah\lim _{h \rightarrow 0} \frac{\sqrt{5(a+h)}-\sqrt{5 a}}{h}.

See Solution

Problem 32919

Evaluate f(x)=x21x1f(x)=\frac{x^{2}-1}{|x-1|} for x=0.9,0.99,0.999,0.9999,1.1,1.01,1.001,1.0001x=0.9, 0.99, 0.999, 0.9999, 1.1, 1.01, 1.001, 1.0001. What does limx1f(x)\lim _{x \rightarrow 1} f(x) indicate?

See Solution

Problem 32920

Find the limit: limx0sin(4x)9x=\lim _{x \rightarrow 0} \frac{\sin (4 x)}{9 x}=

See Solution

Problem 32921

Find the limit: limx9x2812x2+22x+36\lim _{x \rightarrow-9} \frac{x^{2}-81}{2 x^{2}+22 x+36}.

See Solution

Problem 32922

Find the limit: limx9x281x2+22x+36\lim _{x \rightarrow-9} \frac{x^{2}-81}{x^{2}+22 x+36}

See Solution

Problem 32923

Evaluate the integral 23(x5)dx\int_{-2}^{3}(x-5) \, dx.

See Solution

Problem 32924

Calculate the integral from 0 to 1 of the function 3x, written as 013xdx\int_{0}^{1} 3 x \, dx.

See Solution

Problem 32925

Find the derivative g(2)g^{\prime}(2) for the function g(x)=πx11+t4dtg(x)=\int_{\pi}^{x} \frac{1}{1+t^{4}} d t.

See Solution

Problem 32926

Berechnen Sie die folgenden bestimmten Integrale: a) 13(x+1)dx\int_{1}^{3}(x+1) d x b) 22(4x2)dx\int_{-2}^{2}(4-x^{2}) d x c) 220,25x3dx\int_{-2}^{2} 0,25 x^{3} d x d) 02(x22x+1)dx\int_{0}^{2}(x^{2}-2 x+1) d x e) 04(4x)dx\int_{0}^{4}(4-x) d x f) 13(0,5x1)2dx\int_{1}^{3}(0,5 x-1)^{2} d x g) 02(x2)(x+2)dx\int_{0}^{2}(x-2)(x+2) d x h) 02(x1)3dx\int_{0}^{2}(x-1)^{3} d x

See Solution

Problem 32927

Plutonium-239 hat eine Halbwertszeit von 24110 Jahren. Berechne nach 6000 Jahren die verbleibende Menge von 1 kg1 \mathrm{~kg} und die Zeit, bis 80%80 \% zerfallen sind.

See Solution

Problem 32928

Evaluate the integral from 1 to 9 of x2x\frac{x-2}{\sqrt{x}} with respect to xx.

See Solution

Problem 32929

Calculate the indefinite integral: cos5tsintdt\int \frac{\cos ^{5} t}{\sqrt{\sin t}} d t (Use CC for the constant).

See Solution

Problem 32930

Evaluate the integral: 19(x2x)dx\int_{1}^{9}\left(\frac{x-2}{\sqrt{x}}\right) d x

See Solution

Problem 32931

Calculate the integral 03x2dx\int_{0}^{3}|x-2| dx.

See Solution

Problem 32932

Berechnen Sie die folgenden bestimmten Integrale mit dem festen Parameter a: a) 1a(2x+1)dx\int_{1}^{a}(2 x+1) d x b) a2a(4x2)dx\int_{a}^{2 a}\left(4-x^{2}\right) d x c) 0a2(3x23)dx\int_{0}^{a^{2}}\left(3 x^{2}-3\right) d x d) 03a(x2ax)dx\int_{0}^{3 a}\left(x^{2}-a x\right) d x

See Solution

Problem 32933

Find f(1)f^{\prime}(1) if f(x)=1x2t3+3dtf(x)=\int_{-1}^{x^{2}} \sqrt{t^{3}+3} dt.

See Solution

Problem 32934

Find f(2)f^{\prime}(2) if f(x)=ln(x23)f(x)=\ln(x^{2}-3). Choices: 2, 4, 1, e.

See Solution

Problem 32935

Find dydx\frac{d y}{d x} if ey=6x+3ye^{y}=6 x+3 y. Choose one of the following options.

See Solution

Problem 32936

Find the derivative of y=sin(ex2)y=\sin \left(e^{x^{2}}\right), i.e., calculate dydx\frac{d y}{d x}.

See Solution

Problem 32937

Find the derivative of the function f(x)=ln(ex+1)f(x)=\ln(e^{-x}+1). What is f(x)f^{\prime}(x)?

See Solution

Problem 32938

A Lamborghini Aventador accelerates at 11 m/s211 \mathrm{~m/s^2}. How far does it travel in 6 seconds?

See Solution

Problem 32939

For the function y=1x+3y=\frac{1}{x+3}, find the secant slope at x=1x=1, tangent slope at x=1x=1, and tangent line equation.

See Solution

Problem 32940

Find the value of xx that maximizes the magnitude of the instantaneous rate of change of g(x)=x2+3x4g(x)=-x^{2}+3x-4. Options: a. -2, b. -1, c. 0, d. 6.

See Solution

Problem 32941

Find the derivative of y=(lnx)lnxy=(\ln x)^{\ln x} with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 32942

Find the derivative of the function y=1+2x2y=1+2^{x^{2}}. What is dydx\frac{d y}{d x}?

See Solution

Problem 32943

At x=2x=2, if the slope is negative before, zero at, and positive after, what do you have? Minimum, Maximum, None, or Both?

See Solution

Problem 32944

Find the root of ex=43xe^{x} = 4 - 3x in (0,1) using the Intermediate Value Theorem. Calculate f(0)f(0) and f(1)f(1).

See Solution

Problem 32945

Find the derivative f(x)f^{\prime}(x) of the function f(x)=6x4f(x)=-6 x^{4}.

See Solution

Problem 32946

Find the local maxima and minima of f(x)=x3+x2+2xf(x) = -x^{3} + x^{2} + 2x by finding its critical points.

See Solution

Problem 32947

Find the average rate of change of g(x)=4x2+x1g(x)=4 x^{2}+x-1 from x=0.5x=0.5 to x=1x=1. Options: a. 3.5, b. 5, c. 7, d. 14.

See Solution

Problem 32948

Find f(x)f^{\prime}(x) for f(x)=2x29x+10f(x)=2x^{2}-9x+10 and calculate f(1)f^{\prime}(1), f(5)f^{\prime}(5), f(7)f^{\prime}(7).

See Solution

Problem 32949

Find the xx where ff is discontinuous and check if it's continuous from the right, left, or neither for:
f(x)={1+x2 if x02x if 0<x2(x2)2 if x>2 f(x)=\left\{\begin{array}{ll} 1+x^{2} & \text { if } x \leq 0 \\ 2-x & \text { if } 0<x \leq 2 \\ (x-2)^{2} & \text { if } x>2 \end{array}\right.
x= x=

See Solution

Problem 32950

Find the limit as xx approaches 5 for x(x3)x(x-3). Is it A. limx5x(x3)=\lim _{x \rightarrow 5} x(x-3)=\square or B. Does not exist?

See Solution

Problem 32951

Find the instantaneous rate of change of f(x)=2x43x+1f(x)=-2 x^{4}-3 x+1 at x=5x=5. Choose from: a. 1003, b. 1.003, c. 0.0013, d. -1003.

See Solution

Problem 32952

Find the intervals of increase and decrease for f(x)=x3+x2+2xf(x) = -x^3 + x^2 + 2x, and its end behavior as xx \to -\infty and xx \to \infty.

See Solution

Problem 32953

Find the marginal cost function for C(x)=178+0.9xC(x)=178+0.9 x. What is C(x)=C^{\prime}(x)=\square?

See Solution

Problem 32954

Find the limits for f(x)=x23x+2x+2f(x)=\frac{x^{2}-3 x+2}{x+2} as x2,2+,2x \to -2^{-}, -2^{+}, -2.

See Solution

Problem 32955

Find the instantaneous rate of change for f(x)=x4x2f(x)=\frac{x-4}{x-2} at x=2x=2.

See Solution

Problem 32956

Find the first 4 non-zero terms and the general term of the Maclaurin polynomial for f(x)=cos(x)f(x)=\cos (x).

See Solution

Problem 32957

Find the end behavior of f(x)=8x4+3x5+11f(x)=8 x^{4}+3 x^{5}+11 by calculating limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow -\infty} f(x).

See Solution

Problem 32958

Find the horizontal asymptotes of f(x)=4x2x2x22f(x)=\frac{4x-2x^{2}}{x^{2}-2}. Options: y=2y=-2, y=4y=4, y=2y=2.

See Solution

Problem 32959

Find the Maclaurin series for the function f(x)=cos(x)f(x) = \cos(x).

See Solution

Problem 32960

Find the average rate of change of g(x)=4x2+x1g(x)=4 x^{2}+x-1 from x=0.5x=0.5 to x=1x=1. Options: a. 3.5 b. 5 c. 7 d. 14

See Solution

Problem 32961

True or False: The slope of the secant line through (3,35)(-3,35) and (b,f(b))(b, f(b)) equals the tangent slope at x=3x=-3 as b3b \to -3.

See Solution

Problem 32962

Evaluate the limit: limh0(1+h)21h\lim_{h \to 0} \frac{(1+h)^{2} - 1}{h}

See Solution

Problem 32963

Find the limit as tt approaches 0 for the expression 7t32\frac{7}{t^{3}} - 2.

See Solution

Problem 32964

Estimate the instantaneous rate of change of daily receipts for "Avatar" at week 16. Round to four decimal places.

See Solution

Problem 32965

Find the limit as xx approaches 3 for 7(8x+8)37(8x + 8)^3.

See Solution

Problem 32966

Determine the convergence of the series n=1(1n+2n)n\sum_{n=1}^{\infty}\left(1_{n}+\frac{2}{n}\right)^{n} using tests.

See Solution

Problem 32967

Find a suitable δ\delta for limx23x+2=8\lim _{x \rightarrow 2} 3 x+2=8 with ε=0.4\varepsilon=0.4. Options: δ=0.1333\delta=0.1333, δ=0.2667\delta=0.2667, δ=0.0178\delta=0.0178, δ=0.0444\delta=0.0444.

See Solution

Problem 32968

Find the limits: 1) limt(7t52)\lim _{t \rightarrow-\infty}\left(\frac{7}{t^{-5}}-2\right), 2) limx(14x57x3+9x2x54x28)\lim _{x \rightarrow-\infty}\left(\frac{14 x^{5}-7 x^{3}+9 x}{-2 x^{5}-4 x^{2}-8}\right).

See Solution

Problem 32969

Evaluate these limits: (a) limx112+(15x112x)\lim _{x \rightarrow \frac{11}{2}^{+}}\left(\frac{-15 x}{11-2 x}\right), (b) limx112(15x112x)\lim _{x \rightarrow \frac{11}{2}^{-}}\left(\frac{-15 x}{11-2 x}\right).

See Solution

Problem 32970

Given the piecewise function f(x)={2x+15 if x<6x+15 if x>62 if x=6f(x)=\left\{\begin{array}{lll}2 x+15 & \text { if } & x<-6 \\ \sqrt{x+15} & \text { if } & x>-6 \\ 2 & \text { if } & x=-6\end{array}\right., evaluate the statements about f(6)f(-6) and its limits.

See Solution

Problem 32971

Find the limit as zz approaches -1 for the expression 5z+45z + 4.

See Solution

Problem 32972

Evaluate the limit: limx3x28x+15x3\lim _{x \rightarrow 3} \frac{x^{2}-8x+15}{x-3}.

See Solution

Problem 32973

Find the number of turning points for the function f(x)=(x2)3(x2+2x3)f(x)=(x-2)^{3}(x^{2}+2x-3).

See Solution

Problem 32974

Find the instantaneous rate of change of g(t)=2t+5g(t)=\frac{2}{t+5} at t=3t=-3, rounded to 3 decimal places.

See Solution

Problem 32975

Find the limit as aa approaches 7 for the expression 1a17a7\frac{\frac{1}{a}-\frac{1}{7}}{a-7}.

See Solution

Problem 32976

Find the derivative of f(x)=4x75x6f(x)=4 x^{7}-5 x^{6}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 32977

Find the derivative f(x)f^{\prime}(x) of the function f(x)=3x2f(x)=\frac{3}{x^{2}} and evaluate it at x=2x=2.

See Solution

Problem 32978

Find the derivative of f(x)=8x1x8f(x)=8 \sqrt{x}-\frac{1}{x^{8}} and write it without fractional or negative exponents.

See Solution

Problem 32979

Find the derivative f(x)f^{\prime}(x) of the function f(x)=4+3x2x2f(x)=4+3x-2x^{2} and evaluate it at x=4x=4.

See Solution

Problem 32980

Find f(3)f^{\prime}(-3) for f(x)=2x24x+6f(x)=2 x^{2}-4 x+6 and the tangent line at (3,36)(-3,36) in the form y=mx+by=m x+b.

See Solution

Problem 32981

Find the derivative f(x)f'(x) for the function f(x)=ln(2x+112x)f(x) = \ln \left(\frac{2x+1}{1-2x}\right).

See Solution

Problem 32982

Find the global extreme values of the function f(x)=3x44x3f(x)=3 x^{4}-4 x^{3} on the interval [1,2][-1,2].

See Solution

Problem 32983

Find the derivative of the function f(x)=7x5x+2x3xf(x)=7 x^{5} \sqrt{x}+\frac{2}{x^{3} \sqrt{x}}. What is f(x)f^{\prime}(x)?

See Solution

Problem 32984

Find the derivative f(x)f^{\prime}(x) of the function f(x)=2x24x+6f(x)=2 x^{2}-4 x+6 and calculate f(3)f^{\prime}(-3).

See Solution

Problem 32985

Find the derivative f(x)f^{\prime}(x) of the function f(x)=2+2x+3x2f(x)=2+\frac{2}{x}+\frac{3}{x^{2}} and evaluate it at x=1x=1.

See Solution

Problem 32986

Find the horizontal asymptotes of f(x)=4x2x2x22f(x)=\frac{4 x-2 x^{2}}{x^{2}-2}. Options: x=2x=-2, y=2y=2, y=4y=4, None, y=2y=-2.

See Solution

Problem 32987

Find f(1)f^{\prime}(-1) for f(x)=x6h(x)f(x)=x^{6} h(x), given h(1)=2h(-1)=2 and h(1)=5h^{\prime}(-1)=5. Use product and power rules.

See Solution

Problem 32988

Given f(t)=(t2+4t+5)(5t2+4)f(t)=(t^{2}+4 t+5)(5 t^{2}+4), find f(t)f^{\prime}(t) and then calculate f(4)f^{\prime}(4).

See Solution

Problem 32989

Find the derivative f(x)f'(x) of the function f(x)=7x+72x+6f(x)=\frac{7x+7}{2x+6} and evaluate f(2)f'(2).

See Solution

Problem 32990

Find the equation of the tangent line to f(x)=x2x12f(x)=x^{2}-x-12 parallel to the secant line between (2,f(2))(-2, f(-2)) and (4,f(4))(4, f(4)).

See Solution

Problem 32991

Find the derivative of the function f(x)=2x58x45x3x4f(x)=\frac{-2 x^{5}-8 x^{4}-5 x^{3}}{x^{4}}.

See Solution

Problem 32992

Identify the correct limit statements for the end behaviors of the exponential function gg:
(A) limxg(x)=\lim _{x \rightarrow-\infty} g(x)=-\infty, limxg(x)=0\lim _{x \rightarrow \infty} g(x)=0 (B) limxg(x)=\lim _{x \rightarrow-\infty} g(x)=\infty, limxg(x)=\lim _{x \rightarrow \infty} g(x)=\infty (C) limxg(x)=\lim _{x \rightarrow-\infty} g(x)=\emptyset, limxg(x)=\lim _{x \rightarrow \infty} g(x)=\infty (D) limxg(x)=\lim _{x \rightarrow-\infty} g(x)=\infty, limxg(x)=0\lim _{x \rightarrow \infty} g(x)=0

See Solution

Problem 32993

Identify the correct limit statements for the exponential function gg that increases at a decreasing rate. Options: (A), (B), (C), (D).

See Solution

Problem 32994

Find the derivative of the function f(x)=4x26+x2f(x)=\frac{4-x^{2}}{6+x^{2}}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 32995

Find the derivative of f(x)=x3x+3f(x)=\frac{\sqrt{x}-3}{\sqrt{x}+3} and calculate f(4)f^{\prime}(4).

See Solution

Problem 32996

Find the derivative f(t)f^{\prime}(t) of the function f(t)=(t2+4t+5)(5t2+4)f(t)=(t^{2}+4 t+5)(5 t^{2}+4).

See Solution

Problem 32997

Find the derivative f(x)f'(x) of f(x)=4x2+8x+5xf(x)=\frac{4x^2+8x+5}{\sqrt{x}} and evaluate f(3)f'(3).

See Solution

Problem 32998

Find xx such that f(x)=5f'(x)=5 for f(x)=xx+6f(x)=\frac{x}{x+6}. Provide exact values.

See Solution

Problem 32999

Find the velocity function v(t)v(t) from s(t)=6t345t2+108ts(t)=6 t^{3}-45 t^{2}+108 t. Where is v(t)=0v(t)=0? Factor out GCF. Find a(t)a(t).

See Solution

Problem 33000

True or False: Do "rate of change", "marginal profit", "marginal cost", "marginal revenue", "population growth rate", and "acceleration" all relate to the first derivative?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord