Calculus

Problem 30801

Evaluate the right-endpoint Riemann sum for f(x)=(1+k(9n))2f(x) = (1+k(\frac{9}{n}))^2 over [1,10][1, 10]. Find limits.

See Solution

Problem 30802

Find f(xk)f(x_k), f(xk)Δxf(x_k) \Delta x, the right-endpoint Riemann sum, and its limit as nn \to \infty.

See Solution

Problem 30803

Find when AA (initially 4500g4500\, \mathrm{g}, 2%2\% daily decay) equals BB (initially 8500g8500\, \mathrm{g}, 6%6\% decay).

See Solution

Problem 30804

Find the infimum and supremum of f(t)=3t21+t6f(t)=\frac{3 t^{2}}{1+t^{6}}, and determine if it has max/min values with their locations. Sketch the graph.

See Solution

Problem 30805

Given the piecewise function f(x)f(x), find values for g(x)=3xf(t)dtg(x) = \int_{-3}^{x} f(t) dt at g(5)g(-5), g(2)g(-2), g(1)g(1), g(5)g(5), and the max of g(x)g(x).

See Solution

Problem 30806

Find cc so that y=1cx2+1y=\frac{1}{c x^{2}+1} solves y+18xy2=0y' + 18 x y^{2} = 0.

See Solution

Problem 30807

Given f(x)=20x3+300x2+1000f(x)=-20 x^{3}+300 x^{2}+1000, determine where the maximum occurs and its value.

See Solution

Problem 30808

Find the limit as kk approaches 0 from the right of (76k4)(7 - 6 k^{-4}).

See Solution

Problem 30809

Evaluate the integral 08f(x)dx\int_{0}^{8} f(x) dx for the piecewise function: f(x)=2x8f(x)=2x-8 if 0x<40 \leq x<4 and f(x)=82xf(x)=8-2x if 4x84 \leq x \leq 8.

See Solution

Problem 30810

Find the Riemann sum for f(x)=x2f(x)=\sqrt{x}-2 on [1,6][1, 6] with n=5n=5 using midpoints. Round to six decimal points. M5= M_{5} =

See Solution

Problem 30811

Evaluate the integral 02(3x2)dx\int_{0}^{2}(3-x^{2}) dx by finding Δx\Delta x and xix_{i}, then compute the integral.

See Solution

Problem 30812

Calculate the integral 010x5dx\int_{0}^{10}|x-5| dx.

See Solution

Problem 30813

Find AA so that if Ax+b>0A x + b > 0, then y=ln(Ax+B)y = \ln(A x + B) solves 2eyy=72 e^{y} y' = 7. What is AA?

See Solution

Problem 30814

Berechnen Sie die mittlere Änderungsrate von ff in den Intervallen [1;3][1 ; 3], [3;1][-3 ;-1], [1;2][-1 ; 2] für a) f(x)=x2f(x)=x^{2}, b) f(x)=x3+2xf(x)=x^{3}+2 x, c) f(x)=2x2xf(x)=2 x^{2}-x.

See Solution

Problem 30815

Find the value of dLdt\frac{dL}{dt} given the equation kL(75L)kL(75 - L).

See Solution

Problem 30816

Find the limit as tt approaches negative infinity for the expression 7t3+57 t^{-3} + 5.

See Solution

Problem 30817

Find the maximum yy-value of g(x)=35x32x2+4x+2g(x)=-\frac{3}{5} x^{3}-2 x^{2}+4 x+2 for 4<x<4-4<x<4, rounded to the nearest tenth.

See Solution

Problem 30818

Estimate the derivative f(x)f^{\prime}(x) for f(x)=60.65xf(x)=6 \cdot 0.65^{x} using h=0.001h=0.001 at x=3.25,3,3.75x=-3.25, 3, 3.75.

See Solution

Problem 30819

Calcula t1dt\int t^{1} \, dt usando la fórmula xndx=xn+1n+1+c\int x^{n} \, dx = \frac{x^{n+1}}{n+1} + c.

See Solution

Problem 30820

How much to invest now to reach \8,000in25yearsatacontinuousinterestrateof8,000 in 25 years at a continuous interest rate of 2.9\%$?

See Solution

Problem 30821

Find the nonzero xx where the second derivative of f(x)=9x63x5f(x)=9 x^{6}-3 x^{5} equals zero. Provide your answer as a decimal with three decimal places.

See Solution

Problem 30822

1. Bestimme die Tangentengleichung von fa(x)=ax(x4)f_{a}(x)=a x(x-4) bei x=4x=4 in Abhängigkeit von aa.
2. a) Finde die Normale von fa(x)=x2axf_{a}(x)=x^{2}-a x bei Pa(a0)P_{a}(a \mid 0). b) Zeige, dass die Normale immer durch Q(01)Q(0 \mid 1) geht. c) Stelle die Ergebnisse grafisch dar.
3. a) Berechne den Flächeninhalt AaA_{a} zwischen fa(x)=ax(x4)f_{a}(x)=a x(x-4) und der xx-Achse. b) Finde aa für Aa=48A_{a}=48.

See Solution

Problem 30823

How long will it take for a $700\$ 700 investment at 12%12 \% continuous interest to triple? Round to the nearest tenth.

See Solution

Problem 30824

Bestimme die Gleichung der Normale von fa(x)=x2axf_{a}(x)=x^{2}-a x im Punkt Pa(a0)P_{a}(a \mid 0) und zeige, dass sie durch Q(01)Q(0 \mid 1) geht.

See Solution

Problem 30825

Solve the equation s(t)=cos(t)sin(t)s^{\prime \prime}(t)=\cos(t)-\sin(t) with s(0)=2s(0)=2, s(0)=5s^{\prime}(0)=5 and find s(π)s(\pi).

See Solution

Problem 30826

Find the limit limxG(x)\lim _{x \rightarrow \infty} G(x) for the antiderivative of g(x)=e3xg(x)=e^{-3x} with G(0)=11G(0)=11. Answer to three decimals.

See Solution

Problem 30827

f(x)={x2sin1x;x00;x=0f(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x} & ; x \neq 0 \\ 0 & ; x=0\end{array}\right. fonksiyonunun (0,0)(0,0) noktasındaki teğetin denklemi nedir? A) x+y=1x+y=1 B) y=2xy=2 x C) y=xy=x D) y=1y=1 E) y=0y=0

See Solution

Problem 30828

15. y=11exy=\frac{1}{1-e^{x}} eğrisinin asimtotları hangi noktada kesişir? A) (1,1)(-1,1) B) (1,1)(1,1) C) (0,1)(0,1) D) (1,0)(1,0) E) (01)(0-1)

See Solution

Problem 30829

limx1(sinx)secx\lim _{x \rightarrow 1}(\sin x)^{\sec x} limitinin sonucu nedir? A) 1e\frac{1}{e} B) cc C) e2e^{2} D) 0 E) 1

See Solution

Problem 30830

f(x) = \frac{|x|}{x} için x = 1'de türevlenebilirlik ve x = 0'da süreksizlik durumunu inceleyin.

See Solution

Problem 30831

Find the volume VV of the solid formed by rotating the region bounded by y=x2y=x^{2} and x=2x=2 about x=2x=2.

See Solution

Problem 30832

limxπ2(sinx)secx\lim _{x \rightarrow \frac{\pi}{2}}(\sin x)^{\sec x} sonucunu bulun: A) 1e\frac{1}{e} B) e\mathrm{e} C) e2e^{2} D) 0 E) 1

See Solution

Problem 30833

Determine the horizontal asymptotes of the function f(x)=x83(x9)(x8)f(x)=\frac{x-8}{3(x-9)(x-8)}.

See Solution

Problem 30834

Find the volume of the solid formed by rotating the region RR bounded by y=x2y=x^{2}, the xx-axis, and x=2x=2 about x=2x=2.

See Solution

Problem 30835

Find horizontal asymptotes of the function f(x)=3x2+18x+24x2+2xf(x)=\frac{3 x^{2}+18 x+24}{x^{2}+2 x}.

See Solution

Problem 30836

Find horizontal asymptotes of f(x)=x83(x9)(x8)f(x)=\frac{x-8}{3(x-9)(x-8)}.

See Solution

Problem 30837

Which statement is not a Limit Law?
1. limxc[f(x)+g(x)]=limxcf(x)+limxcg(x)\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x) + \lim _{x \rightarrow c} g(x)
2. limxc[αf(x)]=αlimxcf(x)\lim _{x \rightarrow c}[\alpha f(x)]=\alpha \lim _{x \rightarrow c} f(x)
3. limxc[f(x)g(x)]=[limxcf(x)][limxcg(x)]\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\left[\lim _{x \rightarrow c} f(x)\right] \cdot\left[\lim _{x \rightarrow c} g(x)\right]
4. limxaf(x)+limxbf(x)=limx(a+b)f(x)\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow b} f(x)=\lim _{x \rightarrow(a+b)} f(x)

See Solution

Problem 30838

Find the limit limxf(x)\lim _{x \rightarrow \infty} f(x) for f(x)=2x2+3x(x+1)(x+2)f(x)=\frac{2 x^{2}+3 x}{(x+1)(x+2)}. What is the horizontal asymptote?

See Solution

Problem 30839

Estimate the integral π/43π/4sin2(x)dx\int_{\pi / 4}^{3 \pi / 4} \sin^{2}(x) dx given 12sin2(x)1\frac{1}{2} \leq \sin^{2}(x) \leq 1. π/43π/4sin2(x)dx\square \leq \int_{\pi / 4}^{3 \pi / 4} \sin^{2}(x) dx \leq \square

See Solution

Problem 30840

True or False: If f(x)f(x) is differentiable at x=4x=4, is f(x)f(x) also continuous at x=4x=4?

See Solution

Problem 30841

Prove that the derivative of sinh1(x)\sinh^{-1}(x) is 11+x2\frac{1}{\sqrt{1+x^2}}.

See Solution

Problem 30842

True or False: If f(x)f(x) is a differentiable and increasing function, is f(x)>0f^{\prime}(x) > 0 for all xx?

See Solution

Problem 30843

Find velocity and acceleration for s=f(t)=5t3+4t+9s=f(t)=5 t^{3}+4 t+9 at time tt and specifically at t=3t=3 seconds.

See Solution

Problem 30844

Find y(1)y^{\prime}(1) using implicit differentiation for the equation 5x2+2x+xy=15 x^{2}+2 x+x y=1 with y(1)=6y(1)=-6.

See Solution

Problem 30845

Calculate the integral from 3π2\frac{3 \pi}{2} to 2π2 \pi of 4sin(x)-4 \sin (x).

See Solution

Problem 30846

Integrate the function: 18cos(x)dx\int 18 \cos (x) \, dx

See Solution

Problem 30847

Find the integral of xx with respect to xx: xdx\int x \, dx.

See Solution

Problem 30848

Find the integral of the function: x73dx\int \sqrt[3]{x^{7}} d x

See Solution

Problem 30849

Find the integral of x12x^{\frac{1}{2}} with respect to xx.

See Solution

Problem 30850

Find the derivative f(x)f'(x) of f(x)=2x34x+3f(x)=-2x^3-4x+3 using the limit definition, then find the second derivative f(x)f''(x).

See Solution

Problem 30851

Find the integral of the function: (6x25x+3)dx\int(6 x^{2}-5 x+3) dx.

See Solution

Problem 30852

An object moves along the xx-axis with x=(4.00 m/s2)t2x=(4.00 \mathrm{~m} / \mathrm{s}^{2}) t^{2}. Find positions at t=3.10 st=3.10 \mathrm{~s} and t=(3.10+Δt)t=(3.10+\Delta t). Also, find velocity limit as Δt0\Delta t \to 0.

See Solution

Problem 30853

Evaluate the integral from 5 to 10 for the function 3x+33x + 3: 510(3x+3)dx.\int_{5}^{10}(3 x+3) d x.

See Solution

Problem 30854

Given the model C(t)=0.0034t3+0.097t20.351t+12.4C(t)=-0.0034 t^{3}+0.097 t^{2}-0.351 t+12.4, find C(14)C'(14) and C(18)C'(18) to compare rates for 2004 and 2008.

See Solution

Problem 30855

Evaluate the integral from -2 to 1 for the piecewise function f(x)={4exf(x)=\{4 e^{x} if x>0x>0, 4x4-x if x0}x \leq 0\}.

See Solution

Problem 30856

Integrate: (5ex2x)dx=?\int\left(5 e^{x}-\frac{2}{x}\right) d x= ? Choose the correct answer: (A) e5xln2+Ce^{5 x}-\ln |2|+C, (B) 5ex2lnx+C5 e^{x}-2 \ln |x|+C, (C) 5exln2+C5 e^{x}-\ln |2|+C, (D) e5x2lnx+Ce^{5 x}-2 \ln |x|+C.

See Solution

Problem 30857

Find F(x)F(x) where F(x)=2cos(x)3tdtF(x)=\int_{-2}^{\cos (x)} 3 t d t.

See Solution

Problem 30858

Find the tangent line equation y=mx+by=m x+b for h(x)=73x3h(x)=7-3 x^{3} at (1,4)(1,4) using h(1)h^{\prime}(1).

See Solution

Problem 30859

Find the derivative F(x)F'(x) of the function F(x)=2cos(x)3tdtF(x)=\int_{-2}^{\cos (x)} 3t \, dt.

See Solution

Problem 30860

Find R(56)R(56) and R(56)R^{\prime}(56) for R(t)=61.2650.954tR(t)=61.265 \cdot 0.954^{t} and interpret their values.

See Solution

Problem 30861

Find F(x)F'(x) if F(x)=0x4cos(t)dtF(x)=\int_{0}^{x^{4}} \cos(t) dt.

See Solution

Problem 30862

Find the derivative f(x)f^{\prime}(x) of the function f(x)=5x8f(x)=5 \sqrt{x-8} using the limit definition.

See Solution

Problem 30863

Find F(x)F'(x) for the function F(x)=22x(3t2+2t)dtF(x)=\int_{-2}^{2 x}(3 t^{2}+2 t) dt.

See Solution

Problem 30864

Find the salary in 1991 using S(11)S(11) and interpret S(11)S'(11) for its rate of change.

See Solution

Problem 30865

Find the limits of hyperbolic functions as xx \to \infty or xx \to -\infty: (a) tanh(x)\tanh(x), (b) tanh(x)\tanh(x), (c) sinh(x)\sinh(x), (d) sinh(x)\sinh(x), (e) sech(x)\operatorname{sech}(x), (f) coth(x)\operatorname{coth}(x), (g) coth(x)\operatorname{coth}(x), (h) coth(x)\operatorname{coth}(x), (i) csch(x)\operatorname{csch}(x), (j) sinh(x)ex\frac{\sinh(x)}{e^{x}}.

See Solution

Problem 30866

Find the area of intersection of the polar curves r=4sin2θr=4 \sin 2 \theta and r=2r=2.

See Solution

Problem 30867

Find the derivative F(x)F'(x) of the function F(x)=22x(3t2+2t)dtF(x)=\int_{-2}^{2 x}(3 t^{2}+2 t) dt.

See Solution

Problem 30868

Find the derivative f(x)f^{\prime}(x) of the function f(x)=44x2f(x)=4-4 x^{2} using the limit definition.

See Solution

Problem 30869

An object moves along the xx axis: x=3.40t22.00t+3.00x=3.40 t^{2}-2.00 t+3.00. Find speeds, accelerations, and when it is at rest.

See Solution

Problem 30870

Find the derivative f(x)f^{\prime}(x) of the function f(x)=5xf(x)=\frac{5}{x} using the limit definition.

See Solution

Problem 30871

Find the derivative F(x)F'(x) of the function defined by F(x)=0x2tdtF(x)=\int_{0}^{\sqrt{x}} 2 t dt for x>0x>0.

See Solution

Problem 30872

Find g(2)g^{\prime}(2) for the function defined by the integral g(x)=1x(3t2+4t)dtg(x)=\int_{1}^{x}(3 t^{2}+4 t) dt.

See Solution

Problem 30873

An object moves along the xx axis with x=3.40t22.00t+3.00x=3.40 t^{2}-2.00 t+3.00. Find speeds, accelerations, and rest time at given tt.

See Solution

Problem 30874

Find F(x)F'(x) for the function defined by F(x)=22x(3t2+2t)dtF(x)=\int_{-2}^{2 x}(3 t^{2}+2 t) dt.

See Solution

Problem 30875

Find g(9)g^{\prime}(9) for the function g(x)=1x2t+7dtg(x)=\int_{1}^{x} \sqrt{2t+7} \, dt.

See Solution

Problem 30876

A ball is thrown up with initial velocity 50ft/s50 \mathrm{ft/s}. Find average velocity from t=1t=1 for (i) 0.1s, (ii) 0.01s, (iii) 0.001s. Guess instantaneous velocity at t=1t=1.

See Solution

Problem 30877

A particle's position is s(t)=2t324t2+42ts(t)=2 t^{3}-24 t^{2}+42 t. Find its velocity at t=0t=0, when it stops, position at t=16t=16, and total distance from t=0t=0 to t=16t=16.

See Solution

Problem 30878

Find g(3)g^{\prime}(-3) for the function defined by the integral g(x)=8x(2t+4)dtg(x)=\int_{-8}^{x}(-2 t+4) d t.

See Solution

Problem 30879

Find the derivative of f(x)=2x2+3x+4f(x)=2 x^{2}+3 x+4 at x=4x=4 using the limit definition of a derivative.

See Solution

Problem 30880

Find g(π)g^{\prime}(\pi) if g(x)=0x5+4costdtg(x)=\int_{0}^{x} \sqrt{5+4 \cos t} dt.

See Solution

Problem 30881

Find the value of xx where the tangent lines of f(x)=3e2xf(x)=3 e^{2 x} and g(x)=6x3g(x)=6 x^{3} are parallel.

See Solution

Problem 30882

Solve the differential equation: (6y2)dx+dy=0(6y - 2) \, dx + dy = 0.

See Solution

Problem 30883

Find d2ydx2\frac{d^{2} y}{d x^{2}} if y3xy=5y^{3}-x y=5.

See Solution

Problem 30884

Find the tangent line equation for y=102x3x2y=10-2x-3x^{2} at the point (1,5)(1,5). y=y=

See Solution

Problem 30885

Find the derivative f(a)f^{\prime}(a) for the function f(x)=3x23x31f(x)=3 x^{2}-3 x-31.

See Solution

Problem 30886

Find the derivative f(a)f^{\prime}(a) for the function f(x)=3x23x3if(x)=3 x^{2}-3 x-3 i.

See Solution

Problem 30887

Solve the equation x1ydx1x2dy=0x \sqrt{1-y} dx - \sqrt{1-x^{2}} dy = 0.

See Solution

Problem 30888

Solve the differential equation: x1ydx1x2dy=0x \sqrt{1-y} \, dx - \sqrt{1-x^2} \, dy = 0.

See Solution

Problem 30889

Find the tangent line equation to y=2sinxy=2 \sin x at x=π3x=\frac{\pi}{3}.

See Solution

Problem 30890

A particle's position is s(t)=2t324t2+42ts(t)=2 t^{3}-24 t^{2}+42 t. Find velocity at t=0t=0, rest times, position at t=16t=16, and total distance 0 to 16.

See Solution

Problem 30891

Determine where the function f(x)=3x4+x3+14f(x) = 3x^4 + x^3 + 14 is increasing.

See Solution

Problem 30892

Find all extrema of f(x)=sin(2x)f(x)=\sin(2x) in the interval [2π,3π][-2\pi, 3\pi].

See Solution

Problem 30893

Find the limit: limx7x+ln5x9x+ln3x\lim _{x \rightarrow \infty} \frac{7 x+\ln 5 x}{9 x+\ln 3 x}.

See Solution

Problem 30894

Find the general antiderivative of f(x)=(x+5)(5x4)f(x)=(x+5)(5x-4) and verify by differentiation. Use CC for the constant.

See Solution

Problem 30895

Determine if the derivative f(0)f^{\prime}(0) exists for f(x)=xsin2xf(x)=x \sin \frac{-2}{x} if x0x \neq 0, 00 if x=0x=0. Answer Yes or No: [?/Yes/No]

See Solution

Problem 30896

Determine if the derivative f(0)f^{\prime}(0) exists for the function f(x)=3x3sin1xf(x)=3 x^{3} \sin \frac{1}{x} if x0x \neq 0 and f(0)=0f(0)=0. Answer Yes or No: [?/Yes/No]

See Solution

Problem 30897

Jackson invested \$320 at a 3.2% continuous interest rate. How long until the account reaches \$410? Round to the nearest tenth.

See Solution

Problem 30898

A particle's position is s(t)=2t327t2+108ts(t)=2 t^{3}-27 t^{2}+108 t. Find velocity at t=0t=0, when it stops, position at t=18t=18, and total distance from t=0t=0 to t=18t=18.

See Solution

Problem 30899

Find the general antiderivative of f(x)=5x1/47x3/4f(x)=5 x^{1/4}-7 x^{3/4} and verify by differentiation using constant CC.

See Solution

Problem 30900

Find the function f(x)f(x) and the number aa such that limh0(3+h)29h\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h} defines the derivative.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord