Calculus

Problem 5301

Find the derivative of f(x)=2x68x4+x320f(x)=2 x^{6}-8 x^{4}+x^{3}-20 and divide it by x+2x+2.

See Solution

Problem 5302

Find local extrema of the function f(x)=2x32+12x+10f(x)=-2 x^{\frac{3}{2}}+12 x+10 using the First Derivative Test.

See Solution

Problem 5303

Find the intervals where W(t)=41+54t2t2+17W(t)=41+\frac{54 t^{2}}{t^{2}+17} is increasing or decreasing. Express as open intervals.

See Solution

Problem 5304

Find the intervals where revenue R(x)=54x0.04x2R(x)=54x-0.04x^{2} is increasing and decreasing for 0x11000 \leq x \leq 1100.

See Solution

Problem 5305

Find the intervals where W(t)=41+55t2t2+16W(t)=41+\frac{55 t^{2}}{t^{2}+16} is increasing or decreasing. Use open intervals for your answers.

See Solution

Problem 5306

Find the intervals where the revenue R(x)=54x0.04x2R(x)=54x-0.04x^{2} is increasing and decreasing for 0x11000 \leq x \leq 1100.

See Solution

Problem 5307

Find local extrema for the function f(x)=64x21xf(x)=\frac{64 x^{2}-1}{x} using the First Derivative Test.

See Solution

Problem 5308

What is the limit of the recording speed W(t)=41+55t2t2+16W(t)=41+\frac{55 t^{2}}{t^{2}+16} as tt approaches infinity?

See Solution

Problem 5309

Find local extrema of the function f(x)=36x225xf(x)=\frac{36 x^{2}-25}{x} using the First Derivative Test. Enter as ordered pairs.

See Solution

Problem 5310

Find the derivative q(p)q^{\prime}(p) of q(p)=ln(p4)q(p)=\ln(p^{4}). Which option is correct?

See Solution

Problem 5311

Given the curve y2=2+xyy^{2}=2+x y, find dydx\frac{d y}{d x}, points with slope 12\frac{1}{2}, horizontal tangents, and dxdt\frac{d x}{d t} at t=5t=5 when y=3y=3 and dydt=6\frac{d y}{d t}=6.

See Solution

Problem 5312

Berechne die Flächeninhalte für die Funktionen: a) f(x)=x2x+1f(x)=x^{2}-x+1 über [0;2][0 ; 2] b) f(x)=1x2f(x)=\frac{1}{x^{2}} über [1;3][1 ; 3] c) f(x)=x3xf(x)=x^{3}-x im 4. Quadranten. d) f(x)=x3xf(x)=x^{3}-x über [0;2][0 ; 2] (zwischen Kurve und xx-Achse).

See Solution

Problem 5313

Given the curve xy2x3y=6x y^{2}-x^{3} y=6:
(a) Prove that dydx=3x2yy22xyx3\frac{d y}{d x}=\frac{3 x^{2} y-y^{2}}{2 x y-x^{3}}.
(b) Find points with x=1x=1 and write tangent line equations.
(c) Determine xx-coordinates where tangent lines are vertical.

See Solution

Problem 5314

Prove a value exists for f(x)=8x43x2+4x1f(x)=8 x^{4}-3 x^{2}+4 x-1 in [2,0][-2,0] by finding f(2)f(-2).

See Solution

Problem 5315

Determine if the function f(x)f(x) has a jump discontinuity at x=2x=2 by finding limx2f(x)\lim _{x \rightarrow 2^{-}} f(x) and limx2+f(x)\lim _{x \rightarrow 2^{+}} f(x). Graph f(x)f(x).

See Solution

Problem 5316

Analyze f(x)=13x45x2+7x1f(x)=13 x^{4}-5 x^{2}+7 x-1 on [0,3] using the Intermediate Value Theorem. Find local/global extrema or specific xx.

See Solution

Problem 5317

Find f(5)f(5) and f(5)f^{\prime}(5) given the tangent line to y=f(x)y=f(x) at (5,1)(5,1) passes through (7,4)(7,-4).

See Solution

Problem 5318

If S=x8S=x^{8} and x=ln(t)x=\ln (t), what is dSdt\frac{d S}{d t}? Choose the correct option from the list.

See Solution

Problem 5319

Determine the curvilinear asymptote of the function f(x)=x4x28x27f(x)=\frac{x^{4}-x^{2}-8}{x^{2}-7}. Find y=y=.

See Solution

Problem 5320

Find the 6th derivative of f(x)=cos(ln(1+x2))f(x)=\cos(\ln(1+x^{2})) at x=0x=0 using the Taylor series.

See Solution

Problem 5321

Verify Green's Theorem for the function ϕ(xy+y2)\phi(xy+y^2) over the curve CC bounded by y=xy=x and y=x2y=x^2.

See Solution

Problem 5322

Evaluate the limit: limn360n\lim _{n \rightarrow \infty} \frac{360}{n}. What is the result?

See Solution

Problem 5323

In the space provided, type the two-word phrase that completes the statement: If f(a)>f(x)f(a)>f(x) nearby, then f(a)f(a) is a/an ___ of ff.

See Solution

Problem 5324

Find the function f(x)f(x) and the value aa from the limit representing the derivative: limh0(3+h)29h\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}.

See Solution

Problem 5325

Berechne die Grenzwerte der Folgen: a) an=1+2n1+na_{n}=\frac{1+2 n}{1+n}, b) an=7n3+1n310a_{n}=\frac{7 n^{3}+1}{n^{3}-10}, c) an=n2+2n+11+n+n2a_{n}=\frac{n^{2}+2 n+1}{1+n+n^{2}}, d) an=n+n+n22n+n2a_{n}=\frac{\sqrt{n}+n+n^{2}}{\sqrt{2 n}+n^{2}}, e) an=n5n46n51a_{n}=\frac{n^{5}-n^{4}}{6 n^{5}-1}, f) an=n+1n+1+2a_{n}=\frac{\sqrt{n+1}}{\sqrt{n+1}+2}, g) an=(5n)4(5+n)4a_{n}=\frac{(5-n)^{4}}{(5+n)^{4}}, h) an=(2+n)10(1+n)10a_{n}=\frac{(2+n)^{10}}{(1+n)^{10}}, i) an=(1+2n)10(1+n)10a_{n}=\frac{(1+2 n)^{10}}{(1+n)^{10}}, j) an=(1+2n)k(1+3n)ka_{n}=\frac{(1+2 n)^{k}}{(1+3 n)^{k}}. Bestimme die Grenzwerte: a) limn2n12n\lim _{n \rightarrow \infty} \frac{2^{n}-1}{2^{n}}, b) limn2n12n1\lim _{n \rightarrow \infty} \frac{2^{n}-1}{2^{n-1}}, c) limn2n1+4n\lim _{n \rightarrow \infty} \frac{2^{n}}{1+4^{n}}, d) limn2n3n2n+3n\lim _{n \rightarrow \infty} \frac{2^{n}-3^{n}}{2^{n}+3^{n}}, e) limn2n+3n+123n\lim _{n \rightarrow \infty} \frac{2^{n}+3^{n+1}}{2 \cdot 3^{n}}. Berechne erneut die Grenzwerte: a) an=n34na_{n}=\frac{n-3}{4 n}, b) an=n(n+1)4n2a_{n}=\frac{n \cdot(n+1)}{4 n^{2}}, c) an=4+3n3na_{n}=\frac{4+3^{n}}{3^{n}}, d) an=3n4+3na_{n}=\frac{3^{n}}{4+3^{n}}.

See Solution

Problem 5326

Find the limit as xx approaches 8 for 1x+13\frac{1}{\sqrt{x+1}-3}.

See Solution

Problem 5327

Differentiate both sides of sin(x+y)=6x+2cos(y)\sin(x+y) = 6x + 2\cos(y).

See Solution

Problem 5328

Solve ddx(e2xy)=ddx(sin(y7))\frac{d}{d x}(e^{2 x y}) = \frac{d}{d x}(\sin(y^7)) for xx, with yy as a constant or function of xx.

See Solution

Problem 5329

Solve for the function y=y(x)y = y(x) in the equation dydx(e2xy)=dydx(sin(y7))\frac{d y}{d x}\left(e^{2 x y}\right)=\frac{d y}{d x}\left(\sin \left(y^{7}\right)\right).

See Solution

Problem 5330

Find dydx\frac{dy}{dx} for the equation e2xy=sin(y7)e^{2xy} = \sin(y^7).

See Solution

Problem 5331

Find the derivative of Y with respect to XX for the equation 6x2+2x3y=3x+y6 x^{2}+2 x^{3} y=3 x+y.

See Solution

Problem 5332

Find the tangent line equation to the curve xy+x2y2=20xy + x^2y^2 = 20 at the point (4,1)(4, 1).

See Solution

Problem 5333

Find the tangent line equation to the curve x2+sin(y)=xy2+9x^{2}+\sin (y)=x y^{2}+9 at the point (3,0)(3,0).

See Solution

Problem 5334

Consider the function g(x)=12x3g(x)=\frac{1}{2 x-3}.
a) What is the domain restriction? b) Sketch the graph of g(x)g(x). c) What happens as xx approaches the restriction from the left and right? d) What happens as xx \rightarrow \infty and xx \rightarrow -\infty? e) Estimate the slope at x=1.6,2,10x=1.6, 2, 10 and x=1.4,0,10x=1.4, 0, -10. f) Describe the graph in terms of asymptotes and slope.

See Solution

Problem 5335

Calculate the following using the provided values for f(x)f(x) and g(x)g(x) at x=3x=3:
1. f(3)g(3)+5\frac{f(3)}{g(3)+5}
2. (fg)(3)\left(\frac{f}{g}\right)^{\prime}(3)
3. (fg)(3)(f-g)^{\prime}(3)
4. (fg)(3)(f g)^{\prime}(3)

See Solution

Problem 5336

Find points on the graph of 3x2+4y2+3xy=163 x^{2}+4 y^{2}+3 x y=16 where the tangent line is horizontal.

See Solution

Problem 5337

Find yy^{\prime \prime} in terms of xx and yy for the equation y=xy4y^{\prime}=\frac{x}{y^{4}}.

See Solution

Problem 5338

Find the tangent line equation at the point (3, 9) for the curve ex2y=x2ye^{x^{2}-y}=\frac{x^{2}}{y}.

See Solution

Problem 5339

Calculate the following using the given functions:
1. (fg)(3)(f g)^{\prime}(-3)
2. (fg)(3)(f-g)^{\prime}(-3)
3. (fg)(4)(f g)(4)
4. f(3)g(3)+5\frac{f(-3)}{g(-3)+5}

Given results:
1. 4290, 2. -63, 3. 2400, 4. 7.14.

See Solution

Problem 5340

Find the derivative of f(x)=(x+x5)(x2)f(x)=(x+x^{5})(-x-2) using the product rule. What is f(x)f^{\prime}(x)?

See Solution

Problem 5341

Calculate the following using the given functions and their derivatives: (fg)(2)(f g)(2), (fg)(3)(f g)^{\prime}(3), f(3)g(3)+5\frac{f(3)}{g(3)+5}, and (f+g)(3)(f+g)^{\prime}(3).

See Solution

Problem 5342

Find the derivative using the Product Rule for f(x)=(2x6)(2ex+1)f(x)=(2 x-6)(2 e^{x}+1). What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 5343

Show that the polynomial f(x)=8x43x2+4x1f(x)=8x^{4}-3x^{2}+4x-1 has a zero in [2,0][-2,0] using the Intermediate Value Theorem. Find f(2)f(-2). Simplify: f(2)=f(-2)=\square.

See Solution

Problem 5344

Find the world population growth rate in millions/year for the years 1920, 1951, and 2000 using the model P(t)=(1436.53)(1.01395)tP(t)=(1436.53)(1.01395)^{t}.

See Solution

Problem 5345

Find the derivative of h(s)=(s1/2+4s)(5s1)h(s)=\left(s^{-1 / 2}+4 s\right)\left(5-s^{-1}\right) at s=16s=16. dhdss=16=\left.\frac{d h}{d s}\right|_{s=16}=

See Solution

Problem 5346

Find the limit: limx6x57776x6\lim _{x \rightarrow 6} \frac{x^{5}-7776}{x-6} using the factorization formula for xnanx^{n}-a^{n}.

See Solution

Problem 5347

Prove that limx0x=0\lim _{x \rightarrow 0}|x|=0 by evaluating limx0x\lim _{x \rightarrow 0^{-}}|x| and limx0+x\lim _{x \rightarrow 0^{+}}|x|.

See Solution

Problem 5348

Find the local max and min points and their values for the function ff with peak at (-1.5, 1.7) and lowest at (1, 1.8).

See Solution

Problem 5349

Find the limit: limx6x57776x6\lim _{x \rightarrow 6} \frac{x^{5}-7776}{x-6} using the factorization formula for xnanx^{n}-a^{n}.

See Solution

Problem 5350

Find the limit: limx6,561x49x6,561\lim _{x \rightarrow 6,561} \frac{\sqrt[4]{x}-9}{x-6,561}.

See Solution

Problem 5351

Find the limit as xx approaches 10,000 for x410x10,000\frac{\sqrt[4]{x}-10}{x-10,000}.

See Solution

Problem 5352

Find the derivative of f(x)=(x+x4)(x1)f(x)=(x+x^{4})(-x-1) using the product rule. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 5353

Find the limit: limx6x57776x6\lim _{x \rightarrow 6} \frac{x^{5}-7776}{x-6}.

See Solution

Problem 5354

Find the derivative of y=x3(3x2+2)2y=\frac{x^{3}}{(3 x^{2}+2)^{2}} using the log shortcut method. What is dydx\frac{d y}{d x}?

See Solution

Problem 5355

Find the derivative of y=e(5x32x+1)4y=e^{(5x^{3}-2x+1)^{4}}. What is dydx\frac{dy}{dx}?

See Solution

Problem 5356

Find the derivative of y=e3xy=e^{3x}. What is dydx\frac{dy}{dx}? Options: 3e3x3 e^{3 x}, 3e2x3 e^{2 x}, 3xe3x3 x e^{3 x}, e2xe^{2 x}, 3ex3 e^{x}.

See Solution

Problem 5357

Find the limit: limx6x57776x6\lim _{x \rightarrow 6} \frac{x^{5}-7776}{x-6} using the factorization formula for xnanx^{n}-a^{n}.

See Solution

Problem 5358

Find the derivative of y=ln3x2y=\ln \frac{3}{x^{2}}. What is dydx\frac{d y}{d x}?

See Solution

Problem 5359

Find the local minimum of the function ff given its peak at (1.5,1.7)(-1.5, 1.7) and lowest point at (1,1.8)(1, -1.8).

See Solution

Problem 5360

Find limx0+g(x)\lim_{x \rightarrow 0^{+}} g(x) and limx0g(x)\lim_{x \rightarrow 0^{-}} g(x) given g(x)=f(9x)g(x)=f(9-x) and limits of f(x)f(x) at 9.

See Solution

Problem 5361

Calculate the average rate of change of h(x)=52x2h(x)=5-2 x^{2} from x=2x=-2 to x=4x=4.

See Solution

Problem 5362

Given functions p(x)=9x5x+3p(x)=\frac{9 x}{5 x+3} and q(x)=4x1q(x)=4 x-1, find rr^{\prime} for r(x)=p(x)q(x)r(x)=\frac{p(x)}{q(x)}.

See Solution

Problem 5363

Find limx3f(x)g(x)\lim _{x \rightarrow 3} \frac{f(x)}{g(x)} if f(x)250f(x) \rightarrow -250 and g(x)0+g(x) \rightarrow 0^+ as x3x \rightarrow 3.

See Solution

Problem 5364

Calculate the average rate of change of g(x)=3x31g(x)=3 x^{3}-1 over the interval [3,3][-3,3].

See Solution

Problem 5365

Given p(x)=9x5x+3p(x)=\frac{9 x}{5 x+3} and q(x)=4x1q(x)=4 x-1, find rr^{\prime} for r(x)=p(x)q(x)r(x)=\frac{p(x)}{q(x)}.

See Solution

Problem 5366

Find limx5f(x)g(x)\lim _{x \rightarrow 5} \frac{f(x)}{g(x)} given that f(x)200f(x) \rightarrow -200 and g(x)0+g(x) \rightarrow 0^+ as x5x \rightarrow 5.

See Solution

Problem 5367

Find the derivative of h(s)=(s1/2+2s)(7s1)h(s)=\left(s^{-1 / 2}+2 s\right)\left(7-s^{-1}\right) at s=4s=4. Compute dhdss=4=\left.\frac{d h}{d s}\right|_{s=4}=

See Solution

Problem 5368

Find the limit as xx approaches 6 from the left for the expression 1x6\frac{1}{x-6}.

See Solution

Problem 5369

Find the linearization of f(x,y)=764x24y2f(x, y)=\sqrt{76-4 x^{2}-4 y^{2}} at (3,3)(3,3). What is L(x,y)=?L(x, y)=?

See Solution

Problem 5370

Find the limit: limx2+x28x+15(x2)2\lim _{x \rightarrow 2^{+}} \frac{x^{2}-8 x+15}{(x-2)^{2}}

See Solution

Problem 5371

Integrate ln(15x5)xdx\int \frac{\ln(15 x^{5})}{x} dx. What is the result?

See Solution

Problem 5372

Find the limit as xx approaches 0 for the expression x6+2x5x5\frac{x^{6}+2 x^{5}}{x^{5}}.

See Solution

Problem 5373

Find the limit as xx approaches 6 from the right: limx6+1x6\lim _{x \rightarrow 6^{+}} \frac{1}{x-6}.

See Solution

Problem 5374

Compute the integral: 4x(x21)3dx\int \frac{4 x}{(x^{2}-1)^{3}} dx. What is the result?

See Solution

Problem 5375

Compute the integral of x2ex/2x^{2} e^{x/2} dx using integration by parts multiple times.

See Solution

Problem 5376

Find the derivative of h(s)=(s1/2+2s)(7s1)h(s)=(s^{-1 / 2}+2 s)(7-s^{-1}) at s=4s=4 using the Product Rule. dhdss=4=\left.\frac{d h}{d s}\right|_{s=4}=

See Solution

Problem 5377

Evaluate the limit: limx5+x+6x5\lim _{x \rightarrow 5^{+}} \frac{x+6}{\sqrt{x-5}}.

See Solution

Problem 5378

Find the limit as θ\theta approaches 7π+2\frac{7 \pi^{+}}{2} for 14tanθ\frac{1}{4} \tan \theta.

See Solution

Problem 5379

Find the antiderivative of the logarithm: I(x)=lnxdxI(x)=\int \ln x \, dx. Use integration by parts.

See Solution

Problem 5380

Find the limit as xx approaches 2 from the left: limx2x28x+15(x2)2\lim _{x \rightarrow 2^{-}} \frac{x^{2}-8 x+15}{(x-2)^{2}}.

See Solution

Problem 5381

Integrate the function: ln(15x5)xdx\int \frac{\ln(15 x^{5})}{x} \, dx

See Solution

Problem 5382

Find the limit: limx1+x27x+10x1\lim _{x \rightarrow 1^{+}} \frac{x^{2}-7 x+10}{x-1}.

See Solution

Problem 5383

Find the rate of change of surface area S=4πr2S=4 \pi r^{2} with respect to radius for r=9r=9 and r=14r=14.

See Solution

Problem 5384

Find the derivative of f(x)=tanx5secxf(x)=\frac{\tan x-5}{\sec x} and compute f(π3)f^{\prime}\left(\frac{\pi}{3}\right) exactly.

See Solution

Problem 5385

Find rr^{\prime} where r(x)=p(x)q(x)r(x)=\frac{p(x)}{q(x)}, with p(x)=3x7x+3p(x)=\frac{3x}{7x+3} and q(x)=2x1q(x)=2x-1.

See Solution

Problem 5386

Find the derivative of f(x)=9xf(x)=\frac{9}{x} at x=2x=2 using the limit definition: f(2)=limh0(f(2+h)f(2)h)=limh0()=f^{\prime}(2)=\lim _{h \rightarrow 0}\left(\frac{f(2+h)-f(2)}{h}\right)=\lim _{h \rightarrow 0}(\square)=\square.

See Solution

Problem 5387

Evaluate the integral using integration by parts: x2ex/2dx\int x^{2} e^{x / 2} d x.

See Solution

Problem 5388

Find the derivative of f(x)=9xf(x)=\frac{9}{x} using the definition: f(x)=limh0(f(x+h)f(x)h)f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right). Simplify and evaluate the limit.

See Solution

Problem 5389

Find the derivative of the function h(x)=4x+13x4h(x)=\frac{4 x+1}{3 x-4}. Calculate h(x)h^{\prime}(x).

See Solution

Problem 5390

Find the derivative of f(x)=x+6x2+5x+1f(x)=\frac{x+6}{x^{2}+5 x+1} using the Quotient Rule.

See Solution

Problem 5391

Find the derivative of g(t)=t4+4t44g(t)=\frac{t^{4}+4}{t^{4}-4} at t=1t=1 using the Quotient Rule. dgdtt=1=\left.\frac{d g}{d t}\right|_{t=1}=

See Solution

Problem 5392

Find the domain of the vector function r(t)=5sin(t),3cos(t),ln(t+5)\vec{r}(t)=\langle 5 \sin (t), 3 \cos (t), \ln (t+5)\rangle. Domain: {tt>5}\{t \mid t > -5\}.

See Solution

Problem 5393

Find the half-life of a radioactive substance with a decay rate of 4.1%4.1\% per day. Round to the nearest hundredth.

See Solution

Problem 5394

Find the hourly growth rate of a bacteria population that grows from 2100 to 2517 in 4 hours. Express as a percentage.

See Solution

Problem 5395

Find the time in hours for a bacteria population to double with a growth rate of 9.2%9.2\% per hour. Round to the nearest hundredth.

See Solution

Problem 5396

Find limx4f(x)\lim _{x \rightarrow -4} f(x) given that 1x+1f(x)x2+9x+171 x+1 \leq f(x) \leq x^{2}+9 x+17. What theorem did you use?

See Solution

Problem 5397

Find the derivative of f(x)=51+exf(x)=\frac{5}{1+e^{x}} using the Quotient Rule. f(x)=f^{\prime}(x)=

See Solution

Problem 5398

Evaluate the limit limx6f(x)\lim _{x \rightarrow 6} f(x) using the Squeeze Theorem, given 12x36f(x)x212 x-36 \leq f(x) \leq x^{2} on [4,8][4,8].

See Solution

Problem 5399

Find the derivative of w(x)=x7x+xw(x)=\frac{x^{7}}{\sqrt{x}+x} at x=1x=1 using the Quotient Rule. What is dwdxx=1=\left.\frac{d w}{d x}\right|_{x=1}=?

See Solution

Problem 5400

Evaluate the limit as tt approaches infinity: limt2et,e2t,ln(t2)\lim _{t \rightarrow \infty}\left\langle 2 e^{-t}, e^{-2 t}, \ln (t-2)\right\rangle.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord