Calculus

Problem 21301

Bestimmen Sie die Grenzwerte limx+f(x)\lim_{x \to +\infty} f(x) und limxf(x)\lim_{x \to -\infty} f(x) für die Funktionen: a) f(x)=4x+2f(x)=\frac{4}{x}+2, b) f(x)=34x+1f(x)=3-\frac{4}{x+1}, c) f(x)=1x2+2,5f(x)=\frac{1}{x-2}+2,5.

See Solution

Problem 21302

Bestimmen Sie die Grenzwerte von f(x)f(x) für x+x \rightarrow+\infty und xx \rightarrow-\infty für die Funktionen: a) f(x)=4x+2f(x)=\frac{4}{x}+2, b) f(x)=34x+1f(x)=3-\frac{4}{x+1}, c) f(x)=1x2+2,5f(x)=\frac{1}{x-2}+2,5.

See Solution

Problem 21303

Halla la constante de integración para (x+1)dx=g(x)\int(x+1) d x=g_{(x)} sabiendo que g(2)=6g_{(2)}=6.

See Solution

Problem 21304

Calculate the time for NH3\mathrm{NH}_{3} at 0.580 M to decrease by 95% using the rate law: rate = (3.3 M1^{-1} s1^{-1})[NH3\mathrm{NH}_{3}]2^{2}. Round to 2 significant digits.

See Solution

Problem 21305

Find the intervals where the function f(x)=2x33x212x+20f(x)=2 x^{3}-3 x^{2}-12 x+20 is increasing.

See Solution

Problem 21306

Find the series representation for the function f(x)=cscxf(x)=\csc x.

See Solution

Problem 21307

Find limx0f(x)\lim _{x \rightarrow 0} f(x) given x2x4x2f(x)14x3+1 \frac{x^{2}-x^{4}}{x^{2}} \leq f(x) \leq \frac{1}{4} x^{3}+1 for 2x2-2 \leq x \leq 2.

See Solution

Problem 21308

Bestimme die Koordinaten und die Steigung der interessanten Punkte des Graphen f(x)=13x32x2+9f(x)=\frac{1}{3} x^{3}-2 x^{2}+9.

See Solution

Problem 21309

Find horizontal asymptotes of f(x)=3(3x+1)(x7)x(3x+1)f(x)=\frac{3(3 x+1)(x-7)}{x(3 x+1)}.

See Solution

Problem 21310

Determine the horizontal asymptotes of the function f(x)=3(3x+1)(x7)x(3x+1)f(x)=\frac{3(3 x+1)(x-7)}{x(3 x+1)}.

See Solution

Problem 21311

Find upper and lower bounds for 0111+x2dx\int_{0}^{1} \frac{1}{1+x^{2}} d x using the Max-Min Inequality.

See Solution

Problem 21312

Show that 01sin(x2)dx\int_{0}^{1} \sin \left(x^{2}\right) d x cannot equal 2. Which statement is true? A, B, C, or D?

See Solution

Problem 21313

Bestimme die Hoch- und Tiefpunkte der Funktion f(x)=116x2(x224)f(x)=\frac{1}{16} x^{2}(x^{2}-24).

See Solution

Problem 21314

Calculate the integral 420.5xdx\int_{-4}^{-2}-0.5 x \, dx.

See Solution

Problem 21315

Find 44f(x)dx\int_{4}^{4} f(x) d x and 72g(x)dx\int_{7}^{2} g(x) d x given 24f(x)dx=6\int_{2}^{4} f(x) dx=6, 27f(x)dx=7\int_{2}^{7} f(x) dx=-7, and 27g(x)dx=7\int_{2}^{7} g(x) dx=7.

See Solution

Problem 21316

Find 44f(x)dx\int_{4}^{4} f(x) d x given 24f(x)dx=6\int_{2}^{4} f(x) dx=6 and 27f(x)dx=7\int_{2}^{7} f(x) dx=-7.

See Solution

Problem 21317

What is the relationship between an antiderivative FF of ff and the area function AA of ff? Choose the correct answer.

See Solution

Problem 21318

Explain how the Fundamental Theorem of Calculus helps evaluate abf(x)dx\int_{a}^{b} f(x) dx using antiderivatives.

See Solution

Problem 21319

What is the relationship between the antiderivative FF of ff and the area function AA of ff? Choose the correct option.

See Solution

Problem 21320

Find the number of units for max profit from R(x)=211.2x0.042x2R(x)=211.2 x-0.042 x^{2} and C(x)=10,000+105.6x0.084x2+0.00002x3C(x)=10,000+105.6 x-0.084 x^{2}+0.00002 x^{3}. What is the max profit?

See Solution

Problem 21321

Avery swings a sling of length 0.698 m0.698 \mathrm{~m} at 8.34 rev/s. Find acceleration in m/s2\mathrm{m/s^2}. Then, for 0.979 m0.979 \mathrm{~m} at 5.23 rev/s.

See Solution

Problem 21322

A wooden artifact has 35% of carbon-14 of living trees. How many years ago was it made? (Half-life: 5730 years)

See Solution

Problem 21323

A satellite orbits Earth at 289 km289 \mathrm{~km}. Find its orbital radius, speed, and period in seconds and hours. Use: G=6.674×1011 Nm2/kg2\mathrm{G}=6.674 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2}, MEarth=5.974×1024 kgM_{\text{Earth}}=5.974 \times 10^{24} \mathrm{~kg}, REarth=6.378×106 mR_{\text{Earth}}=6.378 \times 10^{6} \mathrm{~m}.

See Solution

Problem 21324

Use uu-substitution to solve 34(4x5)3dx\int_{3}^{4}(4x-5)^{3} dx and find uu, dudu, aa, bb, and f(u)f(u).

See Solution

Problem 21325

Calculate the sum: k=05k1k!\sum_{k=0}^{5} \frac{k-1}{k !}.

See Solution

Problem 21326

Find the minimum marginal cost of the cost function C(x)=5x39x2+7x+2C(x)=5 x^{3}-9 x^{2}+7 x+2. Minimum marginal cost is \$ \square.

See Solution

Problem 21327

Estimate the integral 39f(x)dx\int_{3}^{9} f(x) dx using 3 subintervals with right, left, and midpoint methods. Results: R3=1.4R_{3}=1.4, L3=1.9L_{3}=-1.9, M3=0.3M_{3}=-0.3.

See Solution

Problem 21328

Evaluate the integrals using given values: a) 02(f(x)+g(x))dx\int_{0}^{2}(f(x)+g(x)) d x b) 03(f(x)g(x))dx\int_{0}^{3}(f(x)-g(x)) d x c) 23(3f(x)+2g(x))dx\int_{2}^{3}(3 f(x)+2 g(x)) d x d) Find aa such that 03(af(x)+g(x))dx=0\int_{0}^{3}(a f(x)+g(x)) d x=0. a=12 a=-\frac{1}{2}

See Solution

Problem 21329

Differentiate 6x34+5x396 x^{\frac{3}{4}}+\frac{5}{x^{3}}-9 with respect to xx.

See Solution

Problem 21330

Find the value of the series k=12(k+2)k\sum_{k=1}^{\infty} \frac{2}{(k+2) k}.

See Solution

Problem 21331

A wooden artifact has 40% of its original carbon-14. How many years ago was it made? (Half-life of carbon-14 is 5730 years.)

See Solution

Problem 21332

Bestimmen Sie f(x)f^{\prime}(x) für die Funktionen: a) f(x)=23x334x2+4f(x)=\frac{2}{3} x^{3}-\frac{3}{4} x^{2}+4, b) f(x)=2x2+x2f(x)=\frac{2}{x^{2}}+x^{2}, c) f(x)=x3f(x)=\sqrt[3]{x}, d) f(x)=2x+2sin(x)f(x)=2 x+2 \sin (x), e) f(x)=2x+x2f(x)=\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{2}, f) f(x)=x34f(x)=x^{\frac{3}{4}}.

See Solution

Problem 21333

Sketch the graph of the function using its first and second derivatives: f(x)=13x39x+3f(x)=\frac{1}{3} x^{3}-9 x+3.

See Solution

Problem 21334

Find dxdt\frac{d x}{d t}, dydt\frac{d y}{d t}, and dydx\frac{d y}{d x} for x=5t3+3tx=5 t^{3}+3 t, y=4t6t2y=4 t-6 t^{2}.

See Solution

Problem 21335

Find dxdt\frac{d x}{d t}, dydt\frac{d y}{d t}, and dydx\frac{d y}{d x} for x=4tetx=4 t e^{t}, y=6t+sin(t)y=6 t+\sin(t).

See Solution

Problem 21336

Evaluate the integral from 0 to 1: 01(9xe+2ex)dx\int_{0}^{1}\left(9 x^{e}+2 e^{x}\right) d x

See Solution

Problem 21337

Find the derivative of the function g(s)=9s(tt9)7dtg(s)=\int_{9}^{s}(t-t^{9})^{7} dt. What is g(s)g'(s)?

See Solution

Problem 21338

Find dxdt\frac{d x}{d t}, dydt\frac{d y}{d t}, and dydx\frac{d y}{d x} for x=9t9ln(t)x=9 t-9 \ln (t), y=4t24t2y=4 t^{2}-4 t^{-2}.

See Solution

Problem 21339

Determine if the integral 0x(x2+14)2dx\int_{0}^{\infty} \frac{x}{(x^{2}+14)^{2}} dx converges or diverges, and evaluate if convergent.

See Solution

Problem 21340

Find the slope of the tangent to the curve given by x=t2+2tx=t^{2}+2t and y=2t2ty=2^{t}-2t at the specified point.

See Solution

Problem 21341

Evaluate the integral 55f(x)dx\int_{-5}^{5} f(x) \, dx where f(x)=5f(x)=5 for 5x0-5 \leq x \leq 0 and f(x)=25x2f(x)=25-x^{2} for 0<x50<x \leq 5.

See Solution

Problem 21342

Find dydx\frac{d y}{d x} for y=4x+45xy=4 \sqrt{x}+\frac{45}{x} at x=9x=9.

See Solution

Problem 21343

Find the tangent line equation to the curve at t=1t=-1: x=t7+1x=t^{7}+1, y=t8+ty=t^{8}+t.

See Solution

Problem 21344

Trouver H(1)H^{\prime}(-1) pour H(t)=f(t)+1g(t)H(t)=\frac{f(t)+1}{g(t)} sachant que f(1)=5f(-1)=5, g(1)=6g(-1)=6, f(1)=1f'(-1)=1, g(1)=5g'(-1)=5.

See Solution

Problem 21345

Find the tangent line equation to the curve at t=16t=16 for x=tx=\sqrt{t} and y=t22ty=t^{2}-2t.

See Solution

Problem 21346

Is the integral 9rer/3dr\int_{-\infty}^{9} r e^{r / 3} d r convergent or divergent? If convergent, evaluate it.

See Solution

Problem 21347

Find the sum of the series: n=213n\sum_{n=2}^{\infty} \frac{1}{3^{n}}.

See Solution

Problem 21348

Find the sum of the series k=0cos(π3)k\sum_{k=0}^{\infty} \cos \left(\frac{\pi}{3}\right)^{k}.

See Solution

Problem 21349

Find the tangent line equation at the point on the curve for t=πt=\pi, where x=sin(8t)+cos(t)x=\sin(8t)+\cos(t) and y=cos(8t)sin(t)y=\cos(8t)-\sin(t).

See Solution

Problem 21350

Calculate the integral from 3 to 5 of e4xe^{-4x} with respect to xx.

See Solution

Problem 21351

Given the parametric equations x=sin(3t)+cos(t)x=\sin(3t)+\cos(t) and y=cos(3t)sin(t)y=\cos(3t)-\sin(t), find dydx\frac{dy}{dx} and its value at t=πt=\pi. Also, determine the tangent line equation at t=πt=\pi.

See Solution

Problem 21352

Find the tangent line equation to the curve x=sin(t)x=\sin(t), y=cos2(t)y=\cos^2(t) at (22,12)\left(\frac{\sqrt{2}}{2}, \frac{1}{2}\right) using two methods.

See Solution

Problem 21353

Calculate the sum of the series: k=4(87)k+3\sum_{k=4}^{\infty}\left(\frac{8}{7}\right)^{k+3}.

See Solution

Problem 21354

Calculate the average rate of change of g(x)=4x37g(x)=4 x^{3}-7 over the interval [3,3][-3,3].

See Solution

Problem 21355

Berechnen Sie die Ableitung f(x)f^{\prime}(x) der Funktion f(x)=x36x2+10f(x)=x^{3}-6 x^{2}+10.

See Solution

Problem 21356

Calculate the sum: n=03n+222n+1\sum_{n=0}^{\infty} \frac{3^{n+2}}{2^{2 n+1}}.

See Solution

Problem 21357

Differentiate 9x5/48x1/39 x^{5/4} - 8 x^{-1/3} with respect to xx.

See Solution

Problem 21358

Gegeben ist die Funktion f(x)=x36x2+10f(x)=x^{3}-6 x^{2}+10. Berechnen Sie f(x)f^{\prime}(x) und analysieren Sie die Nullstellen mit dem Vorzeichenwechselkriterium.

See Solution

Problem 21359

A ball is dropped from 450 m high (CN Tower). Find its velocity after 5 seconds.

See Solution

Problem 21360

A ball is dropped from 450 m. Find its velocity after 5 seconds using average velocity over 0.1 seconds.

See Solution

Problem 21361

Given the curve defined by x=sin(t)x=\sin(t) and y=cos2(t)y=\cos^2(t) at point (32,14)\left(\frac{\sqrt{3}}{2}, \frac{1}{4}\right), find the tangent line using two methods:
(a) Without eliminating the parameter, find dydx\frac{dy}{dx} and the tangent line equation.
(b) By eliminating the parameter, find dydx\frac{dy}{dx} and the tangent line equation.

See Solution

Problem 21362

Find the limit: limk(sin(πk)174)2\lim _{k \rightarrow \infty}\left(\frac{\sin (\pi k)}{17}-4\right)^{2}.

See Solution

Problem 21363

Bestimme die Tangentengleichung von f(x)=x2+6x5f(x)=-x^{2}+6 x-5 am Punkt (2|f(2)).

See Solution

Problem 21364

Find the average velocity of the object with height h(t)=sinth(t)=\sin t over the interval [π6,2π3]\left[\frac{\pi}{6}, \frac{2 \pi}{3}\right].

See Solution

Problem 21365

Find the tangent equation to the curve at the point (22,12)\left(\frac{\sqrt{2}}{2}, \frac{1}{2}\right) using two methods: with and without parameter elimination. x=sin(t),y=cos2(t)x=\sin(t), y=\cos^2(t)

See Solution

Problem 21366

Gegeben ist die Funktion f(x)=14x32xf(x)=\frac{1}{4} x^{3}-2 x. Finde Nullstellen, Extrempunkte, Steigung bei x=2x=2, Wendepunkt und Krümmungsverhalten bei x=2x=2.

See Solution

Problem 21367

Find the derivative of ln(xk)\ln \left(\frac{x}{k}\right).

See Solution

Problem 21368

Find the instantaneous velocity at t=5t=5 by evaluating the limit of average velocities as time intervals decrease. Round to one decimal place: v=m/sv=\square \mathrm{m/s}.

See Solution

Problem 21369

Find the fourth derivative f(x)f^{\prime \prime \prime \prime}(x) if f(x)=2xf^{\prime \prime \prime}(x)=2 \sqrt{x}.

See Solution

Problem 21370

Find the tangent line equation at the point (0,9) for the curve defined by x=t22tx=t^{2}-2t, y=t2+2t+1y=t^{2}+2t+1.

See Solution

Problem 21371

Evaluate the series: k=1(2)k+217k\sum_{k=1}^{\infty} \frac{(-2)^{k+2}}{17^{k}}

See Solution

Problem 21372

Find the tangent line equation to the curve x=sin(πt)x=\sin (\pi t), y=t2+ty=t^{2}+t at the point (0,12)(0,12). y=y=

See Solution

Problem 21373

Bestimme die Kantenlängen eines Quaders mit quadratischer Grundfläche aus einem 36 cm36 \mathrm{~cm} Draht, um das Volumen zu maximieren.

See Solution

Problem 21374

Find dydx\frac{d y}{d x} and d2ydx2\frac{d^{2} y}{d x^{2}} for x=t2+8x=t^{2}+8, y=t2+5ty=t^{2}+5t. When is the curve concave upward?

See Solution

Problem 21375

Find dydx\frac{dy}{dx} and d2ydx2\frac{d^2y}{dx^2} for x=etx=e^t, y=tety=te^{-t}. When is the curve concave upward?

See Solution

Problem 21376

Find the limit as tt approaches 10 for the expression t2+3t130t2100\frac{t^{2}+3t-130}{t^{2}-100}.

See Solution

Problem 21377

Find the limit as tt approaches 6 for the expression t2+3t54t236\frac{t^{2}+3t-54}{t^{2}-36}.

See Solution

Problem 21378

Find the second derivative f(t)f^{\prime \prime}(t) of the function f(t)=ebt2f(t)=e^{-b t^{2}}.

See Solution

Problem 21379

Explain why the function is discontinuous at a=1a = -1:
1. f(1)f(-1) and limx1f(x)\lim_{x \to -1} f(x) are finite but not equal.
2. f(1)f(-1) is undefined.
3. limx1+f(x)\lim_{x \to -1^{+}} f(x) and limx1f(x)\lim_{x \to -1^{-}} f(x) are finite but not equal.
4. limx1f(x)\lim_{x \to -1} f(x) does not exist.
5. none of the above

Sketch the graph of f(x)f(x) where f(x)=x+5f(x) = x + 5 for x1x \leq -1 and f(x)=2xf(x) = 2^{x} for x>1x > -1.

See Solution

Problem 21380

Differentiate to find the optimum of 5x2+4x165 x^{2}+4 x-16. Find x=x= and state if it's a max or min with 1.d.p.

See Solution

Problem 21381

Bestimmen Sie den limes inferior und limes superior der Folge an=(112)n+(4)nna_{n}=\sqrt[n]{\left|\left(\frac{11}{2}\right)^{n}+(-4)^{n}\right|}.

See Solution

Problem 21382

Differentiate the function: y=ex5exy=\frac{e^{x}}{5-e^{x}}

See Solution

Problem 21383

Given the function f(x)=x2+7f(x)=x^{2}+7, find the derivative at x=2x=2, f(2)f(2), the tangent line, and graph them.

See Solution

Problem 21384

Find the limit as xx approaches 3 for the expression x2+74x3\frac{\sqrt{x^{2}+7}-4}{x-3}.

See Solution

Problem 21385

Use 400 yards of fencing to enclose a lot by a river. Find ll in terms of ww, then express area A(w)=lwA(w) = l w. What is the max area?

See Solution

Problem 21386

Find the point(s) on the curve x=3t2+3,y=t38x=3 t^{2}+3, y=t^{3}-8 where the tangent line slope is 12\frac{1}{2}.

See Solution

Problem 21387

Bestimme die maximale und minimale Höhe der Funktion h(t)=11000(t3180t2+6000t)+400h(t)=\frac{1}{1000}(t^{3}-180 t^{2}+6000 t)+400 und den Zeitpunkt des größten Höhenverlusts.

See Solution

Problem 21388

Bestimme die Ableitung der Funktion f(x)=(3x2)3f(x)=(3 x-2)^{3}.

See Solution

Problem 21389

Find the derivative of the function f(x)=x22xf(x) = \sqrt{x^{2} - 2x}. What is f(x)f'(x)?

See Solution

Problem 21390

Find the derivative f(2)f'(2) for the function f(x)=x2+7f(x) = x^2 + 7 using the limit definition of the derivative.

See Solution

Problem 21391

Approximate 315\sqrt[5]{31} using differentials and find a linear function for f(x)=exf(x)=e^{x}.

See Solution

Problem 21392

Berechne die Steigung von f(x)=3(0,5x21)5f(x)=3 \cdot(0,5 x^{2}-1)^{5} bei a=2a=-2.

See Solution

Problem 21393

A rancher has 600 ft of fencing for a rectangular field divided into 2 plots. Find dimensions that maximize area.

See Solution

Problem 21394

Find a linear function that approximates f(x)=ex21f(x)=e^{x^{2}-1} at the point x=1x=1.

See Solution

Problem 21395

Find the growth rate dLdt\frac{d L}{d t} at t=15,25,35t=15, 25, 35 weeks for L=37.62+3.74t6.34×104t3L=-37.62+3.74t-6.34 \times 10^{-4}t^{3}. Is it increasing or decreasing?

See Solution

Problem 21396

Find critical points of f(x)=xcosxf(x)=x-\cos x for 0x2π0 \leq x \leq 2\pi. Options: a) 00 b) 11 c) 3π2\frac{3\pi}{2} d) 00

See Solution

Problem 21397

Bestimmen Sie die Ableitung von ff für: a) f(x)=1x5f(x)=\frac{1}{x^{5}}, b) f(x)=3x4f(x)=\frac{3}{x^{4}}, c) f(x)=13x6f(x)=-\frac{1}{3 x^{6}}, d) f(x)=x4x+1x3f(x)=\frac{x^{4}-x+1}{x^{3}}.

See Solution

Problem 21398

Evaluate the integral: 02x2+4x+3dx\int_{0}^{\infty} \frac{2}{x^{2}+4 x+3} d x

See Solution

Problem 21399

Calculate the integral: 01x+1x2+2xdx\int_{0}^{1} \frac{x+1}{\sqrt{x^{2}+2 x}} d x

See Solution

Problem 21400

Evaluate the integral 01x+1x2+2xdx\int_{0}^{1} \frac{x+1}{\sqrt{x^{2}+2 x}} d x.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord