Calculus

Problem 26301

Find the derivative of f(x)=(x+5x2+2)2f(x) = \left(\frac{x+5}{x^{2}+2}\right)^{2} and explain each step.

See Solution

Problem 26302

Find the integral for the volume of a triangle revolving about the xx-axis given y=3xy=3-x. Choices include various integrals.

See Solution

Problem 26303

You have two machines with data rates f(t)f(t) and g(t)g(t). For ss hours, express data processed by the first machine as a definite integral: 0sf(t)dt\int_0^s f(t) \, dt.

See Solution

Problem 26304

Let f(x)f(x) be a positive differentiable function where the area under f(x)f(x) from 00 to xx equals its arclength. Which ODE does f(x)f(x) satisfy? Choose one:
1. (f(x))2=1+(f(x))2(f'(x))^2 = 1 + (f(x))^2
2. (f(x))2=1(f(x))2(f'(x))^2 = 1 - (f(x))^2
3. (f(x))2=(f(x))21(f'(x))^2 = (f(x))^2 - 1
4. (f(x))2=(1+f(x))2(f'(x))^2 = (1 + f(x))^2
5. (f(x))2=(1f(x))2(f'(x))^2 = (1 - f(x))^2

See Solution

Problem 26305

Find the derivative of the function y=18xy=\frac{1}{8^{x}}.

See Solution

Problem 26306

Calculate the integral 15(3x27)dx\int_{-1}^{5}(3 x^{2}-7) \, dx.

See Solution

Problem 26307

Find the slope of the tangent line to y=xexy=x e^{x} at x=ln5x=\ln 5. Options: (A) 5ln55 \ln 5 (B) 5ln5+55 \ln 5+5 (C) e5(ln5)+e5e^{5}(\ln 5)+e^{5} (D) 5+2ln5e5+\frac{2 \ln 5}{e}

See Solution

Problem 26308

You have two machines with rates f(t)=9tf(t)=9-t and g(t)=2t+1g(t)=2t+1. How long to use the first machine to maximize data processed in 6 hours?

See Solution

Problem 26309

Find the values of rr for which y=erxy=e^{r x} solves the equation 2y+yy=02 y^{\prime \prime}+y^{\prime}-y=0.

See Solution

Problem 26310

Berechnen Sie die Anzahl der Erkrankten am 10. Tag mit der Funktion f(x)=1250x3+110x2f(x)=-\frac{1}{250} x^{3}+\frac{1}{10} x^{2}. Bestimmen Sie das Ende der Epidemie, den Definitions- und Wertebereich, Grenzwerte und die Symmetrie.

See Solution

Problem 26311

Berechne die Ableitung von f(x)=3x2+12x8f(x)=3 x^{2}+12 x-8 bei x0=6x_{0}=-6 als Grenzwert.

See Solution

Problem 26312

Bestimme die Ableitung von f(x)=x28xf(x)=x^{2}-8x bei x0=3x_{0}=3 als Grenzwert von limh0f(3+h)f(3)h\lim_{h \to 0} \frac{f(3+h)-f(3)}{h}.

See Solution

Problem 26313

Find dydx\frac{dy}{dx} when x=2x=2 for the equation x2y+y2+4=0x^{2} y+y^{2}+4=0.

See Solution

Problem 26314

Determine the left and right end behavior of the function f(x)=x35x2+3x1x47x+2f(x)=\frac{x^{3}-5 x^{2}+3 x-1}{x^{4}-7 x+2}.

See Solution

Problem 26315

Bestimme die Ableitung von f(x)=4(x7)2+8f(x)=4(x-7)^{2}+8 an der Stelle x0=6x_0=6 als Grenzwert.

See Solution

Problem 26316

Find the xx values for local minima in a quartic function (answer as x=a,b,cx=a, b, c). Are they 2,1,0,1,2-2, -1, 0, 1, 2?

See Solution

Problem 26317

Given velocity data, find the object's acceleration, distance in 4s, and distance from 4s to 7s. Choices included.

See Solution

Problem 26318

A woman 1.5 m tall runs away from a 3 m pole at 1.8 m/s. Find the speed of her shadow's tip when she's 15 m from the pole.

See Solution

Problem 26319

Find the derivative of f(x)=x2f(x)=x^{2} at x=4x=-4 using first principles.

See Solution

Problem 26320

Find the derivative of the following functions with respect to x\mathrm{x}: i) f(x)=xf(x)=x, ii) f(x)=x3f(x)=x^{3}, iii) f(x)=x4f(x)=x^{4}, iv) f(x)=x5f(x)=x^{5}.

See Solution

Problem 26321

Find the derivative of f(x)=x2f(x)=x^{2} using first principles. Calculate f(11)f'(-11), f(0)f'(0), and f(5)f'(5).

See Solution

Problem 26322

Find g(x)g'(x) for g(x)=(6x3+4x23)(4x2+2x+7)g(x)=(6x^{3}+4x^{2}-3)(4x^{2}+2x+7).

See Solution

Problem 26323

Find the derivative of the function f(x)=7x24x+2f(x)=7 x^{2}-4 x+2, i.e., compute f(x)f^{\prime}(x).

See Solution

Problem 26324

Find the derivative of f(x)=x39f(x)=x^{39} and generalize it for f(x)=xnf(x)=x^{n}, where nn is a positive integer.

See Solution

Problem 26325

Find the derivatives: a) f(x)=x13f(x)=x^{13}, b) g(x)=x5g(x)=x^{-5}. Calculate f(x)f^{\prime}(x) and g(x)g^{\prime}(x).

See Solution

Problem 26326

How many times larger is a cell population growing at 100%100\% per day today compared to yesterday? Options: 2, 2.25, 2.5, 2.75.

See Solution

Problem 26327

Find dydx\frac{d y}{d x} at x=2x=-2 for y=x4(3x+7)3y=x^{4}(3 x+7)^{3} and at x=1x=-1 for y=(2x+1)5(3x+2)4y=(2 x+1)^{5}(3 x+2)^{4}.

See Solution

Problem 26328

Find the derivative h(x)h'(x) for h(x)=(x2+3)(42x3)h(x)=(x^{2}+3)(4-2x^{3}).

See Solution

Problem 26329

Find dydx\frac{d y}{d x} for x=2x=-2 in y=x4(3x+7)3y=x^{4}(3 x+7)^{3} and for x=1x=-1 in y=(2x+1)5(3x+2)4y=(2 x+1)^{5}(3 x+2)^{4}.

See Solution

Problem 26330

Calculate the average rate of change of f(x)=tan(3x)f(x)=\tan(3x) from 0 to π9\frac{\pi}{9}.

See Solution

Problem 26331

Find the second derivative of these functions: a) y=x32x2y=x^{3}-2 x^{2}, b) y=x5y=x^{5}, c) y=x8y=x^{-8}, d) y=xy=\sqrt{x}.

See Solution

Problem 26332

Find f(g(1))f^{\prime}(g(-1)) where f(x)=2x2+x+3f(x)=2 x^{2}+x+3 and g(x)=4x2+5x12g(x)=4 x^{2}+5 x-12.

See Solution

Problem 26333

i) Find the 9th derivative of y=x9y=x^{9}. ii) Find the 11th derivative of y=13x11y=13 x^{11}. e) Use implicit differentiation on y2xy=3y^{2}-x y=3.

See Solution

Problem 26334

A particle moves with s(t)=t315t2+63t49s(t)=t^{3}-15 t^{2}+63 t-49. Find velocity, acceleration, critical points, and speeding/slowing intervals.

See Solution

Problem 26335

Find the max/min of f(x)=x3x2f(x)=x^{3}-x^{2} for x[2,1]x \in [-2,1]. Set f(x)=0f'(x)=0 to locate critical points.

See Solution

Problem 26336

Find the motion of a particle at time t=1t=1 given y(t)=t34t2+4t+3y(t)=t^{3}-4t^{2}+4t+3. Choose the correct statement about its movement.

See Solution

Problem 26337

Solve dydx=2y\frac{d y}{d x}=2-y with y=1y=1 at x=1x=1. Find y=y= (A) 2ex12-e^{x-1} (B) 2e1x2-e^{1-x} (C) 2ex2-e^{-x} (D) 2+ex2+e^{-x}.

See Solution

Problem 26338

Find the derivative of 2(sinx)22(\sin \sqrt{x})^{2}. Choose from: (A) 4cos(12x)4 \cos \left(\frac{1}{2 \sqrt{x}}\right), (B) 4sinxcosx4 \sin \sqrt{x} \cos \sqrt{x}, (C) 2sinxx\frac{2 \sin \sqrt{x}}{\sqrt{x}}, (D) 2sinxcosxx\frac{2 \sin \sqrt{x} \cos \sqrt{x}}{\sqrt{x}}.

See Solution

Problem 26339

Find interval where f(c)=2f'(c)=2 using values from f(0)=8f(0)=8, f(4)=0f(4)=0, f(8)=2f(8)=2, f(12)=10f(12)=10, f(16)=1f(16)=1. Options: (A) (0,4) (B) (4,8) (C) (8,12) (D) (12,16).

See Solution

Problem 26340

At time t=0t=0, a tank fills with water at a rate of 1W(i)1 W(i) ft/hr. What does W(2)>3W^{\prime}(2)>3 mean?

See Solution

Problem 26341

Find the value of 012f(x)dx\int_{0}^{12} f(x) d x given 017f(x)dx=8\int_{0}^{17} f(x) d x=8, 1720f(x)dx=3\int_{17}^{20} f(x) d x=-3, 1320f(x)dx=7\int_{13}^{20} f(x) d x=7.

See Solution

Problem 26342

Find hh such that 1hx2dx=limnk=1n(1+2kn)22n\int_{-1}^{h} x^{2} dx = \lim_{n \to \infty} \sum_{k=1}^{n} \left(1+\frac{2k}{n}\right)^{2} \frac{2}{n}. Options: (A) b=2b=2, (B) h=3h=3, (C) bb could be any real number, (D) no such bb.

See Solution

Problem 26343

Find 24f(x)8dx\int_{-2}^{4} \frac{f(x)}{8} d x if the average value of ff on [2,4][-2,4] is 12. Options: (A) 32\frac{3}{2} (B) 3 (C) 9 (D) 72.

See Solution

Problem 26344

Find the solution to dydx=2y2x+1\frac{d y}{d x}=\frac{2 y}{2 x+1} with y(0)=ey(0)=e for x>12x>-\frac{1}{2}. Options: (A) (B) (C) (D)

See Solution

Problem 26345

Find a point c for the MVT conclusion for these functions and intervals: 1. y=x1y=x^{-1}, [2,8]; 2. y=xy=\sqrt{x}, [9,25]; 3. y=cosxsinxy=\cos x-\sin x, [0,2\pi]; 4. y=xx+2y=\frac{x}{x+2}, [1,4]; 5. y=x3y=x^{3}, [-4,5]; 6. y=xlnxy=x \ln x, [1,2]; 7. y=e2xy=e^{-2x}, [0,3]; 8. y=exxy=e^{x}-x, [-1,1].

See Solution

Problem 26346

Find the expression for F(x)=1x(tan(5t)sec(5t)1)dtF(x) = \int_{1}^{x} (\tan(5t)\sec(5t) - 1) \, dt. Options: (A) 15sec(5x)1\frac{1}{5} \sec (5 x) - 1, (B) 15sec(5x)x\frac{1}{5} \sec (5 x) - x, (C) tan(5x)sec(5x)\tan (5 x) \sec (5 x), (D) tan(5x)sec(5x)1\tan (5 x) \sec (5 x) - 1.

See Solution

Problem 26347

Find dydx\frac{d y}{d x} at the point (2,1)(2,1) for the equation x2+xy3y=3x^{2}+x y-3 y=3. Choices: (A) 5, (B) 4, (C) 73\frac{7}{3}, (D) 2.

See Solution

Problem 26348

Determine the max and min values of f(x)=x29x2+9f(x)=\frac{x^{2}-9}{x^{2}+9} on the interval [5,5][-5,5].

See Solution

Problem 26349

Find cc from the Mean Value Theorem for f(x)=xx+5f(x)=x \sqrt{x+5} on [5,0][-5,0] and calculate f(c)f^{\prime}(c).

See Solution

Problem 26350

Find the max and min values of f(x)=x64x2f(x)=x \sqrt{64-x^{2}} on [8,8][-8,8]. a) Max b) Min

See Solution

Problem 26351

Find the max and min of f(x)=10cos(x)+5sin(2x)f(x)=10 \cos (x)+5 \sin (2 x) on [0,π2][0, \frac{\pi}{2}].

See Solution

Problem 26352

Calculate the limit of f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=6x2+x+3f(x)=6 x^{2}+x+3.

See Solution

Problem 26353

Find cc guaranteed by the Mean Value Theorem for f(x)=3x4f(x)=3 \sqrt[4]{x} on [1,16][1,16].

See Solution

Problem 26354

Evaluate the Riemann sum for f(x)=2x25f(x)=2 x^{2}-5 on [1,2][-1,2] using 3 rectangles with midpoints for height.

See Solution

Problem 26355

Find all numbers cc in [1,2][-1,2] for f(x)=2x32x2+3x3f(x)=2 x^{3}-2 x^{2}+3 x-3 that satisfy the Mean Value Theorem.

See Solution

Problem 26356

Find local extrema of f(x)=3x39x2216x+7f(x)=3 x^{3}-9 x^{2}-216 x+7 for x(,)x \in (-\infty, \infty). List min, max values or DNE.

See Solution

Problem 26357

Given the function f(x)=4x3+9x212x+4f(x)=4 x^{3}+9 x^{2}-12 x+4, find: a) intervals where ff is increasing, b) intervals where ff is decreasing, c) local maxima as ordered pairs.

See Solution

Problem 26358

Find the derivative of y=ekxy=e^{kx} and determine the values of kk for which this holds true.

See Solution

Problem 26359

Find the derivative f(x)f^{\prime}(x) and values of xx where the tangent line of f(x)=x(7x8)6f(x)=\frac{x}{(7x-8)^{6}} is horizontal.

See Solution

Problem 26360

Find h(1)h'(1) and p(3)p'(3) for h(x)=f(g(x))h(x)=f(g(x)) and p(x)=g(f(x))p(x)=g(f(x)) using the given function values and derivatives.

See Solution

Problem 26361

Given f(x)=4x3+15x218x+2f(x)=4 x^{3}+15 x^{2}-18 x+2, find intervals for increasing, decreasing, local maxima, minima, and concavity.

See Solution

Problem 26362

Find the next approximation x2x_{2} using Newton's method for f(x)=42x+sin(x)f(x)=4-2x+\sin(x) with x1=3.5x_{1}=3.5, rounded to 3 decimals.

See Solution

Problem 26363

Use Newton's method to approximate solutions for 3x3+3x5=03x^{3} + 3x - 5 = 0 with initial guess x1=1x_{1} = 1. Find x2x_{2} and x3x_{3}. Round to 3 decimal places.

See Solution

Problem 26364

Estimate the area under f(x)=1+2x6f(x) = 1 + 2^{\frac{x}{6}} from a=0a = 0 to b=8b = 8 using rectangles (4 left, 4 right, 8 left, 8 right). Round to 3 decimal places.

See Solution

Problem 26365

Estimate the area under f(x)=7x236f(x) = 7 - \frac{x^2}{36} from x=0x = 0 to x=12x = 12 using 6 rectangles. Round to 3 decimal places.

See Solution

Problem 26366

Estimate the area under f(x)=4xln(x)f(x) = 4x - \ln(x) from x=1x = 1 to x=5x = 5 using 4 rectangles. Round to three decimal places.

See Solution

Problem 26367

Evaluate the Riemann sum for f(x)=4x23f(x)=4 x^{2}-3 on [1,2][-1,2] using 3 rectangles with midpoints for height.

See Solution

Problem 26368

Determine the max and min of f(x)=8cos(x)+4sin(2x)f(x)=8 \cos (x)+4 \sin (2 x) on [0,π2][0, \frac{\pi}{2}].

See Solution

Problem 26369

Find the max and min of f(x)=10cos(x)+5sin(2x)f(x)=10 \cos (x)+5 \sin (2 x) on [0,π2][0, \frac{\pi}{2}].

See Solution

Problem 26370

Find function ff such that f(x)=sinx+cosxf^{\prime \prime}(x)=\sin x+\cos x, f(0)=2f^{\prime}(0)=2, and f(0)=9f(0)=9.

See Solution

Problem 26371

Estimate the area under f(x)=2xf(x) = \sqrt{2x} from x=0x = 0 to x=4x = 4 using 4 rectangles (left, right, midpoints). Round to 3 decimal places. Is each estimate an underestimate or overestimate?

See Solution

Problem 26372

Find the general antiderivative of f(x)=4ex+4sec2(x)f(x)=4 e^{x}+4 \sec ^{2}(x).

See Solution

Problem 26373

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=14xf(x)=\sqrt{14 x}, where h0h \neq 0. Simplify fully.

See Solution

Problem 26374

Find the limit as xx approaches 1 from the left: limx1x2+4x5x1\lim _{x \rightarrow 1^{-}} \frac{x^{2}+4 x-5}{x-1}.

See Solution

Problem 26375

Bestimmen Sie die Extremstellen der Funktionen: a) f(x)=e3x2xf(x)=e^{3 x}-2 x, b) f(x)=(x28)exf(x)=(x^{2}-8)e^{x}, c) f(x)=e2x+exf(x)=e^{2 x+e^{-x}}.

See Solution

Problem 26376

Berechnen Sie das Volumen des Rotationshyperboloids für f(x)=1xf(x)=\frac{1}{x}, x1x \geq 1 und zeigen Sie, dass es endlich ist.

See Solution

Problem 26377

Find critical points, increasing/decreasing intervals, local extremes, concavity, and inflection points for f(x)=x54x4+10xxf(x)=\frac{x^{5}-4 x^{4}+10 x}{x}.

See Solution

Problem 26378

Calculate limx0perimeter of NOPperimeter of MOP\lim _{x \rightarrow 0} \frac{\text{perimeter of } N O P}{\text{perimeter of } M O P} for points M=(1,0),N=(0,1),O=(0,0),P=(x,y)M=(1,0), N=(0,1), O=(0,0), P=(x, y) with y=xy=\sqrt{x}.

See Solution

Problem 26379

Bestimmen Sie die Extremstellen der Funktionen: a) f(x)=e3x2xf(x)=e^{3 x}-2 x b) f(x)=(x28)exf(x)=(x^{2}-8)e^{x}

See Solution

Problem 26380

Calculate these limits: 1) limx1x2+4x5x1\lim _{x \rightarrow 1^{-}} \frac{x^{2}+4 x-5}{x-1}, 2) limx5x278x3+2x2+1\lim _{x \rightarrow-\infty} \frac{5 x^{2}-7}{8 x^{3}+2 x^{2}+1}, 3) limx+1+x2x\lim _{x \rightarrow+\infty} \sqrt{1+x^{2}}-x, 4) limx0xx+1x\lim _{x \rightarrow 0^{-}} \frac{|x| \sqrt{x+1}}{x}.

See Solution

Problem 26381

Find the limit as xx approaches 1 for the expression xn1x1\frac{x^{n}-1}{x-1}.

See Solution

Problem 26382

Find the limit as x x approaches 0 for 1x2 \frac{1}{x^{2}} .

See Solution

Problem 26383

Find the limit: limx0x2+11x2+255\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+1}-1}{\sqrt{x^{2}+25}-5}.

See Solution

Problem 26384

Berechnen Sie die mittlere Steigung von ff über den Intervallen: a) f(x)=12x2+1f(x)=\frac{1}{2} x^{2}+1, I=[1;3]I=[1 ; 3]; b) f(x)=4xf(x)=\frac{4}{x}, I=[2;8]I=[2 ; 8]; c) f(x)=2xf(x)=2x, I=[0;1]I=[0 ; 1]; d) f(x)=2xf(x)=2^{x}, I=[1;3]I=[1 ; 3].

See Solution

Problem 26385

Die Funktion p(t)=0,2te0,0625t+5p(t)=0,2 t e^{-0,0625 t}+5 modelliert Plastikmüll in Mio. Tonnen. Überprüfen Sie: a) p(0)=5p(0)=5, b) p(10)p(5)0,34p(10)-p(5) \approx 0,34, c) p(16)=0p^{\prime}(16)=0, p(16)<0p^{\prime \prime}(16)<0.

See Solution

Problem 26386

Find the limit: limx0e1x\lim _{x \rightarrow 0} e^{\frac{1}{x}}

See Solution

Problem 26387

Sophie hat Fieber, beschrieben durch f(t)=1,5te0,5t+1+37f(t)=1,5 \cdot t \cdot e^{-0,5 t+1}+37. Beantworte: a) Max. Temp., b) stärkster Rückgang, c) langfristige Temp., d) f(6,5)f(4,5)=1f(6,5)-f(4,5)=-1 interpretieren, e) Rückkehr zur Ausgangstemperatur nach Medikament.

See Solution

Problem 26388

Bestimme die Stammfunktion von f(x)=11010x51130000x3+16x+6f(x)=\frac{1}{10^{10}} x^{5}-\frac{1}{130000} x^{3}+\frac{1}{6} x+6.

See Solution

Problem 26389

Find the limit as xx approaches 0 for the expression $e^{-\frac{1}{x^{2}}$.

See Solution

Problem 26390

Find the limit: limx0sinαxbx\lim _{x \rightarrow 0} \frac{\sin \alpha x}{b x}.

See Solution

Problem 26391

Find the second derivative of f(x)=x34x2+6x2f(x)=\frac{x^{3}-4 x^{2}+6}{x^{2}}.

See Solution

Problem 26392

Find the derivative of f(x)=xx4+1f(x) = \frac{x}{\sqrt{x^{4} + 1}} and explain each step.

See Solution

Problem 26393

Find the limit: limx1e1xxx1\lim _{x \rightarrow 1} \frac{e^{1-x}-x}{x-1} using L'Hopital's rule.

See Solution

Problem 26394

Find the value of aa such that limxax2+bx+cdax=2\lim _{x \rightarrow-\infty} \frac{\sqrt{a x^{2}+b x+c}}{d-a x}=2.

See Solution

Problem 26395

Find the second derivative f(1)f^{\prime \prime}(1) for the function f(x)=(x1)x1f(x)=(x-1)|x-1|. Options: (A) 2 (B) -2 (C) 0 (D) undefined

See Solution

Problem 26396

Evaluate the limit as xx approaches 0: limx0x+366x\lim _{x \rightarrow 0} \frac{\sqrt{x+36}-6}{x}

See Solution

Problem 26397

Bestimmen Sie die Grenzwerte von f(x)=12xx+2f(x)=\frac{1-2x}{x+2} für xx \rightarrow \infty und xx \rightarrow -\infty sowie limx42x232x4\lim_{x \rightarrow 4} \frac{2x^2-32}{x-4}.

See Solution

Problem 26398

Find the second derivative of f(x)=2sin2(2x)f(x)=2 \sin ^{2}(2 x). What is f(x)f^{\prime \prime}(x)?

See Solution

Problem 26399

Find g(2)g^{\prime}(2) for g(x)=f1(x)g(x)=f^{-1}(x) where f(x)=x3+xf(x)=x^{3}+x and g(2)=1g(2)=1. Options: (A) 113\frac{1}{13} (B) 14\frac{1}{4} (C) 74\frac{7}{4} (D) 4 (E) 13

See Solution

Problem 26400

Find the limit: limxelnx1ex1\lim _{x \rightarrow e} \frac{\ln x-1}{\frac{e}{x}-1} using L'Hopital's rule. Options: (A) -1, (B) 1, (C) ee, (D) e-e.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord