Calculus
Problem 26302
Find the integral for the volume of a triangle revolving about the -axis given . Choices include various integrals.
See SolutionProblem 26303
You have two machines with data rates and . For hours, express data processed by the first machine as a definite integral: .
See SolutionProblem 26304
Let be a positive differentiable function where the area under from to equals its arclength. Which ODE does satisfy? Choose one:
1.
2.
3.
4.
5.
See SolutionProblem 26308
You have two machines with rates and . How long to use the first machine to maximize data processed in 6 hours?
See SolutionProblem 26310
Berechnen Sie die Anzahl der Erkrankten am 10. Tag mit der Funktion . Bestimmen Sie das Ende der Epidemie, den Definitions- und Wertebereich, Grenzwerte und die Symmetrie.
See SolutionProblem 26316
Find the values for local minima in a quartic function (answer as ). Are they ?
See SolutionProblem 26317
Given velocity data, find the object's acceleration, distance in 4s, and distance from 4s to 7s. Choices included.
See SolutionProblem 26318
A woman 1.5 m tall runs away from a 3 m pole at 1.8 m/s. Find the speed of her shadow's tip when she's 15 m from the pole.
See SolutionProblem 26320
Find the derivative of the following functions with respect to : i) , ii) , iii) , iv) .
See SolutionProblem 26324
Find the derivative of and generalize it for , where is a positive integer.
See SolutionProblem 26326
How many times larger is a cell population growing at per day today compared to yesterday? Options: 2, 2.25, 2.5, 2.75.
See SolutionProblem 26333
i) Find the 9th derivative of . ii) Find the 11th derivative of . e) Use implicit differentiation on .
See SolutionProblem 26334
A particle moves with . Find velocity, acceleration, critical points, and speeding/slowing intervals.
See SolutionProblem 26336
Find the motion of a particle at time given . Choose the correct statement about its movement.
See SolutionProblem 26339
Find interval where using values from , , , , . Options: (A) (0,4) (B) (4,8) (C) (8,12) (D) (12,16).
See SolutionProblem 26342
Find such that . Options: (A) , (B) , (C) could be any real number, (D) no such .
See SolutionProblem 26345
Find a point c for the MVT conclusion for these functions and intervals: 1. , [2,8]; 2. , [9,25]; 3. , [0,2\pi]; 4. , [1,4]; 5. , [-4,5]; 6. , [1,2]; 7. , [0,3]; 8. , [-1,1].
See SolutionProblem 26354
Evaluate the Riemann sum for on using 3 rectangles with midpoints for height.
See SolutionProblem 26357
Given the function , find: a) intervals where is increasing, b) intervals where is decreasing, c) local maxima as ordered pairs.
See SolutionProblem 26358
Find the derivative of and determine the values of for which this holds true.
See SolutionProblem 26361
Given , find intervals for increasing, decreasing, local maxima, minima, and concavity.
See SolutionProblem 26362
Find the next approximation using Newton's method for with , rounded to 3 decimals.
See SolutionProblem 26363
Use Newton's method to approximate solutions for with initial guess . Find and . Round to 3 decimal places.
See SolutionProblem 26364
Estimate the area under from to using rectangles (4 left, 4 right, 8 left, 8 right). Round to 3 decimal places.
See SolutionProblem 26365
Estimate the area under from to using 6 rectangles. Round to 3 decimal places.
See SolutionProblem 26366
Estimate the area under from to using 4 rectangles. Round to three decimal places.
See SolutionProblem 26367
Evaluate the Riemann sum for on using 3 rectangles with midpoints for height.
See SolutionProblem 26371
Estimate the area under from to using 4 rectangles (left, right, midpoints). Round to 3 decimal places. Is each estimate an underestimate or overestimate?
See SolutionProblem 26376
Berechnen Sie das Volumen des Rotationshyperboloids für , und zeigen Sie, dass es endlich ist.
See SolutionProblem 26377
Find critical points, increasing/decreasing intervals, local extremes, concavity, and inflection points for .
See SolutionProblem 26384
Berechnen Sie die mittlere Steigung von über den Intervallen: a) , ; b) , ; c) , ; d) , .
See SolutionProblem 26385
Die Funktion modelliert Plastikmüll in Mio. Tonnen. Überprüfen Sie: a) , b) , c) , .
See SolutionProblem 26387
Sophie hat Fieber, beschrieben durch . Beantworte: a) Max. Temp., b) stärkster Rückgang, c) langfristige Temp., d) interpretieren, e) Rückkehr zur Ausgangstemperatur nach Medikament.
See SolutionProblem 26395
Find the second derivative for the function . Options: (A) 2 (B) -2 (C) 0 (D) undefined
See SolutionProblem 26400
Find the limit: using L'Hopital's rule. Options: (A) -1, (B) 1, (C) , (D) .
See Solution123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337