Calculus

Problem 27701

Find the limit: limxx3+3x2+2x9\lim _{x \rightarrow-\infty} \frac{x^{3}+3}{x^{2}+2 x-9}. Options: a. \infty, b. 13-\frac{1}{3}, c. -\infty, d. 0.

See Solution

Problem 27702

Find the value of 0π6(secx+tanx)2dx\int_{0}^{\frac{\pi}{6}}(\sec x+\tan x)^{2} d x. Choose the correct option.

See Solution

Problem 27703

Find the value of 0π4(cosx+secx)2dx\int_{0}^{\frac{\pi}{4}}(\cos x+\sec x)^{2} d x. Choose the correct answer from the options.

See Solution

Problem 27704

Find the volume of a solid with a base under y=9x2y=9-x^{2} and square cross-sections: V=03(9x2)2dxV=\int_{0}^{3}\left(9-x^{2}\right)^{2} d x. Choose the correct integral.

See Solution

Problem 27705

Calculate 0π6(cosx+secx)2dx\int_{0}^{\frac{\pi}{6}}(\cos x+\sec x)^{2} d x and choose the correct answer from the options.

See Solution

Problem 27706

Given the function f(x)=x4+1x2f(x)=\frac{x^{4}+1}{x^{2}}, determine the true statement about its critical points and concavity.

See Solution

Problem 27707

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=2y=\sqrt{2}, x=π4x=-\frac{\pi}{4}, and x=π4x=\frac{\pi}{4} about the x-axis. Select the correct integral expression.

See Solution

Problem 27708

Find the value of the integral 0π4(cosx+secx)2dx\int_{0}^{\frac{\pi}{4}}(\cos x+\sec x)^{2} d x.

See Solution

Problem 27709

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=0y=0, x=π4x=-\frac{\pi}{4}, x=π4x=\frac{\pi}{4} around y=2y=2.

See Solution

Problem 27710

Find the volume of a solid with a square cross-section under the parabola y=4x2y=4-x^{2} in the first quadrant.

See Solution

Problem 27711

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=0y=0, x=π4x=-\frac{\pi}{4}, x=π4x=\frac{\pi}{4} around y=2y=2.

See Solution

Problem 27712

Find the area between the curves y=2xy=2 \sqrt{x} and y=2x2y=2 x^{2}. What is the area?

See Solution

Problem 27713

Find the volume of a solid with a base under y=9x2y=9-x^{2} and square cross-sections perpendicular to the yy-axis.

See Solution

Problem 27714

Find the area between the curves y=7xy=7 \sqrt{x} and y=7xy=7 x. What is the area? Choices: 76,none,143,36,56\frac{7}{6}, \text{none}, \frac{14}{3}, \frac{3}{6}, \frac{5}{6}.

See Solution

Problem 27715

Given f(3)=0f'(3)=0, f(5)=0f'(5)=0, f(3)=4f''(3)=-4, and f(5)=5f''(5)=5, determine the true statement about ff.

See Solution

Problem 27716

Find the slope of the tangent to f(x)=4x+1f(x)=-\frac{4}{x+1} at x=1x=1. Provide just the numerical answer.

See Solution

Problem 27717

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=2y=\sqrt{2}, x=π4x=-\frac{\pi}{4}, x=π4x=\frac{\pi}{4} around the x-axis. Select one: none, π4π4π(2sec2x)dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi(2-\sec^2 x) dx, π4π42πx(sec2x2)dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 2\pi x(\sec^2 x - \sqrt{2}) dx, π(2(2secx)2)dx\pi(2-(\sqrt{2}-\sec x)^2) dx, π4π4π(2secx)2dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi(\sqrt{2}-\sec x)^2 dx.

See Solution

Problem 27718

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=2y=\sqrt{2}, x=0x=0, and x=π4x=\frac{\pi}{4} around x=π4x=\frac{\pi}{4}.

See Solution

Problem 27719

Find the value(s) of xx where the function f(x)=13x3x2+3f(x)=\frac{1}{3} x^{3}-x^{2}+3 has a horizontal tangent.

See Solution

Problem 27720

Find the volume of a solid with a disk base x2+y21x^{2}+y^{2} \leq 1 and equilateral triangle cross-sections.

See Solution

Problem 27721

Find the volume of a solid with a base under y=4x2y=4-x^{2} and square cross-sections perpendicular to the yy-axis. Select one: V=04(4y2)dy V=\int_{0}^{4}(4-y^{2}) dy V=04(4x2)dx V=\int_{0}^{4}(4-x^{2}) dx V=224x2dx V=\int_{-2}^{2} 4 x^{2} dx V=044(4y)dy V=\int_{0}^{4} 4(4-y) dy

See Solution

Problem 27722

Given f(3)=0f'(3)=0, f(5)=0f'(5)=0, f(3)=4f''(3)=4, and f(5)=5f''(5)=-5, which statement about ff is true?

See Solution

Problem 27723

Find the volume of a solid with semicircular cross-sections over the region bounded by y=x2y=x^{2} and y=2x2y=2-x^{2}.

See Solution

Problem 27724

Find the value(s) of xx where the function f(x)=13x3x2+3f(x)=\frac{1}{3} x^{3}-x^{2}+3 has a horizontal tangent.

See Solution

Problem 27725

Find the value of 0π3(secx+tanx)2dx\int_{0}^{\frac{\pi}{3}}(\sec x+\tan x)^{2} d x. Choose one option: 23\sqrt{3}-π3\frac{\pi}{3}+2, 23\sqrt{3}+π3\frac{\pi}{3}+2, 23\sqrt{3}-π3\frac{\pi}{3}-2, none, or 23\sqrt{3}+π3\frac{\pi}{3}-2.

See Solution

Problem 27726

Given f(x)f(x) with f(2)=0f^{\prime}(2)=0, which must be true? Select one:
1. ff changes from increasing to decreasing or vice versa.
2. ff has a local max or min at (2,f(2))(2, f(2)).
3. The tangent line at (2,f(2))(2, f(2)) is vertical.
4. The tangent line at (2,f(2))(2, f(2)) is horizontal.
5. (2,f(2))(2, f(2)) is an inflection point.

See Solution

Problem 27727

Find the volume of a solid with a disk base x2+y21x^{2}+y^{2} \leq 1 and triangular cross-sections.

See Solution

Problem 27728

Find the rate of change of marginal revenue for R(x)=70x+0.5x2.001x3R(x)=70 x+0.5 x^{2}-.001 x^{3} at x=100x=100.

See Solution

Problem 27729

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=2y=\sqrt{2}, x=0x=0, x=π4x=\frac{\pi}{4} around x=π2x=\frac{\pi}{2}.

See Solution

Problem 27730

Find h(4)h^{\prime}(4) for h(x)=3(f(x))2g(x)+2xh(x)=3(f(x))^{2}-g(x)+2 x given f(4)=2,f(4)=1,g(4)=3f(4)=2, f^{\prime}(4)=-1, g^{\prime}(4)=-3.

See Solution

Problem 27731

Find the marginal cost to produce the 5th5^{\text{th}} unit for C(x)=4x52+100xC(x)=4 x^{\frac{5}{2}}+100 x. Options: a. 180 b. 32.82 c. 140 d. 25.98

See Solution

Problem 27732

Evaluate the integral 0π4(cosx+secx)2dx\int_{0}^{\frac{\pi}{4}}(\cos x+\sec x)^{2} \, dx.

See Solution

Problem 27733

Calculate the value of 0π4(cosx+secx)2dx\int_{0}^{\frac{\pi}{4}}(\cos x+\sec x)^{2} dx. Choose the correct answer from the options provided.

See Solution

Problem 27734

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=2y=\sqrt{2}, x=0x=0, x=π4x=\frac{\pi}{4} around x=1x=-1. Choose the correct integral.

See Solution

Problem 27735

Find the volume of a solid with a base under y=9x2y=9-x^{2} and square cross-sections: V=334(9y)2dyV=\int_{-3}^{3} 4(9-y)^{2} dy.

See Solution

Problem 27736

Calculate the value of 0π4(cosx+secx)2dx\int_{0}^{\frac{\pi}{4}}(\cos x+\sec x)^{2} d x and select the correct answer.

See Solution

Problem 27737

Find the instantaneous velocity at t=3 st=3 \mathrm{~s} and t=4 st=4 \mathrm{~s}, and calculate average and instantaneous acceleration.

See Solution

Problem 27738

Find f(x)f(x) if f(x)=limΔx02(x+Δx)2+2x2Δxf^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{-2(x+\Delta x)^{2}+2 x^{2}}{\Delta x}. Options: A) 4x-4 x, B) 4x4 x, C) 2x22 x^{2}, D) 2x2-2 x^{2}.

See Solution

Problem 27739

Given the function f(x)=x4+1x2f(x)=\frac{x^{4}+1}{x^{2}}, which statement is true?
1. No vertical asymptotes
2. Local maximum at x=0x=0
3. Only one critical point at x=0x=0
4. Concave up on (,0)(0,)(-\infty, 0) \cup(0, \infty) Correct answer: 4.

See Solution

Problem 27740

Find the limit: limΔx0f(2+Δx)f(2)Δx\lim _{\Delta x \rightarrow 0} \frac{f(2+\Delta x)-f(2)}{\Delta x} for f(x)=45xf(x)=\frac{-4}{5-x}. Options: A) 43\frac{4}{3} B) 43\frac{-4}{3} C) 49\frac{4}{9} D) 49\frac{-4}{9}

See Solution

Problem 27741

Use the Power Law to solve: limy12(16y25)4=(limy12(16y25))4\lim _{y \rightarrow \frac{1}{2}}\left(16 y^{2}-5\right)^{4}=\left(\lim _{y \rightarrow \frac{1}{2}}\left(16 y^{2}-5\right)\right)^{4}.

See Solution

Problem 27742

Evaluate the limit: $$\lim _{x \rightarrow-2} \sqrt{x^{2}-5 x+3$$. Identify the limit laws applied.

See Solution

Problem 27743

If ff is even and f(c)=25f^{\prime}(c)=-\frac{2}{5}, find f(c)f^{\prime}(-c). A) 52-\frac{5}{2} B) 25-\frac{2}{5} C) 52\frac{5}{2} D) 25\frac{2}{5}

See Solution

Problem 27744

Find h(1)h^{\prime}(-1) for h(x)=f(x)+3g(x)h(x)=f(x)+3g(x) given f(1)=2g(1)f^{\prime}(-1)=2g^{\prime}(-1) and limx1f(x)f(1)x+1=6\lim_{x \rightarrow 1} \frac{f(x)-f(-1)}{x+1}=-6. Choices: A) -15 B) -2 C) -18 D) 0

See Solution

Problem 27745

A turtle's position is given by x(t)=50 cm+(2 cm/s)t(0.0625 cm/s2)t2x(t)=50 \mathrm{~cm}+(2 \mathrm{~cm/s}) t-(0.0625 \mathrm{~cm/s^2}) t^2. Find: (a) avg velocity t=0t=0 to t=10 st=10 \mathrm{~s}, (b) instant velocity at t=5 st=5 \mathrm{~s}, (c) instant acceleration at t=5 st=5 \mathrm{~s}. Convert to meters.

See Solution

Problem 27746

Evaluate the limits as xx approaches 9 for:
1. limx9(10x281x81)=\lim _{x \rightarrow 9}(10 x^{2}-81 x-81)=\square
2. limx9(2x2162)=\lim _{x \rightarrow 9}(2 x^{2}-162)=\square

What type of limit is f(x)f(x) at x=9x=9?

See Solution

Problem 27747

Evaluate the limit:
limy12(16y25)4\lim _{y \rightarrow \frac{1}{2}}\left(16 y^{2}-5\right)^{4}
using limit laws.

See Solution

Problem 27748

Calculate the limit: limx(x+1)[ln(x+1)lnx]\lim _{x \rightarrow \infty}(x+1)[\ln (x+1)-\ln x].

See Solution

Problem 27749

Prove that an=n+5na_{n}=\frac{\sqrt{n+5}}{n} approaches 0 as nn goes to infinity.

See Solution

Problem 27750

Evaluate the limit: limx2x25x+3\lim _{x \rightarrow-2} \sqrt{x^{2}-5 x+3}. Identify the limit laws used.

See Solution

Problem 27751

Find the derivative of the function 1x36x\frac{1}{x^{3}} - \frac{6}{x}.

See Solution

Problem 27752

Determine the convexity and concavity of the function y=1x36xy=\frac{1}{x^{3}}-\frac{6}{x}.

See Solution

Problem 27753

Find the limits of the following sequences:
1. an=n(8n3+2n132n1)a_{n}=n\left(\sqrt[3]{8 n^{3}+2 n-1}-2 n-1\right)
2. an=22n+πn+nπnna_{n}=\frac{2}{\sqrt[n]{2^{n}+\pi^{n}+n^{\pi n}}}
3. an=14+24++n414+24++n4+(n+1)4a_{n}=\frac{1^{4}+2^{4}+\cdots+n^{4}}{1^{4}+2^{4}+\cdots+n^{4}+(n+1)^{4}}

See Solution

Problem 27754

Find the limit: limnn(8n3+2n132n1) \lim_{n \to \infty} n\left(\sqrt[3]{8 n^{3}+2 n-1}-2 n-1\right) .

See Solution

Problem 27755

Find the limit as nn approaches infinity: limnan=limn22n+πn+n104\lim_{n \to \infty} a_{n} = \lim_{n \to \infty} \frac{2}{\sqrt[4]{2^{n}+\pi^{n}+n^{10}}}.

See Solution

Problem 27756

Investigate the convergence of these series: 1. n=1n2n+5\sum_{n=1}^{\infty} \frac{\sqrt{n-2}}{n+5}, 2. n=1n1(3n1)(2n+5)\sum_{n=1}^{\infty} \frac{n-1}{(3 n-1)(2 n+5)}.

See Solution

Problem 27757

Evaluate the integral of cos(lnx)\cos (\ln x) with respect to xx: cos(lnx)dx\int \cos (\ln x) d x.

See Solution

Problem 27758

Evaluate the integral 01r34+r2dr\int_{0}^{1} \frac{r^{3}}{\sqrt{4+r^{2}}} d r.

See Solution

Problem 27759

Two planes fly at the same height: A at 250 mi/h east and B at 300 mi/h north. Find the rate of distance change to the airport.

See Solution

Problem 27760

Evaluate the limit: $$\lim _{x \rightarrow 0} \frac{5+e^{x}}{1-e^{x^{2}}$$. If it doesn't exist, write DNE.

See Solution

Problem 27761

A field hockey ball is launched at an angle. Find horizontal and vertical accelerations at: (a) max height, (b) halfway up, (c) halfway down.

See Solution

Problem 27762

Minimize the cost of a cylinder cup with volume 100 cm3^3 and lateral surface area S=2πrhS = 2\pi r h. Which equation helps?

See Solution

Problem 27763

Find when the object with velocity v(t)=t3+4t2+2tv(t)=-t^{3}+4 t^{2}+2 t reaches maximum acceleration for 0t80 \leq t \leq 8.

See Solution

Problem 27764

Find the tangent line to y=x32xy=x^{3}-2x for x0x \geq 0 that minimizes the absolute slope.

See Solution

Problem 27765

Find f(2)f(2), limx2f(x)\lim _{x \rightarrow 2^{-}} f(x), limx2+f(x)\lim _{x \rightarrow 2^{+}} f(x), limx2f(x)\lim _{x \rightarrow 2} f(x); explain any non-existences. Also, find asymptotes of f(x)=x+1x1f(x)=\frac{x+1}{x-1}.

See Solution

Problem 27766

The function F(x)=x44x3+4x2+6F(x)=x^{4}-4 x^{3}+4 x^{2}+6 is increasing in the intervals: 0<x<10<x<1 and x>2x>2.

See Solution

Problem 27767

Find the limits: (a) limx2(x38x2)\lim _{x \rightarrow 2}\left(\frac{x^{3}-8}{x-2}\right), (b) limx1(x2+487x1)\lim _{x \rightarrow 1}\left(\frac{\sqrt{x^{2}+48}-7}{x-1}\right), (c) limx2(12+1x2+x)\lim _{x \rightarrow-2}\left(\frac{\frac{1}{2}+\frac{1}{x}}{2+x}\right). Justify without graphs or tables.

See Solution

Problem 27768

Find the tangent line equation to the curve y=x24xy=x^{2}-4 x at the yy-axis intersection. Choose from: (a) y=8x4y=8 x-4, (b) y=4xy=-4 x, (c) y=4y=-4, (d) y=4xy=4 x, (e) y=4x8y=4 x-8.

See Solution

Problem 27769

Find the slope of the tangent line to the curve y3xy2=4y^{3}-x y^{2}=4 at the point where y=2y=2.

See Solution

Problem 27770

Determine the relative extrema of the function G(x)=x44x2G(x)=x^{4}-4 x^{2} from the options: (a) 1 min, 2 max (b) 1 min, 1 max (c) 0 min, 2 max (d) 2 min, 0 max (e) 2 min, 1 max.

See Solution

Problem 27771

Find the total relative extrema of F(x)F(x) if F(x)=x(x3)2(x+1)4F^{\prime}(x)=x(x-3)^{2}(x+1)^{4}. Options: (a) 0 (b) 1 (c) 2 (d) 3 (e) none.

See Solution

Problem 27772

Find the value of cc defined by Rolle's Theorem for F(x)=2x36xF(x)=2 x^{3}-6 x on 0x30 \leq x \leq \sqrt{3}.

See Solution

Problem 27773

Find the derivative of the function U(x)=x+2202xU(x) = x + 2 \sqrt{20 - 2x}.

See Solution

Problem 27774

Find the volume of the solid of rotation for y=4x2y=4-x^2 using these methods: (a) disk, (b) washer, (c) shell, (d) shell about y=2y=2.

See Solution

Problem 27775

Find the interval where the average rate of change of ff is greatest: A. [3,2][-3,-2], B. [3,1][-3,1], C. [2,1][-2,1], D. [3,5][3,5].

See Solution

Problem 27776

Find d2ydx2\frac{d^{2} y}{d x^{2}} at (1,2) given 13xydydx=x+y\frac{1}{3 x-y} \cdot \frac{d y}{d x}=x+y. A. 0 B. 3 C. 4 D. 8

See Solution

Problem 27777

Find the third derivative of y=2sinxe3xy=2 \sin x-e^{3 x}. What is d3ydx3\frac{d^{3} y}{d x^{3}}? A. 2cosx3e3x2 \cos x-3 e^{3 x} B. 2sinx9e3x-2 \sin x-9 e^{3 x} C. 2cosxe3x-2 \cos x-e^{3 x} D. 2cosx27e3x-2 \cos x-27 e^{3 x}

See Solution

Problem 27778

Find dydx\frac{d y}{d x} for the equation y33x3y=9y^{3}-3 x^{3} y=9. Choices: A, B, C, D.

See Solution

Problem 27779

Find dydx\frac{d y}{d x} for y33x3y=9y^{3}-3 x^{3} y=9. Choose from: A, B, C, or D.

See Solution

Problem 27780

Find the slope of the tangent line to y=xsinxy=x \sin x at x=πx=\pi. A. π-\pi B. -1 C. 0 D. π\pi

See Solution

Problem 27781

Given f(2)=3f(-2)=-3, g(2)=2g(-2)=-2, f(2)=4f'(-2)=4, g(2)=1g'(-2)=1, find h(2)h'(-2) for h(x)=f(x)g(x)h(x)=\frac{f(x)}{g(x)}. A. 114-\frac{11}{4} B. 54-\frac{5}{4} C. 25-\frac{2}{5} D. 54\frac{5}{4}

See Solution

Problem 27782

Given f(x)=g(h(x))f(x)=g(h(x)), find f(1)f^{\prime}(-1) using the table values. A. -26 B. -16 C. -8 D. 3

See Solution

Problem 27783

Find the limit: limx2x+2x+2\lim _{x \rightarrow-2^{-}} \frac{x+2}{|x+2|}. What is the value? A. -2 B. -1 C. 1 D. DNE

See Solution

Problem 27784

Evaluate the integral: secθtanθesecθdθ\int \sec \theta \tan \theta e^{\sec \theta} d \theta

See Solution

Problem 27785

Evaluate the integral: 01x1x2dx\int_{0}^{1} x \sqrt{1-x^{2}} d x

See Solution

Problem 27786

Evaluate the integral: 4x6+5x2x3dx\int \frac{4 x^{6}+5 x^{2}}{x^{3}} d x

See Solution

Problem 27787

Calculate the integral: 111x+2dx\int_{-1}^{1} \frac{1}{x+2} d x

See Solution

Problem 27788

Evaluate the integral: 116x2dx\int \frac{1}{\sqrt{16-x^{2}}} d x

See Solution

Problem 27789

Write the definite integral as a Riemann Sum limit: 13(x+1)dx\int_{1}^{3}(x+1) dx. Do not evaluate.

See Solution

Problem 27790

Translate the Riemann sum to a definite integral without evaluating: limnk=1n(cos(πnk))π2n\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\cos \left(\frac{\pi}{n} k\right)\right) \frac{\pi}{2 n}

See Solution

Problem 27791

Evaluate the integral 25[x(5x22)14]dx\int_{\sqrt{2}}^{5}\left[x\left(5 x^{2}-2\right)^{14}\right] d x using u=5x22u=5 x^{2}-2. Find new limits.

See Solution

Problem 27792

Find the time(s), tt, when the acceleration of the object with position s(t)=14t476t3+t2+1s(t)=\frac{1}{4} t^{4}-\frac{7}{6} t^{3}+t^{2}+1 is 0.

See Solution

Problem 27793

Find the initial population size and size after 9 years for P(t)=5201+9e0.4tP(t)=\frac{520}{1+9 e^{-0.4 t}}. Round to whole numbers.

See Solution

Problem 27794

Find the soda's temperature after 10 and 20 minutes using T(x)=7+25e0.034xT(x)=-7+25 e^{-0.034 x}. Round to the nearest degree.

See Solution

Problem 27795

Find local minima and maxima of y=lnxx2 y = \frac{\ln x}{x^{2}} by finding critical points and analyzing y y' and y y'' .

See Solution

Problem 27796

Differentiate the function f(x)=13x+5f(x) = \frac{1}{3x + 5}.

See Solution

Problem 27797

Find the volume of the solid formed by revolving the area between y=secxy=\sec x, y=0y=0, x=π4x=-\frac{\pi}{4}, x=π4x=\frac{\pi}{4} around y=2y=-2. Select one:
π4π4π((secx+2)24)dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi\left((\sec x+2)^{2}-4\right) dx
none
π4π4π(sec2x2)dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi\left(\sec^{2} x-2\right) dx
π4π4π(secx+4)2dx\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \pi(\sec x+4)^{2} dx
π4π(secx2)2dx\int_{\frac{\pi}{4}} \pi(\sec x-2)^{2} dx

See Solution

Problem 27798

Differentiate f(x)=13x+5f(x) = \frac{1}{3x + 5} using first principles: f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}.

See Solution

Problem 27799

Find the derivative f(x)f'(x) of the function f(x)=5xf(x) = 5 \sqrt{x} using the limit definition.

See Solution

Problem 27800

Find where the function y=2xx2+1y = \frac{2x}{\sqrt{x^2 + 1}} is concave up and concave down.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord