Calculus

Problem 27401

Given f(x)=sinxf(x)=\sin x and a=5π3a=\frac{5 \pi}{3}, write the power series in summation notation. Choose A, B, C, or D.

See Solution

Problem 27402

Approximate 11.192\frac{1}{1.19^{2}} using the first four nonzero terms of the Taylor series for f(x)=(1+x)2f(x)=(1+x)^{-2}. First term is \square.

See Solution

Problem 27403

Find the first four nonzero terms of the Taylor series for (1+2x)2(1+2x)^{-2} using (1+x)2(1+x)^{-2}.

See Solution

Problem 27404

Approximate 1.174/51.17^{-4/5} using the first four terms of the Taylor series for f(x)=(1+x)4/5f(x)=(1+x)^{-4/5} centered at 0.

See Solution

Problem 27405

Find the first four nonzero terms of the Taylor series for f(x)=(1+x)4/5f(x)=(1+x)^{-4/5} and use them to approximate 1.174/51.17^{-4/5}.

See Solution

Problem 27406

A sandbag is dropped from a balloon at 300 m300 \mathrm{~m} and 13 m/s13 \mathrm{~m/s} up. Find its speed on impact and time to ground.
a. Speed: [77.8 m/s][-77.8 \mathrm{~m/s}] b. Time: [9.27 s][9.27 \mathrm{~s}]

See Solution

Problem 27407

Find the first four nonzero terms of the Maclaurin series for f(x)=ln(1+4x)f(x)=\ln(1+4x) and its interval of convergence.

See Solution

Problem 27408

Find the first four nonzero terms of the Taylor series for 1(5+8x)2\frac{1}{(5+8 x)^{2}} centered at 0 using (1+x)2(1+x)^{-2}.

See Solution

Problem 27409

Find the limit: limx03tan1x3x+x35x5\lim _{x \rightarrow 0} \frac{3 \tan^{-1} x - 3x + x^3}{5x^5}.

See Solution

Problem 27410

Calculate the distance change rate from a particle on y=sinxy=\sin x to the origin, given dxdt=2 cm/s\frac{d x}{d t}=2 \mathrm{~cm/s}.

See Solution

Problem 27411

Find the volume of the solid formed by rotating the area between y=(2+x)2y=(2+x)^{2}, x=0x=0, and x=1x=1 around the xx-axis.

See Solution

Problem 27412

Differentiate the Taylor series for f(x)=e3xf(x)=e^{-3 x}, identify the function, and find the interval of convergence.

See Solution

Problem 27413

Find the derivative of f(x)=sin(x6)f(x) = \sin(x^6), which is f(x)=6x5cos(x6)f'(x) = 6x^5 \cos(x^6). Determine the interval of convergence.

See Solution

Problem 27414

Determine if f(x)=x2x1f(x)=\frac{x^{2}}{x-1} has local or absolute extrema at the given points. Select the correct statement.

See Solution

Problem 27415

Determine where the function f(x)=x22x21f(x)=\frac{x^{2}-2}{x^{2}-1} is concave down using f=2(3x2+1)(x21)3f^{\prime \prime}=\frac{2(3x^{2}+1)}{(x^{2}-1)^{3}}.

See Solution

Problem 27416

Find the limit: limx05x3+8x23x416x2\lim _{x \rightarrow 0} \frac{5 x^{3}+8 x^{2}}{3 x^{4}-16 x^{2}}.

See Solution

Problem 27417

Find the function for the series k=05e3kx\sum_{k=0}^{\infty} 5 e^{-3 k x} and its interval of convergence.

See Solution

Problem 27418

Approximate 1.193\sqrt[3]{1.19} using the first four nonzero terms of the Taylor series for f(x)=1+x3f(x)=\sqrt[3]{1+x} at 0.

See Solution

Problem 27419

Find the limit: L=limx05x3+8x23x416x2L = \lim _{x \rightarrow 0} \frac{5 x^{3}+8 x^{2}}{3 x^{4}-16 x^{2}}.

See Solution

Problem 27420

Find the limit: limxax3a3x4a4\lim _{x \rightarrow a} \frac{x^{3}-a^{3}}{x^{4}-a^{4}}

See Solution

Problem 27421

Find the value of cc that satisfies Rolle's Theorem for f(x)=2x35x24x+3f(x)=2 x^{3}-5 x^{2}-4 x+3 on x[13,3]x \in\left[\frac{1}{3}, 3\right].

See Solution

Problem 27422

Find the values of cc for Rolle's Theorem with f(x)=cos(2x)f(x)=\cos(2x) on [0,2π][0, 2\pi]. Options: a, b, c, d.

See Solution

Problem 27423

Find values of cc that satisfy Rolle's Theorem for f(x)=cos(2x)f(x)=\cos(2x) on [0,2π][0, 2\pi]. Options: a, b, c, d.

See Solution

Problem 27424

Find all xx where the curve y=4x42x24y=4x^4-2x^2-4 has a horizontal tangent. Choices: a, b, c, d.

See Solution

Problem 27425

Find the value of cc in Rolle's Theorem for f(x)=excosxf(x)=e^{x} \cos x on [0,π][0, \pi]. Options: a. π2\frac{\pi}{2} b. 3π4\frac{3 \pi}{4} c. π4\frac{\pi}{4} d. None

See Solution

Problem 27426

Find the limit: limx0Sin2x2x2+x\lim _{x \rightarrow 0} \frac{\operatorname{Sin} 2 x}{2 x^{2}+x}.

See Solution

Problem 27427

Find the limit as yy approaches infinity for the expression 3y+7y22\frac{3y + 7}{y^2 - 2}.

See Solution

Problem 27428

Differentiate the Taylor series for f(x)=e3xf(x)=e^{-3x}, identify the function, and find the interval of convergence.

See Solution

Problem 27429

Find the function for the power series: k=1(1)kkxk+33k\sum_{k=1}^{\infty}(-1)^{k} \frac{k x^{k+3}}{3^{k}}. What is f(x)=f(x)=\square?

See Solution

Problem 27430

Find the first four nonzero terms of the Taylor series for sin (12)\left(\frac{1}{2}\right) in order. sin(12)=()+()+()+()+ \sin \left(\frac{1}{2}\right)=(\square)+(\square)+(\square)+(\square)+\cdots

See Solution

Problem 27431

Find the first four nonzero terms of the Taylor series for e3e^{3}. Write them in order:
e3=++++ e^{3}=\square+\square+\square+\square+\cdots

See Solution

Problem 27432

Find the function for the power series: k=0(1)kx3k4k\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{3 k}}{4^{k}}. What is f(x)=f(x)=\square?

See Solution

Problem 27433

Express ln(2)\ln(2) as the sum of the first four nonzero terms of its Taylor series: 112+1314+1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots.

See Solution

Problem 27434

Find the limit: limx0sin(5x)sin(3x)\lim _{x \rightarrow 0} \frac{\sin(5x)}{\sin(3x)}.

See Solution

Problem 27435

Find the Taylor series for Si\mathrm{Si} and approximate Si(0.7)\mathrm{Si}(0.7) to the nearest thousandth.

See Solution

Problem 27436

Find the area between the curve y=1x4y=\sqrt{1-x^{4}} and the xx-axis. Options: (A) 0.886 (B) 1.253 (C) 1.414 (D) 1.571 (E) 1.748

See Solution

Problem 27437

If the average value of ff on [a,b][a, b] is 10, find abf(x)dx\int_{a}^{b} f(x) d x. Options: (A) 10ba\frac{10}{b-a}, (B) f(a)+f(b)10\frac{f(a)+f(b)}{10}, (C) 10b10a10 b-10 a, (D) ba10\frac{b-a}{10}, (E) f(a)+f(b)20\frac{f(a)+f(b)}{20}.

See Solution

Problem 27438

Find the average value of f(x)=cosxf(x)=\cos x over the interval [1,5][1,5]. Choose the correct answer from the options.

See Solution

Problem 27439

Find the linearization of f(x)=πxcos3tdtf(x)=\int_{\pi}^{x} \cos ^{3} t \, dt at x=πx=\pi. What is it?

See Solution

Problem 27440

Find f(5)f(5) if f(x)=ln(2+sinx)f^{\prime}(x)=\ln(2+\sin x) and f(3)=4f(3)=4. Choose from: (A) 0.040 (B) 0.272 (C) 0.961 (D) 4.555 (E) 6.667.

See Solution

Problem 27441

Find limh01hxx+hf(t)dt\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t. Choose from: (A) 0, (B) 1, (C) f(x)f^{\prime}(x), (D) f(x)f(x), (E) nonexistent.

See Solution

Problem 27442

Find the limit: limx0sin(π2x)x\lim _{x \rightarrow 0} \frac{\sin (\pi-2 x)}{x}.

See Solution

Problem 27443

Determine the intervals where the function ff is increasing given that f(x)=x21x2+2f^{\prime}(x)=\frac{x^{2}-1}{x^{2}+2}.

See Solution

Problem 27444

Calculate the limit: limxxx3x+x3\lim _{x \rightarrow \infty} \frac{\sqrt{x}-\sqrt[3]{x}}{\sqrt{x}+\sqrt[3]{x}}.

See Solution

Problem 27445

Find the average rate of change of f(x)=cotxf(x)=\cot x on the interval [π4,π2]\left[\frac{\pi}{4}, \frac{\pi}{2}\right].

See Solution

Problem 27446

Find the slope of the normal line for the function f(x)=5x2+2f(x)=\frac{5}{x^{2}+2} at the point where x=2x=2.

See Solution

Problem 27447

Find the absolute maximum of f(x)=4x2f(x)=4-x^{2} on the interval [1,3][1,3].

See Solution

Problem 27448

Is the antiderivative F(x)F(x) of f(x)=3x+sin2xf(x)=\frac{3}{\sqrt{x}}+\sin 2 x with F(π4)=3πF\left(\frac{\pi}{4}\right)=3 \sqrt{\pi} equal to F(x)=6x12cos2xF(x)=6 \sqrt{x}-\frac{1}{2} \cos 2 x? True or False.

See Solution

Problem 27449

Find 22f(x)dx\int_{-2}^{2} f(x) \, dx if the average value av(f)=π2a v(f) = \frac{\pi}{2}.

See Solution

Problem 27450

Find d2ydx2\frac{d^{2} y}{d x^{2}} if x3y3=1x^{3}-y^{3}=1.

See Solution

Problem 27451

The acceleration at t=0t=0 for the position s(t)=t36t2+9ts(t)=t^{3}-6 t^{2}+9 t is a(0)=9 m/sec2a(0)=9 \mathrm{~m} / \mathrm{sec}^{2}. True or False?

See Solution

Problem 27452

Evaluate the limit: limx+(x+x)\lim_{x \to +\infty} (x + \sqrt{x}) and simplify the expression Exercicex+xv+yx\frac{E x e r c i c e}{x+\sqrt{x} \frac{v}{+y}} x.

See Solution

Problem 27453

Iodine-123 has a half-life of 13 hours. How long until the patient is 99.9%99.9\% free of it? Options: 130h, 117h, 180h, 11h.

See Solution

Problem 27454

Differentiate the function sin(e4x23x)cosx27lnx\frac{\sin \left(e^{4 x^{2}-3 x}\right)}{\cos x^{2}-7 \ln x}.

See Solution

Problem 27455

Calculate the total number of people entering the escalator line from t=0t=0 to t=300t=300 given r(t)r(t) and exit rate of 0.7 p/s.

See Solution

Problem 27456

Find the Taylor series at x=0x=0 for the function 5sin(v)5 \sin (-v) using substitution.

See Solution

Problem 27457

Find the Taylor series at v=0v=0 for the function 5sin(v)5 \sin(-v) using substitution.

See Solution

Problem 27458

Find the Taylor series at x=0x=0 for these functions using substitution: 1. e5xe^{-5 x}, 2. ex/2e^{-x / 2}, 3. 5sin(x)5 \sin (-x).

See Solution

Problem 27459

Find the Taylor series at x=0x=0 for: 1. e5xe^{-5 x}, 2. ex/2e^{-x / 2}, 3. 5sin(x)5 \sin (-x).

See Solution

Problem 27460

Find the Taylor series at x=0x = 0 for f(x)=12xf(x) = \frac{1}{2-x} and g(x)=ex2g(x) = e^{-\frac{x}{2}} using power series.

See Solution

Problem 27461

Find the Taylor series at x=0x=0 for the function ex/2e^{-x / 2} using substitution.

See Solution

Problem 27462

Differentiate the function (6x5)4(6x - 5)^4 with respect to xx.

See Solution

Problem 27463

Analyze the behavior of f(x)=log(x2)f(x) = \log(x-2) as xx approaches 2.

See Solution

Problem 27464

Verify if the function y=2xx2y=\sqrt{2 x-x^{2}} satisfies the equation y3y+1=0y^{3} y^{\prime \prime}+1=0.

See Solution

Problem 27465

Find (fg)(0)(f g)^{\prime}(0) and (fg)(0)\left(\frac{f}{g}\right)^{\prime}(0) given f(0)=7,f(0)=2,g(0)=6,g(0)=10f(0)=7, f^{\prime}(0)=2, g(0)=6, g^{\prime}(0)=-10.

See Solution

Problem 27466

Evaluate the limit: limx1x25x+4x2+3x4\lim _{x \rightarrow 1} \frac{x^{2}-5 x+4}{x^{2}+3 x-4}. If it doesn't exist, write DNE.

See Solution

Problem 27467

Find the hydrostatic force on a 40 cm40\text{ cm} window 2 m2\text{ m} below water and the pressure center, with specific gravity 1.0251.025.

See Solution

Problem 27468

Find the limit: limxx+x3+x51x2+x4\lim _{x \rightarrow \infty} \frac{x+x^{3}+x^{5}}{1-x^{2}+x^{4}}

See Solution

Problem 27469

Evaluate the limit as xx approaches xx: limxx(x+x2+2x)\lim _{x \rightarrow x}\left(x+\sqrt{x^{2}+2 x}\right).

See Solution

Problem 27470

Find the infinite limits, limits at infinity, and asymptotes for y=2x2+1x44y=\frac{2 x^{2}+1}{\sqrt{x^{4}-4}}.

See Solution

Problem 27471

Determine if the derivative f(1)f^{\prime}(1) exists for the piecewise function f(x)={x2+xx12x2x>1f(x)=\left\{ \begin{array}{ll} x^{2}+x & x \leq 1 \\ 2 x^{2} & x>1 \end{array} \right..

See Solution

Problem 27472

Find eAte^{At} given that L1[(sIA)1]\mathcal{L}^{-1}\left[(sI - A)^{-1}\right] is the matrix shown.

See Solution

Problem 27473

Let f(x)=e2x(x+1)exf(x)=e^{2x}-(x+1)e^{x}. Find limits, derivative, and sketch the curve of ff.

See Solution

Problem 27474

Given the curve (G) of the derivative ff' of ff, show ff is increasing and find the area under (G) from x=0x=0 to x=1x=1. Also, find the tangent line at A(0)A(0) and analyze ff. The function is f(x)=x(x+1)(ax)f(x) = x(x+1)(a-x).

See Solution

Problem 27475

Given the function f(x)=x+(x+1)exf(x)=x+(x+1)e^{-x}, find:
a) 1) limx+f(x)\lim_{x \rightarrow+\infty} f(x) and verify the asymptote y=xy=x. 2) Coordinates of intersection EE between (C) and y=xy=x. 3) Values of xx where (C) is below y=xy=x.
b) 1) limxf(x)\lim_{x \rightarrow-\infty} f(x) 2) Calculate f(2)f(-2).

See Solution

Problem 27476

Given the function f(x)=x+(x+1)exf(x)=x+(x+1)e^{-x}, find limits, intersections, and behavior with respect to the line y=xy=x.

See Solution

Problem 27477

Dönüşüm t=θ2+11θt=\sqrt{\theta^{2}+11 \theta} ile 2θ+11θ2+11θdθ\int \frac{2 \theta+11}{\sqrt{\theta^{2}+11 \theta}} d \theta integralini hesaplayın.

See Solution

Problem 27478

Calculate πr2[x]rrπ[13x3]rr\left.\pi r^{2}[x]\right|_{-r} ^{r} - \left.\pi\left[\frac{1}{3} x^{3}\right]\right|_{-r} ^{r}.

See Solution

Problem 27479

Given the function f(x)=x+(x+1)exf(x) = x + (x+1)e^{-x}, find the following:
1. limx+f(x)\lim_{x \rightarrow +\infty} f(x) and check if y=xy = x is an asymptote.
2. Coordinates of intersection point EE between (C)(C) and (d)(d).
3. Values of xx where (C)(C) is below (d)(d).
4. limxf(x)\lim_{x \rightarrow -\infty} f(x).
5. Calculate f(2)f(-2).

For the derivative function ff':
a) Show ff is strictly increasing. b) Find the area under (G)(G) from x=0x=0 to x=1x=1.
d) Write the tangent line at point AA with abscissa 0. e) Analyze the variations of ff and sketch (C)(C) and (d)(d).

See Solution

Problem 27480

Find the inverse Fourier transform of eaλe^{-a|\lambda|} for a>0a > 0.

See Solution

Problem 27481

Calculate the integral dxxlnx\int \frac{d x}{x \ln x}.

See Solution

Problem 27482

Evaluate the integral sinx5cosxdx\int \sin x \cdot 5^{\cos x} \, dx.

See Solution

Problem 27483

Calculate the integral 12xdx\int_{-1}^{2}|x| \, dx.

See Solution

Problem 27484

Find the integral for the surface area of the curve x=sinyx=\sin y from y=0y=0 to y=πy=\pi when revolved around the yy-axis.

See Solution

Problem 27485

Calculate the curve length for y=13(x2+2)3/2y=\frac{1}{3}(x^{2}+2)^{3/2} from x=0x=0 to x=1x=1.

See Solution

Problem 27486

Evaluate the integral 0txexdx\int_{0}^{t} x e^{x} d x.

See Solution

Problem 27487

Calculate the integral from 0 to 1 of sinx\sin x with respect to xx: 01sinxdx\int_{0}^{1} \sin x \, dx.

See Solution

Problem 27488

Find R(2)R^{\prime}(2) for the rainfall function R(t)R(t) defined as:
R(t)={t2+4t+1t3t+52t>3 R(t)=\left\{\begin{array}{ll} -t^{2}+4t+1 & t \leq 3 \\ \frac{t+5}{2} & t>3 \end{array}\right.
Options: 0 cm/min, 5 cm/min, 0 cm/min², 5 cm/min².

See Solution

Problem 27489

Find the limit: limxln(e3x+x)x\lim _{x \rightarrow \infty} \frac{\ln \left(e^{3 x}+x\right)}{x}.

See Solution

Problem 27490

A cylinder of cookie dough has height 8 mm8 \mathrm{~mm} and radius 18 mm18 \mathrm{~mm}, with radius increasing at 2 mm/min2 \mathrm{~mm/min}.
Part A: Find the rate of increase of the circular surface area. Part B: Find the rate of decrease of the height.

See Solution

Problem 27491

Find dydx\frac{d y}{d x} if x2yxy=2x^{2} y - \frac{x}{y} = -2. Options: (A) (B) (C) (D)

See Solution

Problem 27492

If ff and gg are differentiable with limx0f(x)=limx0g(x)=0\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0, find limx0f(x)g(x)\lim_{x \to 0} \frac{f(x)}{g(x)} given limx0f(x)g(x)\lim_{x \to 0} \frac{f'(x)}{g'(x)} exists.

See Solution

Problem 27493

Find the price xx that maximizes revenue given f(x)=12205xf(x)=1220-5x and revenue R=xf(x)R=x \cdot f(x).

See Solution

Problem 27494

Find the yy-coordinates on the curve ex=sinye^{x}=\sin y where there is a vertical tangent line. Options: (A), (B), (C), (D).

See Solution

Problem 27495

Analyze the curve x2y25=1x^{2}-\frac{y^{2}}{5}=1 in Quadrant IV. Is it concave up or down based on d2ydx2<0\frac{d^{2} y}{d x^{2}}<0?

See Solution

Problem 27496

计算定积分 01sinxdx\int_{0}^{1} \sin x \, dx 的值。

See Solution

Problem 27497

Find the value of kk such that 01121kxydxdy=1\int_{0}^{1} \int_{\frac{1}{2}}^{1} k x y \, dx \, dy = 1.

See Solution

Problem 27498

Solve the equation μt=K2μx2+aμ\frac{\partial \mu}{\partial t} = K \frac{\partial^2 \mu}{\partial x^2} + a \mu with initial condition μ(x,0)=f(x)\mu(x, 0) = f(x).

See Solution

Problem 27499

Find local maxima, minima, and inflection points of f(x)=(x+1)(x+2)13f(x)=(x+1)(x+2)^{\frac{1}{3}}, for x2x \geq -2.

See Solution

Problem 27500

If FT(f(x))=λ21+λ5F \cdot T(f(x))=\frac{\lambda^{2}}{1+\lambda^{5}} and FT(g(x))=e5λ2F \cdot T(g(x))=e^{-5 \lambda^{2}}, find: a) FT(f(x4))F \cdot T(f(x-4)) b) FT(f(6x))F \cdot T(f(6x)) c) FT(f(5)(x))F \cdot T(f^{(5)}(x)) d) FT(fg(x))F \cdot T(f * g_{(x)}) e) FT(xctx+ctg(s)ds)F \cdot T\left(\int_{x-ct}^{x+ct} g(s) \, ds\right)

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord