Calculus

Problem 22701

Calculez la dérivée de f(x)=(4x+1)32x4+x2+1x21f(x)=(4 x+1)^{3}-\frac{2}{\sqrt[4]{x}}+\frac{x^{2}+1}{x^{2}-1}.

See Solution

Problem 22702

Find the horizontal asymptote of C(t)=12t2+1C(t)=\frac{1}{2t^{2}+1} and describe the drug concentration as tt increases.

See Solution

Problem 22703

Find the average rate of change of f(x)=7x22f(x)=7 x^{2}-2 from x=5x=5 to x=bx=b. Express your answer in terms of bb.

See Solution

Problem 22704

Strontium-90 decays as A(t)=A0e0.0244tA(t)=A_{0} e^{-0.0244 t}. Given 400g, find: (a) decay rate, (b) amount after 30 yrs, (c) time for 100g, (d) half-life.

See Solution

Problem 22705

Find the limit: limx(15/x)14x=\lim _{x \rightarrow \infty}(15 / x)^{14 x}=\square

See Solution

Problem 22706

Evaluate the integral from 1 to e of lnxxdx\frac{\ln x}{x} \, dx.

See Solution

Problem 22707

Find the interval where the functions f(x)=x2+2x+2f(x)=x^{2}+2x+2 and g(x)=x2+2x+10g(x)=-x^{2}+2x+10 have the same average rate of change.

See Solution

Problem 22708

Find xx values that satisfy the Mean Value Theorem for f(x)=x3xf(x)=x^{3}-x on the interval [1,2][1,2].

See Solution

Problem 22709

Estimate 9.8\sqrt{9.8} using linear approximation at a=9a=9.

See Solution

Problem 22710

Find the average rate of change of the function f(x)=2x2+5x6f(x)=2 x^{2}+5 x-6 on the interval 4x0-4 \leq x \leq 0.

See Solution

Problem 22711

Find the max and min of f(t)=t2t8f(t)=\frac{t^{2}}{t-8} on 4t14-4 \leq t \leq -\frac{1}{4}.

See Solution

Problem 22712

Find the future value of an investment of \$10,000 for 13 years with continuous compounding at: (a) 1\%, (b) 3\%, (c) 5.5\%.

See Solution

Problem 22713

Find the velocity of a particle with position s(t)=4costt22+10s(t)=-4 \cos t-\frac{t^{2}}{2}+10 when its acceleration is zero.

See Solution

Problem 22714

Evaluate the limit as xx approaches infinity: limx+(18x18x+4)6x\lim _{x \rightarrow+\infty}\left(\frac{18 x}{18 x+4}\right)^{6 x}. Enter I-I for -\infty, II for \infty, or DNE if it doesn't exist.

See Solution

Problem 22715

Evaluate limx0sin9xx\lim _{x \rightarrow 0} \frac{\sin 9 x}{x} using l'Hôpital's Rule and limit laws. Rewrite it as limx0()\lim _{x \rightarrow 0}(\square).

See Solution

Problem 22716

Find the limit: limx(18x18x+4)6x\lim _{x \rightarrow \infty}\left(\frac{18 x}{18 x+4}\right)^{6 x}. Does it exist?

See Solution

Problem 22717

Find the limit as nn approaches infinity of the sum k=1n(6n)(4+6kn)2\sum_{k=1}^{n}\left(\frac{6}{n}\right)\left(4+\frac{6 k}{n}\right)^{2}.

See Solution

Problem 22718

Evaluate limx4x2+3x4x3+x+3\lim _{x \rightarrow \infty} \frac{4 x^{2}+3 x}{4 x^{3}+x+3} using l'Hôpital's Rule and limit laws. Rewrite the limit as limx()\lim _{x \rightarrow \infty}(\square).

See Solution

Problem 22719

Which inequality shows that the change in people inside a building is increasing at time tt given rates f(t)f(t) and g(t)g(t)?

See Solution

Problem 22720

Evaluate limx2x27x9x2+7\lim _{x \rightarrow \infty} \frac{2 x^{2}-7 x}{9 x^{2}+7} using l'Hôpital's Rule and limit laws.

See Solution

Problem 22721

Find the limit using l'Hôpital's rule: $$\lim _{x \rightarrow \infty} \frac{3 x^{3}-2 x}{7 x^{3}+3}=\square($ Type an integer or a fraction.)

See Solution

Problem 22722

A softball weighing 88.9 g88.9 \mathrm{~g} is dropped from 2.00 m2.00 \mathrm{~m}. Find its velocity upon hitting the floor.

See Solution

Problem 22723

Find the limit using l'Hôpital's rule: limxln(x+2)log5x=\lim _{x \rightarrow \infty} \frac{\ln (x+2)}{\log _{5} x} = \square

See Solution

Problem 22724

Find the limit using l'Hôpital's Rule: limθπ222sinθ7+7cos2θ\lim _{\theta \rightarrow \frac{\pi}{2}} \frac{2-2 \sin \theta}{7+7 \cos 2 \theta}. What is the answer?

See Solution

Problem 22725

Evaluate limt03sin(9t6)5t\lim _{t \rightarrow 0} \frac{-3 \sin \left(9 t^{6}\right)}{5 t}. What is the exact answer?

See Solution

Problem 22726

Find the limit using l'Hôpital's Rule: $$\lim _{x \rightarrow 0} \frac{6 x^{2}}{\cos (x)-1}=\square($ Type an exact answer.)

See Solution

Problem 22727

Finden Sie Hoch- und Tiefpunkte der Funktionen und skizzieren Sie deren Graphen: a) f(x)=x44x2+3f(x)=x^{4}-4 x^{2}+3 b) f(x)=x3+3x24f(x)=-x^{3}+3 x^{2}-4 c) f(x)=0,5x3+x23,5xf(x)=0,5 x^{3}+x^{2}-3,5 x d) f(x)=19x33x+1f(x)=\frac{1}{9} x^{3}-3 x+1 e) f(x)=x44x2f(x)=x^{4}-4 x^{2} f) f(x)=13x312x2+14f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+\frac{1}{4}

See Solution

Problem 22728

A 225 kg boulder falls from 25 m. Calculate its impact velocity using energy principles. (4 marks)

See Solution

Problem 22729

Find the limit: limx25x+4x+2\lim _{x \rightarrow \infty} \frac{\sqrt{25 x+4}}{\sqrt{x+2}} and simplify your answer.

See Solution

Problem 22730

Find c\mathrm{c} for continuity of f(x)f(x) at x=0x=0:
f(x)={15x5sin(3x)4x3,x0c,x=0 f(x)=\begin{cases} \frac{15 x-5 \sin (3 x)}{4 x^{3}}, & x \neq 0 \\ c, & x=0 \end{cases}
What is c\mathrm{c}?

See Solution

Problem 22731

Find the time mm for the cooling liquid to reach 90°F using f(m)=112e0.5m+64f(m)=112 e^{-0.5 m}+64. Choose from 34, 5960.50, 5966.40, 5968.25 minutes.

See Solution

Problem 22732

Prove that limx(1+ax)x=ea\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{x}=e^{a} for a0a \neq 0. Identify the indeterminate form. A. 0\infty^{0} B. 11^{\infty} C. 000^{0} D. \infty^{\infty} E. 00 \cdot \infty

See Solution

Problem 22733

Start with 16 blackberry plants growing at 75%75\% monthly. Estimate plants after 4 months with a limit of 100.

See Solution

Problem 22734

Find the tangent line equation to y=f(x)y=f(x) at x=0x=0 where f(x)=2xexf(x)=-2 x e^{-x}.

See Solution

Problem 22735

Find the tangent line equation to y=f(x)y=f(x) at x=0x=0 for f(x)=2xexf(x)=-2 x e^{-x}.

See Solution

Problem 22736

Find relative extrema of f(x)=2x33x24f(x)=2 x^{3}-3 x^{2}-4 using the Second Derivative Test and justify your answers.

See Solution

Problem 22737

Find the limit: limx0exsinxtanxx2\lim _{x \rightarrow 0} \frac{e^{x} \sin x \tan x}{x^{2}}.

See Solution

Problem 22738

How much to deposit today to reach \$1500 in 10 years at a continuous compounding rate of 6.5%?

See Solution

Problem 22739

Calculate the limit: limx3x3+4x52x4\lim _{x \rightarrow \infty} \frac{3 x^{3}+4 x}{5-2 x^{4}}

See Solution

Problem 22740

At 2.5 hours after noon, find your distance from home given v(t)=5t4+41t3142t2+190tv(t)=-5 t^{4}+41 t^{3}-142 t^{2}+190 t and start 150 miles away.

See Solution

Problem 22741

Find the height of a projectile after 3 seconds using v(t)=15.5t+147v(t)=-15.5 t+147 and 6 rectangles. Round to nearest tenth.

See Solution

Problem 22742

Find the absolute maximum of f(x)=sin(2x)f(x)=-\sin(2x) on [0,2π][0, 2\pi]. The derivative is f(x)=2cos(2x)f'(x)=-2\cos(2x).

See Solution

Problem 22743

Find the derivative of the function: ddx(secxsin(3x))\frac{d}{d x}(\sec x \sin (3 x)).

See Solution

Problem 22744

A 500 g isotope decays as A(t)=500e0.026tA(t)=500 e^{-0.026 t}. Find: (a) remaining mass after 10 years, (b) time to halve the sample.

See Solution

Problem 22745

Find the derivatives: 27. ddx(2x+57x9)\frac{d}{d x}\left(\sqrt{\frac{2 x+5}{7 x-9}}\right), 28. ddx(x1(lnx)2)\frac{d}{d x}\left(\frac{x}{\sqrt{1-(\ln x)^{2}}}\right).

See Solution

Problem 22746

Find the limit as uu approaches aa: limua(2u+a4ua)\lim _{u \rightarrow a}\left(\frac{2 \sqrt{u}+\sqrt{a}}{4 u-a}\right).

See Solution

Problem 22747

Find the intervals where the graph of f(x)=x2exf(x)=x^{2} e^{x} is decreasing. Choose from the options given.

See Solution

Problem 22748

Find the derivative of x1(lnx)2\frac{x}{\sqrt{1-(\ln x)^{2}}} with respect to xx.

See Solution

Problem 22749

Find the limit as xx approaches 0 for the expression sin(2x)x\frac{\sin (2 x)}{x}.

See Solution

Problem 22750

What are the units for f(A)f^{\prime}(A) if t=f(A)t=f(A) is time in minutes and AA is catalyst in milliliters? (A) minutes per milliliter (B) milliliters per minute (C) minutes per milliliter per milliliter (D) milliliters per minute per minute

See Solution

Problem 22751

Find limx5M(x)\lim _{x \rightarrow 5} M(x) for the piecewise function M(x)={4cos(πx),x<3;0,x=3;x225x26x+5,x3}M(x) = \{-4 \cos (\pi x), x<3; 0, x=3; \frac{x^{2}-25}{x^{2}-6 x+5}, x \geq 3\}.

See Solution

Problem 22752

Determine if the integral calnw1w1/a2dw\int_{c^{a}}^{\infty} \frac{\ln w-1}{w^{1 / a}-2} d w is convergent or divergent using the Comparison Theorem.

See Solution

Problem 22753

What are the units for f(A)f^{\prime}(A) if t=f(A)t=f(A) models time in minutes for catalyst amount AA in milliliters? (A) minutes per milliliter (B) milliliters per minute (C) minutes per milliliter per milliliter (D) milliliters per minute per minute

See Solution

Problem 22754

Given the equations x=4t+3x=4t+3 and y=4t+8+52ty=4t+8+\frac{5}{2t} for t0t \neq 0, find dydx\frac{dy}{dx} at t=2t=2 and show y=x2+ax+bx3y=\frac{x^2+ax+b}{x-3}.

See Solution

Problem 22755

Find limx5M(x)\lim _{x \rightarrow 5} M(x) and the horizontal asymptote of M(x)M(x) for the piecewise function defined.

See Solution

Problem 22756

Find and classify critical points of z=(x25x)(y28y)z=(x^{2}-5x)(y^{2}-8y). List local max, min, and saddle points as (x,y)(x,y) or DNE.

See Solution

Problem 22757

Find the length of the curve given by y=π/3axcosaθdθy=\int_{\pi / 3 a}^{x} \sqrt{\cos a \theta} d \theta for π3axπ2a\frac{\pi}{3 a} \leq x \leq \frac{\pi}{2 a}.

See Solution

Problem 22758

Find S7S_{7} in the series 64,16,4,64,16,4,\ldots and explain when SS_{\infty} can be determined for an infinite series.

See Solution

Problem 22759

Find dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} for the curve given by x=4t+3x=4 t+3, y=4t+8+52ty=4 t+8+\frac{5}{2 t} at t=2t=2.

See Solution

Problem 22760

Analyze the motion of an object with position s(t)=t210ts(t)=t^{2}-10t for 0t120 \leq t \leq 12; find initial/final velocity and acceleration.

See Solution

Problem 22761

Water is removed at a rate R(t)R(t) (liters/hour) shown in the table. Estimate water removed in 8 hours using a left Riemann sum. Is it an overestimate or underestimate?

See Solution

Problem 22762

Find the marginal revenue equations for R(x,y)=150x+60y3x22y2xyR(x, y)=150 x+60 y-3 x^{2}-2 y^{2}-x y. Set Rx=0R_{x}=0 and Ry=0R_{y}=0 to maximize revenue. Find xx and yy.

See Solution

Problem 22763

Water is removed from a tank at a rate R(t)R(t) (liters/hour). Given values of RR over 8 hours, estimate water removed using a left Riemann sum. Is it an overestimate or underestimate? Explain why R(t)=900R(t) = 900 liters/hour occurs for some tt in (0,8)(0,8).

See Solution

Problem 22764

Evaluate the integral ealnw1w1/a2dw\int_{e^{a}}^{\infty} \frac{\ln w-1}{w^{1 / a}-2} d w for a>2a > 2.

See Solution

Problem 22765

Use l'Hôpital's Rule to evaluate limxln(1+a/x)1/x\lim _{x \rightarrow \infty} \frac{\ln (1+a / x)}{1 / x}.

See Solution

Problem 22766

Evaluate the series k=1klnkk3+1\sum_{k=1}^{\infty} \frac{\sqrt{k} \ln k}{k^{3}+1}.

See Solution

Problem 22767

A cube's edges expand at 3 cm/s3 \mathrm{~cm/s}. Find the volume change rate when each edge is 10 cm10 \mathrm{~cm}.

See Solution

Problem 22768

How much more will $10,000\$ 10,000 at 7%7 \% continuous compounding for 9 years earn than quarterly compounding? Round to cents.

See Solution

Problem 22769

Calculate the average rate of change of g(x)=4x+8g(x)=4x+8 between x=2x=2 and x=4x=4. Simplify your answer.

See Solution

Problem 22770

Find xx in 0x40 \leq x \leq 4 for which the sequence an=n(2sinπx2)na_{n}=n(2 \sin \frac{\pi x}{2})^{n} converges.

See Solution

Problem 22771

Find values of pp for which the series n=1(pn+11n+3)\sum_{n=1}^{\infty}\left(\frac{p}{n+1}-\frac{1}{n+3}\right) converges.

See Solution

Problem 22772

Find the curve length for y=π/3axcosaθdθy=\int_{\pi / 3 a}^{x} \sqrt{\cos a \theta} \, d \theta with π3axπ2a\frac{\pi}{3 a} \leq x \leq \frac{\pi}{2 a}.

See Solution

Problem 22773

A 120g radioactive substance decays at 0.056/min. How much remains after 40 min? Round to the nearest tenth.

See Solution

Problem 22774

Compare the earnings of a \25,000investmentat25,000 investment at 5\%$ for 3 years, compounded continuously vs. monthly. Calculate the difference.

See Solution

Problem 22775

Find the value of the series: k=15k+kk!+3\sum_{k=1}^{\infty} \frac{5^{k}+k}{k !+3}.

See Solution

Problem 22776

Find the antiderivative of sec3θcos3θsec3θdθ\int \frac{\sec 3 \theta}{\cos 3 \theta - \sec 3 \theta} d \theta.

See Solution

Problem 22777

Given the parametric equations x=11acosatx=1-\frac{1}{a} \cos a t and y=t1asinaty=t-\frac{1}{a} \sin a t (where a>0a>0), find points where the tangent line is vertical and horizontal.

See Solution

Problem 22778

Determine if the integral ealnw1w1/a2dw\int_{e^{a}}^{\infty} \frac{\ln w-1}{w^{1 / a}-2} d w is convergent or divergent using the Comparison Theorem, where a>2a>2.

See Solution

Problem 22779

Determine if the integral p(x)q(x)dx\int \frac{p(x)}{q(x)} d x results in the given logarithmic form for polynomials p(x)p(x) and monic q(x)q(x).

See Solution

Problem 22780

Differentiate to verify: sec2(2x+3)dx=12tan(2x+3)+C\int \sec ^{2}(2 x+3) d x=\frac{1}{2} \tan (2 x+3)+C. Choose A or B.

See Solution

Problem 22781

Model the drug concentration in blood after one pill.
(a) Why does dcdt=k1c \frac{d c}{d t}=-k_{1} c with c(0)=c0 c(0)=c_{0} ?
(b) If c(0)=60 c(0)=60 and c(1)=51.2 c(1)=51.2 , solve the equation.

See Solution

Problem 22782

Find points on the curve where the tangent line is vertical and horizontal: x=11acos(at)x=1-\frac{1}{a} \cos(at), y=t1asin(at)y=t-\frac{1}{a} \sin(at), a>0a>0.

See Solution

Problem 22783

Find the tangent line to h(x)=x+3e2x4h(x)=x+3 e^{2 x-4} at x=2x=2 and use it to estimate h(3)h(3).

See Solution

Problem 22784

Verify the integral formula by differentiation:
sec2(2x+3)dx=12tan(2x+3)+C\int \sec^2(2x+3) dx = \frac{1}{2} \tan(2x+3) + C
What is f(g(x))f'(g(x))? Options: A. 12tan(2x+3)\frac{1}{2} \tan(2x+3) B. tan(x)\tan(x) C. sec2x\sec^2 x D. 12sec2(2x+3)\frac{1}{2} \sec^2(2x+3)

See Solution

Problem 22785

Verify the integral formula:
sec2(2x+3)dx=12tan(2x+3)+C\int \sec^{2}(2x+3) dx = \frac{1}{2} \tan(2x+3) + C
by using the Chain Rule. Define ff and gg and find their derivatives.

See Solution

Problem 22786

If p(x)p(x) and monic q(x)q(x) with deg(p)<3\operatorname{deg}(p)<3 have roots r1,r2,r3r_1, r_2, r_3, is the integral always, sometimes, or never true?

See Solution

Problem 22787

Verify the integral formula: sec2(2x+3)dx=12tan(2x+3)+C\int \sec ^{2}(2 x+3) d x=\frac{1}{2} \tan (2 x+3)+C. Find f(g(x))f^{\prime}(g(x)).

See Solution

Problem 22788

Differentiate to verify: 22x11dx=ln2x11+C,x112\int \frac{2}{2 x-11} d x=\ln |2 x-11|+C, x \neq \frac{11}{2}. Use differentiation rules.

See Solution

Problem 22789

Find the length of the curve given by y=π/3axcosaθdθy=\int_{\pi / 3 a}^{x} \sqrt{\cos a \theta} d \theta, for π3a<x<π2a\frac{\pi}{3 a}<x<\frac{\pi}{2 a}, where a>0a>0.

See Solution

Problem 22790

Find values of xx in [0,4][0, 4] for which the sequence an=n(2sinπx2)na_{n}=n(2 \sin \frac{\pi x}{2})^{n} converges.

See Solution

Problem 22791

Find the absolute max and min of g(θ)=9θ35g(\theta)=9 \theta^{\frac{3}{5}} for 1θ243-1 \leq \theta \leq 243. Where do they occur?

See Solution

Problem 22792

Model drug concentration in blood after one pill. Define constants k1k_{1} and c0c_{0}. Find c(t)c(t) from data. c(t)=c(t)=\square

See Solution

Problem 22793

Find the slope of the graph y=lnx4y=\ln x^{4} at x=2x=2 using the equation (yy1)=m(xx1)(y-y_{1})=m(x-x_{1}).

See Solution

Problem 22794

If p(x)p(x) and q(x)q(x) are polynomials with deg(p(x))<3\operatorname{deg}(p(x))<3 and qq monic with roots r1,r2,r3r_1, r_2, r_3, is the integral p(x)q(x)dx\int \frac{p(x)}{q(x)} d x always, sometimes, or never equal to the given expression? Explain.

See Solution

Problem 22795

A company makes 2 MP3 models. Revenue is given by R(x,y)=150x+60y3x22y2xyR(x, y)=150 x+60 y-3 x^{2}-2 y^{2}-x y. Find Rx(x,y)R_{x}(x, y) and Ry(x,y)R_{y}(x, y), then set them to 0 to maximize revenue. Find xx and yy.

See Solution

Problem 22796

Find points on the curve with vertical and horizontal tangents: x=1,y=1asin(at),t=1acos(at)x=1, \, y=\frac{1}{a} \sin(at), \, t=\frac{1}{a} \cos(at), a>0a>0.

See Solution

Problem 22797

Find the derivative of the function 17x4+717^{x^4 + 7}.

See Solution

Problem 22798

Find the derivative of yy given that ddxy=ddx17x4+7\frac{d}{dx} y = \frac{d}{dx} 17^{x^4 + 7}.

See Solution

Problem 22799

Find xx in the interval 0<x40 < x \leq 4 where the sequence an=n(2sinπx2)na_{n} = n(2 \sin \frac{\pi x}{2})^{n} converges.

See Solution

Problem 22800

Find xx values in the interval 0x<40 \leq x < 4 for which the sequence an=n(2sinπx2)na_{n}=n\left(2 \sin \frac{\pi x}{2}\right)^{n} converges.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord