Calculus

Problem 4301

Berechne die Steigung von g(x)=x3+xg(x)=x^{3}+x im Punkt P(α/2)P(\alpha / 2) mit der hh-Methode.

See Solution

Problem 4302

Berechne die Steigung von g(x)=x3+xg(x)=x^{3}+x am Punkt P(1,2)P(1, 2) mit der hh-Methode.

See Solution

Problem 4303

Bestimme die Steigung von g(x)=x3+xg(x)=x^{3}+x im Punkt P(2)P(2) mit der hh-Methode.

See Solution

Problem 4304

Berechne die Steigung von g(x)=x3+xg(x)=x^{3}+x am Punkt P(2g(2))P(2 \mid g(2)) mit der hh-Methode.

See Solution

Problem 4305

Berechne die Steigung von g(x)=x3+xg(x)=x^{3}+x am Punkt P(1,2)P(1, 2) mit der hh-Methode.

See Solution

Problem 4306

Find the rate of change of zz with respect to xx at the point (1,1,7)(1,1,7) for the paraboloid 2z3x24y2=72z - 3x^2 - 4y^2 = 7.

See Solution

Problem 4307

Find the difference quotient, f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}, for the function f(x)=7x26x5f(x)=-7 x^{2}-6 x-5.

See Solution

Problem 4308

Choose f(x)f(x) and g(x)g(x) from {x,x3/2}\{\sqrt{x}, x^{3/2}\} such that both limits go to \infty and solve: (a) limx(f(x)g(x))=\lim_{x \to \infty}(f(x)-g(x))=\infty. (b) limx(f(x)g(x))\lim_{x \to \infty}(f(x)-g(x)) exists. (c) limx(f(x)g(x))=\lim_{x \to \infty}(f(x)-g(x))=-\infty.

See Solution

Problem 4309

Examine "little o" and "big O" notation. Show f(x)=1+2x2f(x)=\sqrt{1+2x^{2}} is o(x2)o(x^{2}) and not o(x)o(x). Then prove f(x)f(x) is o˙(x2)\dot{o}(x^{2}) if f(x)f(x) is O(x)\mathcal{O}(x).

See Solution

Problem 4310

Find the first and second-order partial derivatives of F(x,y)=6x9+11y14F(x, y)=6 x^{9}+11 y^{14} with respect to yy and xx.

See Solution

Problem 4311

Show that f(x)=1+2x2f(x)=\sqrt{1+2 x^{2}} is o(x2)o(x^{2}) and not o(x)o(x). Use the definition involving limits.

See Solution

Problem 4312

A substance has a half-life of 11 years and starts with 130 grams. Find the amount left after 8 years and time until 35%35\% remains.

See Solution

Problem 4313

Given the function
H(x,y,z,t)=exz+1+(5y+x)zy+tln(xy6)H(x, y, z, t)=e^{x^{z+1}}+(5y+x)^{z-y}+t \cdot \ln(x \cdot y^{6}),
find the derivatives:
1. Htx(1,2,3,4)H_{tx}^{\prime\prime}(1,2,3,4)
2. Hty(1,2,3,4)H_{ty}^{\prime\prime}(1,2,3,4)
3. Htxy(1,2,3,4)H_{txy}^{\prime\prime\prime}(1,2,3,4)

Also, identify the correct statement for swapping partial derivatives:
A. 2fxixj=2fxjxi\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}

See Solution

Problem 4314

Approximate g(3.95,5.02)g(3.95,-5.02) given g(4,5)=5g(4,-5)=-5, g1(4,5)=5g_{1}^{\prime}(4,-5)=-5, g2(4,5)=1g_{2}^{\prime}(4,-5)=-1:
g(3.95,5.02) g(3.95,-5.02) \approx

See Solution

Problem 4315

Find the slope mm of the tangent line to y=f(x)y=f(x) at (7,f(7))(7, f(7)) where f(x)=9x210f(x) = 9x^2 - 10.

See Solution

Problem 4316

Find the critical points of the function F(t)=13t37.5t2+54t+22F(t)=\frac{1}{3} t^{3}-7.5 t^{2}+54 t+22 and characterize them.

See Solution

Problem 4317

Find constants AA and BB such that f(6+h)f(6)h=Ah+B\frac{f(6+h)-f(6)}{h} = Ah + B for f(x)=4x24f(x)=4x^2-4.

See Solution

Problem 4318

Find the extremum of the function g(z)=29(e5z+5e2z)5g(z)=-29\left(e^{5 z}+5 e^{-2 z}\right)^{5} and round to two digits.

See Solution

Problem 4319

Evaluate limn0πx2sinnxdx\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|x^{2} \sin n x\right| d x using given steps.

See Solution

Problem 4320

Analyze the piecewise function f(x)={5x, if x<02x2, if 0<x52x+5, if 5<xf(x)=\left\{\begin{array}{l}5 x, \text { if } x<0 \\ 2 x^{2}, \text { if } 0<x \leq 5 \\ 2 x+5, \text { if } 5<x\end{array}\right.. Determine its continuity and discontinuities.

See Solution

Problem 4321

Find the limit: limx2x225x2\lim _{x \rightarrow 2} \frac{x^{2}-25}{x-2}. Choose from 0, 7, Does not exist, 17-\frac{1}{7}, 3.

See Solution

Problem 4322

Find the limit: limx121x121x11\lim _{x \rightarrow 121} \frac{x-121}{\sqrt{x}-11}. Options: 122\frac{1}{22}, 11, 1, 22, 111\frac{1}{11}, Does not exist.

See Solution

Problem 4323

Find the Taylor series for h(x)=x3ln(13x)h(x)=x^{3} \ln (1-3 x), discuss critical points, and classify them using derivatives.

See Solution

Problem 4324

Determine which functions allow the use of the Intermediate Value Theorem to find roots in the interval [2,2][-2,2]: I. f(x)=x4xf(x)=\frac{x-4}{x} II. f(x)=4x33xf(x)=4x^{3}-3x III. f(x)=x2+3f(x)=x^{2}+3 Options: I and II, I and III, I only, II and III, I, II and III, II only.

See Solution

Problem 4325

Find the limit limx02sin2(3x)5x2\lim _{x \rightarrow 0} \frac{2 \sin ^{2}(3 x)}{5 x^{2}}. Options: 65\frac{6}{5}, 185\frac{18}{5}, 0, 1825\frac{18}{25}, None of the above.

See Solution

Problem 4326

Find the velocity function v(t)v(t) and position function s(t)s(t) for a(t)=2+cos(t)a(t)=2+\cos(t), with s(0)=0s(0)=0 and s(2π)=0s(2\pi)=0.

See Solution

Problem 4327

Find the expression for the derivative f(x)f^{\prime}(x) of f(x)=x5x+2f(x)=\frac{x}{5 x+2} from the options given.

See Solution

Problem 4328

Find dydx\frac{d y}{d x} for the equation x2+y2=1x^{2}+y^{2}=1 at the point (12,12)\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right).

See Solution

Problem 4329

Find the expression for f(x)f^{\prime}(x) given f(x)=x5x+2f(x)=\frac{x}{5 x+2}. Which limit defines the derivative?

See Solution

Problem 4330

Find the derivatives: (a) of ln(sec(x)+tan(x))\ln (\sec (x)+\tan (x)), (b) of ln(sec(x)tan(x))\ln (-\sec (x)-\tan (x)), (c) deduce the derivative of lnsec(x)+tan(x)\ln |\sec (x)+\tan (x)|.

See Solution

Problem 4331

Find the slope of the tangent line to f(x)=x4+5x3x2+8f(x)=x^{4}+5 x^{3}-x^{2}+8 at x=1x=1.

See Solution

Problem 4332

For f(x)=x+x3f(x)=x+x^{3} on [0,4][0,4], find: a) R4R_{4}, b) RnR_{n}, c) limnRn\lim _{n \rightarrow \infty} R_{n}.

See Solution

Problem 4333

Find dydx\frac{d y}{d x} for y=5x2x+6y=\frac{5 x^{2}}{x+6}.

See Solution

Problem 4334

Find the derivative of f(x)=3tan(2x)+5sec(6x)f(x)=3 \tan (2 x)+5 \sec (6 x): f(x)=?f^{\prime}(x)=?

See Solution

Problem 4335

Find the second derivative of f(x)=5x+5x13+4x2f(x)=5 \sqrt{x}+5 x^{\frac{1}{3}}+\frac{4}{x^{2}}.

See Solution

Problem 4336

Find the second derivative f(x)f^{\prime \prime}(x) of the function f(x)=5x+5x13+4x2f(x)=5 \sqrt{x}+5 x^{\frac{1}{3}}+\frac{4}{x^{2}}.

See Solution

Problem 4337

Find the derivative of the function f(x)=3x5sin(4x3)f(x)=3 x^{5} \sin(4 x^{3}).

See Solution

Problem 4338

Find the bacteria population change rate on [0,6][0,6] and [6,12][6,12] for P(t)=40t2+480t+7560P(t)=-40 t^{2}+480 t+7560. How many after 6 days?

See Solution

Problem 4339

Check if the function f(x)=tan(x)+2f(x) = \tan(x) + 2 is continuous.

See Solution

Problem 4340

Find the derivative of the integral x211t2dt\int_{x^{2}}^{1} \sqrt{1-t^{2}} d t with respect to xx.

See Solution

Problem 4341

A substance decreases by 22%22\% in 27 hours. Find its half-life. Answer: 2.79 hours.

See Solution

Problem 4342

Find the tangent line equation at (2,2)(-2,-2) for x2+xy+2y2=16x^{2}+x y+2 y^{2}=16.

See Solution

Problem 4343

Find first and second-order approximations of f(x)=9x4f(x)=9 x^{4} around x0=1x_{0}=1 and compare coefficients.

See Solution

Problem 4344

Invest \$6800 at 5% interest compounded continuously. Find the account balance after 10 years and the rate for \$8100.

See Solution

Problem 4345

Find dydx\frac{d y}{d x} for the equation 4x3+4y32xy=04 x^{3}+4 y^{3}-2 x y=0.

See Solution

Problem 4346

Find the derivative of the function f(x)=(2x24)3f(x)=(2x^{2}-4)^{3}. What is f(x)f^{\prime}(x)?

See Solution

Problem 4347

Find first and second-order approximations of f(x)=9x4f(x) = 9x^4 around x0=1x_0=1. Use both to estimate f(1.1)f(1.1).

See Solution

Problem 4348

Find the linear approximation of f(x)=x3+2xf(x)=x^{3}+2 \cdot x at x0=3x_{0}=3 and x0=3.1x_{0}=3.1. Calculate L(3.1)L(3.1) and I(3)I(3).

See Solution

Problem 4349

Find points x^0\hat{x}_{0} and x~0\tilde{x}_{0} where L(x)=10x+16L(x) = 10x + 16 approximates f(x)=6x3152x308f(x) = 6x^3 - 152x - 308 and g(x)=8ln(5x)30x+24g(x) = 8 \ln(5x) - 30x + 24. Round to two digits.

See Solution

Problem 4350

Calculate the area between the curve y(x)=x2+2x15y(x)=x^{2}+2x-15 and the xx-axis from x=1x=1 to x=4x=4.

See Solution

Problem 4351

Find the linear approximation of f(x)=xmf(x) = x^m near x0=1x_0=1 and estimate:
(a) 0.99260.99^{26}
(b) 1.033\sqrt[3]{1.03}

See Solution

Problem 4352

Find xx where the slope of the tangent to f(x)=2x327x2+5f(x)=2 x^{3}-27 x^{2}+5 is m=120m=-120. Choices: x=4,0x=4,0; x=5,5x=5,-5; x=4,5x=4,5; x=4,5x=-4,-5; x=4,4x=4,-4; None.

See Solution

Problem 4353

Find dydz\frac{d y}{d z} for the equation 4x3+4y32xy=04 x^{3}+4 y^{3}-2 x y=0.

See Solution

Problem 4354

Evaluate the integral: 01(11+x)4dx\int_{0}^{1}\left(\frac{1}{1+\sqrt{x}}\right)^{4} d x

See Solution

Problem 4355

Find first and second order approximations of f(x)=8x5f(x)=8x^5 around x0=1x_0=1 and compare values for x=1.1x=1.1.

See Solution

Problem 4356

Find the derivative of the function f(x)=5x2x2+10x+5f(x)=5 x \sqrt{2 x^{2}+10 x+5}. What is f(x)f^{\prime}(x)?

See Solution

Problem 4357

Find first and second-order approximations for f(x)=8x5f(x)=8x^5 around x0=1x_0=1. Round coefficients to two digits.

See Solution

Problem 4358

Find the derivative of the function f(x)=5x2x2+10x+5f(x)=5 x \sqrt{2 x^{2}+10 x+5}.

See Solution

Problem 4359

Find the linear approximation L(x)=A+B(x3)L(x)=A+B \cdot (x-3) for f(x)=e2x+4xf(x)=e^{2x}+4x at x0=3x_0=3. Calculate AA, BB, and f(3.2)L(3.2)f(3.2) \approx L(3.2).

See Solution

Problem 4360

Find the linear approximation of f(x)=e2x+4xf(x)=e^{2x} +4x at x0=3.2x_{0}=3.2 in the form I(x)=a+b(xx0)I(x)=a+b \cdot\left(x-x_{0}\right). What are aa and bb?

See Solution

Problem 4361

Find the first derivative of f(x)=3x2+5x4f(x)=3 x^{2}+5 x-4.

See Solution

Problem 4362

Find the first derivative of f(x)=5x+7x2x3f(x)=\frac{5}{x}+\frac{7}{x^{2}}-\sqrt[3]{x}.

See Solution

Problem 4363

Calculate the first derivative of f(x)=7x1/3+5x262x1/2f(x)=\frac{7 x^{1/3}+5 x^{2}-6}{2 x^{1/2}}.

See Solution

Problem 4364

Find the first derivative of f(x)=(16x23x+2)5f(x)=(16x^{2}-3x+2)^{5}.

See Solution

Problem 4365

Find the first derivative of f(x)=e6x+2f(x) = e^{6x+2}.

See Solution

Problem 4366

Find the linear approximations of f(x)=e4x+12xf(x)=e^{4x}+12x at x0=1x_0=1 and x0=1.4x_0=1.4, then approximate f(1.4)f(1.4) and f(1)f(1).

See Solution

Problem 4367

Find the linear approximation of f(x)=xmf(x) = x^{m} near x0=1x_{0} = 1. Use it to estimate (a) 0.98300.98^{30} and (b) 1.154\sqrt[4]{1.15}.

See Solution

Problem 4368

Estimate g(3)g^{\prime}(3) for g(x)=ln(2x)g(x)=\ln(2x) using average rate of change over [2.9,3.1][2.9,3.1]. Round to 4 decimals.

See Solution

Problem 4369

Find the instantaneous rate of change of f(x)=x3f(x)=x^{3} at a given point. Choose from: a. -15.75621 b. -13.17107 c. 7.23165 d. 4.25 e. -7.23165

See Solution

Problem 4370

Find the instantaneous rate of change of f(x)=x32exf(x)=x^{3}-2 e^{x} at x=3x=3. Choose from: a. -15.75621 b. -13.17107 c. 7.23165 d. 4.25 e. -7.23165

See Solution

Problem 4371

Find the slope of the secant line for f(x)=1.3x333x2+261x+558f(x)=1.3 x^{3}-33 x^{2}+261 x+558 from x1=0x_{1}=0 to x2=4x_{2}=4. How does it compare to the actual increase of 140?

See Solution

Problem 4372

A ball is thrown up with initial speed 60ft/s60 \mathrm{ft/s}. Find average velocity from t=1t=1 for (i) 0.1s, (ii) 0.01s, (iii) 0.001s. Guess instantaneous velocity at t=1t=1.

See Solution

Problem 4373

Find the curve where dydx=kx26x3\frac{d y}{d x}=k x^{2}-\frac{6}{x^{3}}, passing through (1,6)(1,6) with gradient 9.

See Solution

Problem 4374

Find the equation of the curve given dydx=kx212x+5\frac{d y}{d x}=k x^{2}-12 x+5 and points (1,-3) and (3,11).

See Solution

Problem 4375

Find the curve with dydx=5xx+2\frac{d y}{d x}=5 x \sqrt{x}+2 passing through (1,3)(1,3) and the tangent at x=4x=4.

See Solution

Problem 4376

A girl on a swing is 3.2 m high at her highest point. How high is she at her lowest point if her velocity is 4.2 m/s4.2 \mathrm{~m/s}? (2.3 m)(2.3 \mathrm{~m})

See Solution

Problem 4377

Find the slope of the secant line PQPQ for x=5.1x=5.1, 5.015.01, 4.94.9, and 4.994.99 on the curve y=x2+x+6y=x^{2}+x+6. Guess the tangent slope at P(5,36)P(5,36).

See Solution

Problem 4378

Für welches xx wird das Volumen einer Schachtel aus einem 16 cm×10 cm16 \mathrm{~cm} \times 10 \mathrm{~cm} Rechteck maximal?

See Solution

Problem 4379

Leiten Sie die Funktionen ab: a) a(x)=e5xa(x)=e^{5x}, b) b(x)=5e17xb(x)=5e^{\frac{1}{7}x}, c) c(x)=4x+7xc(x)=4^{x}+7x, d) d(x)=2xe3x+5d(x)=2x \cdot e^{3x+5}, e) f(x)=sin(x)e2xf(x)=\sin(x) \cdot e^{2x}. Lösungen ohne Rechenweg für: ex=10e^{x}=10, ex15=12e^{x} \cdot \frac{1}{5}=12, 0=(x24)(xπ)(e2x1)0=(x^{2}-4)(x-\pi)(e^{2x}-1), 0.8x+2=100.8^{x}+2=10. Ordnen Sie Graphen den Funktionen a(x)=12ex2a(x)=\frac{1}{2}e^{x}-2, b(x)=ln(x)b(x)=\ln(x), c(x)=x2c(x)=x^{2}, d(x)=x4x2d(x)=x^{4}-x^{2}, e(x)=exe(x)=e^{x} zu. Erklären Sie die Herleitung der Ableitung f(x)=ln(a)axf^{\prime}(x)=\ln(a) a^{x}. Leiten Sie g(x)=3xg(x)=3^{x} und h(x)=2x(12)xh(x)=2x \cdot \left(\frac{1}{2}\right)^{x} ab.

See Solution

Problem 4380

A 4.6 g golf ball hits at 50 m/s. Initial velocity v(m)=83mm+0.046v(m)=\frac{83 m}{m+0.046}. Analyze how vv changes as club mass mm increases.

See Solution

Problem 4381

Berechnen Sie die ersten drei Ableitungen von h(t)=2t2e12th(t)=2 t^{2} \cdot e^{-\frac{1}{2} t} und den Wasserstand nach 2 Tagen. Bestimmen Sie den Zeitraum, in dem der Pegel 4 m4 \mathrm{~m} über Normalmarke steht.

See Solution

Problem 4382

Berechne die ersten drei Ableitungen von h(t)=2t2e12th(t)=2 t^{2} \cdot e^{-\frac{1}{2} t}.

See Solution

Problem 4383

Find a recursive relation for In=tn1+t2dtI_{n}=\int \frac{t^{n}}{1+t^{2}} d t using In+2I_{n+2} and In+1I_{n+1}.

See Solution

Problem 4384

Find the derivative of the function f(x)=5x3+x22x1f(x)=5 x^{3}+x^{2}-2 x-1. What is f(x)f^{\prime}(x)?

See Solution

Problem 4385

Find dydx\frac{d y}{d x} for the cone volume V=13πx2yV=\frac{1}{3} \pi x^{2} y at x=6x=6, y=9y=9, given V=108πV=108 \pi.

See Solution

Problem 4386

Find y(4)y^{\prime}(4) using implicit differentiation for x+y=9\sqrt{x}+\sqrt{y}=9 and y(4)=49y(4)=49.

See Solution

Problem 4387

Find y(3)y^{\prime}(3) using implicit differentiation for 4x2+5x+xy=34 x^{2}+5 x+x y=3 with y(3)=16y(3)=-16.

See Solution

Problem 4388

Find y(1)y^{\prime}(1) using implicit differentiation for x+y=9\sqrt{x}+\sqrt{y}=9 and y(1)=64y(1)=64.

See Solution

Problem 4389

Berechne die ersten drei Ableitungen von h(t)=2t2e12th(t)=2 t^{2} e^{-\frac{1}{2} t}. Bestimme h(2)h(2) und den Maximalstand.

See Solution

Problem 4390

Find the first and second derivatives, dydx\frac{d y}{d x} and d2ydx2\frac{d^{2} y}{d x^{2}}, for 4y2x=3y4 \sqrt{y}-2 x=-3 y.

See Solution

Problem 4391

Berechnen Sie die ersten drei Ableitungen von h(t)=2t2e12th(t)=2 t^{2} \cdot e^{-\frac{1}{2} t} und den Wasserstand nach 2 Tagen.

See Solution

Problem 4392

Berechne die ersten drei Ableitungen von h(t)=2t2e12th(t)=2 t^{2} \cdot e^{-\frac{1}{2} t} und den Wasserstand nach 2 Tagen.

See Solution

Problem 4393

Find h(5)h^{\prime}(5) for h(x)=f(x)×g(x)h(x)=f(x) \times g(x) given f(5)=4,f(5)=2,g(5)=6,g(5)=7f(5)=4, f^{\prime}(5)=2, g(5)=6, g^{\prime}(5)=-7.

See Solution

Problem 4394

Find the tangent line equation for f(x)=x+1f(x)=\sqrt{x+1} at x=3x=3. Choices: A. x4y=5x-4y=-5, B. x+4y=8x+4y=8, C. x4y=5x-4y=5, D. 4xy=84x-y=-8.

See Solution

Problem 4395

Find the first derivative of f(x)=x2+3xf(x)=x^{2}+3x.

See Solution

Problem 4396

limn0πx2sinnxdx\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left|x^{2} \sin n x\right| d x を求める手順を示せ。

See Solution

Problem 4397

Untersuchen Sie die Funktion f(x)=2xexf(x)=2 x \cdot e^{-x} auf Nullstellen, Extrema, Wendepunkte und Verhalten für xx \rightarrow \infty und xx \rightarrow -\infty. Graph für 0,5x3-0,5 \leq x \leq 3 zeichnen.

See Solution

Problem 4398

Untersuchen Sie die Funktion f(x)=2xexf(x)=2 x \cdot e^{-x} auf Nullstellen, Extrema, Wendepunkte und das Verhalten für x±x \rightarrow \pm\infty. Zeichnen Sie den Graphen für 0,5x3-0,5 \leq x \leq 3.

See Solution

Problem 4399

Untersuchen Sie die Funktion f(x)=2xexf(x)=2x \cdot e^{-x} auf Nullstellen, Extrema, Wendepunkte und Verhalten für xx \to \infty und xx \to -\infty. Zeichnen Sie den Graphen für 0,5x3-0,5 \leq x \leq 3.

See Solution

Problem 4400

Untersuchen Sie die Funktion f(x)=2xexf(x)=2 x \cdot e^{-x} auf Nullstellen, Extrema und Wendepunkte. Verhalten für xx \rightarrow \infty und xx \rightarrow -\infty? Graph für 0,5x3-0,5 \leq x \leq 3 zeichnen.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord