Calculus

Problem 33001

Find the velocity function v(t)v(t) from s(t)=6t372t2+270ts(t)=6 t^{3}-72 t^{2}+270 t. Where is v(t)=0v(t)=0? Factor out GCF. Also find a(t)a(t).

See Solution

Problem 33002

Given s(t)=2t3+7t+9s(t)=2 t^{3}+7 t+9, find: (a) v(t)v(t), (b) v(3)v(3), (c) a(t)a(t), (d) a(3)a(3).

See Solution

Problem 33003

Find M6M_{6} for f(x)=6xf(x)=\sqrt{6 x} on the interval [3,6][3,6]. Round your answer to two decimal places.

See Solution

Problem 33004

Estimate the mosquito population after 14 days if P(0)=589P(0)=589 and P(0)=95P^{\prime}(0)=95. Round to the nearest whole number.

See Solution

Problem 33005

Find the derivative of 2sin(x)53x8+7\frac{2 \sin (x)-5}{3 x^{8}+7} using the quotient rule. No need to expand your answer.

See Solution

Problem 33006

Find the derivative of f(x)=4x(sinx+cosx)f(x)=4 x(\sin x+\cos x) and evaluate it at x=1x=1.

See Solution

Problem 33007

Find the derivative of g(x)=sin(x)g(x)=\sin (x) and evaluate it at x=2x=2. What is g(2)=?g^{\prime}(2)=?

See Solution

Problem 33008

Find the derivative of g(x)=cos(x)g(x)=\cos(x) and evaluate it at x=2x=2. What is g(2)g^{\prime}(2)?

See Solution

Problem 33009

Find the derivative f(x)f'(x) of f(x)=2sinx+2cosxf(x)=2 \sin x + 2 \cos x and evaluate f(4)f'(4).

See Solution

Problem 33010

Find the derivative of f(x)=3x2tanxsecxf(x)=\frac{3 x^{2} \tan x}{\sec x} and evaluate f(4)f^{\prime}(4).

See Solution

Problem 33011

Find the average velocity of the object described by s(t)=4.9t2+34t+25s(t)=-4.9 t^{2}+34 t+25 over intervals: a. [0,1][0,1] b. [0,2][0,2] c. [0,4][0,4] d. [0,h][0,h], where h>0h>0.

See Solution

Problem 33012

Find f(x)=x216x+4f(x)=\frac{x^{2}-16}{x+4} for x=3.9,3.99,3.999,4.1,4.01,4.001x=-3.9, -3.99, -3.999, -4.1, -4.01, -4.001. Conjecture limx4f(x)\lim_{x \to -4} f(x).

See Solution

Problem 33013

Find the limit as xx approaches -6 for 5x+30x2+2x24\frac{5x+30}{x^2+2x-24} using values: -5.99, -5.999, -6.01, -6.001.

See Solution

Problem 33014

Find the limit as xx approaches -4 for 2x33x2+5x+82x^3 - 3x^2 + 5x + 8 or state if it doesn't exist.

See Solution

Problem 33015

Calculate the right Riemann sum R4R_4 for 1x2+1\frac{1}{x^2 + 1} on the interval [2,2][-2, 2].

See Solution

Problem 33016

Find the limit: limx5x225x+5\lim _{x \rightarrow-5} \frac{x^{2}-25}{x+5}. Simplify and evaluate if possible. A. Exact answer, B. Limit does not exist.

See Solution

Problem 33017

Find the limit: limx45x280x4\lim _{x \rightarrow 4} \frac{5 x^{2}-80}{x-4}. Simplify if possible and evaluate the limit.

See Solution

Problem 33018

Find the derivative f(x)f^{\prime}(x) of f(x)=2sinx1+cosxf(x)=\frac{2 \sin x}{1+\cos x} and calculate f(3)f^{\prime}(3).

See Solution

Problem 33019

Find the limit as xx approaches infinity: limx4+9x+2x2x2\lim _{x \rightarrow \infty} \frac{4+9 x+2 x^{2}}{x^{2}}.

See Solution

Problem 33020

Find the inverse Laplace transform of 1s3+4s2+3s\frac{1}{s^{3}+4 s^{2}+3 s}.

See Solution

Problem 33021

Find the derivative f(x)f'(x) of f(x)=5sinx2+cosxf(x)=\frac{5 \sin x}{2+\cos x} and evaluate f(3)f'(3).

See Solution

Problem 33022

Find the limits: limxex\lim _{x \rightarrow \infty} e^{x}, limxex\lim _{x \rightarrow-\infty} e^{x}, and limxex\lim _{x \rightarrow \infty} e^{-x}.

See Solution

Problem 33023

Find f(x)f^{\prime}(x) for f(x)=cosx7tanxf(x)=\cos x-7 \tan x and calculate f(3)f^{\prime}(3).

See Solution

Problem 33024

Curve CC: (x2+y2)2=6xy(x^{2}+y^{2})^{2}=6xy for x>0,y>0x>0, y>0.
(a) Show r2=3sin2θr^{2}=3\sin 2\theta for 0<θ<π20<\theta<\frac{\pi}{2}.
(b) Find the area of shaded region RR using calculus.

See Solution

Problem 33025

Which investment yields more in 1 year: 12%12\% monthly or 11.86%11.86\% continuously on \$13,000?

See Solution

Problem 33026

Find the derivative of f(x)=5xsinxcosxf(x)=5 x \sin x \cos x and evaluate f(1)f^{\prime}(1).

See Solution

Problem 33027

Find the derivative f(x)f'(x) of the function f(x)=7cosx2tanxf(x) = -7 \cos x - 2 \tan x and evaluate f(π6)f'(\frac{\pi}{6}).

See Solution

Problem 33028

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for the function f(x)=9x+3f(x)=9x+3, where h0h \neq 0.

See Solution

Problem 33029

Express the limit as an integral: limni=1n(5(xi)23(xi)3)Δx\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(5\left(x_{i}^{*}\right)^{2}-3\left(x_{i}^{*}\right)^{3}\right) \Delta x over [0,2][0,2].

See Solution

Problem 33030

List the three conditions for a function to be continuous at a point. Select all that apply: A. limxaf(x)\lim _{x \rightarrow a} f(x) exists. B. limxaf(x)=f(a)\lim _{x \rightarrow a} f(x)=f(a) C. limxaf(x)f(a)\lim _{x \rightarrow a} f(x) \neq f(a) D. f(a)f(a) is defined.

See Solution

Problem 33031

Find the formula for RNR_{N} for f(x)=9x+7f(x)=9x+7 on [3,6][3,6] and compute the limit as NN approaches infinity: limNRN.\lim _{N \rightarrow \infty} R_{N}.

See Solution

Problem 33032

Find the derivative f(x)f'(x) of the function f(x)=tanx5secxf(x)=\frac{\tan x-5}{\sec x} and evaluate f(5)f'(5).

See Solution

Problem 33033

Determine if the function F(r)F(r) is continuous at r=Rr=R using the definition of continuity.

See Solution

Problem 33034

Find limxf(x)\lim_{x \to \infty} f(x) and limxf(x)\lim_{x \to -\infty} f(x) for f(x)=5x39x4+7x2f(x)=\frac{5x^3-9}{x^4+7x^2}. What are the horizontal asymptotes?

See Solution

Problem 33035

Find limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow -\infty} f(x) for f(x)=5x39x4+7x2f(x)=\frac{5 x^{3}-9}{x^{4}+7 x^{2}}.

See Solution

Problem 33036

Calculate the average rate of change of f(x)=x2+9xf(x)=x^{2}+9x between x=1x=1 and x=2x=2.

See Solution

Problem 33037

Find the limit as xx approaches 0 for sin(200πx)\sin \left(\frac{200 \pi}{x}\right).

See Solution

Problem 33038

Calculate the average rate of change of f(x)=xf(x)=\sqrt{x} from x=9x=9 to x=49x=49.

See Solution

Problem 33039

Find the tangent line equation for y=6sinxy=6 \sin x at (π6,3)\left(\frac{\pi}{6}, 3\right) in the form y=mx+by=m x+b.

See Solution

Problem 33040

Find the limit: limx155x1x\lim _{x \rightarrow 1} \frac{5-5 x}{1-\sqrt{x}}.

See Solution

Problem 33041

Find the 28th derivative of f(x)=cos(x)f(x)=\cos(x). What is the result?

See Solution

Problem 33042

Find the oscillation rate of the spring at t=2t=2 s for s(t)=3costs(t)=3 \cos t. Round to four decimal places.

See Solution

Problem 33043

Find limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x) for f(x)=39x7+2x219x63xf(x)=\frac{39 x^{7}+2 x^{2}}{19 x^{6}-3 x}. What are the horizontal asymptotes?

See Solution

Problem 33044

Is the function f(x)=2x2+3x+1x27xf(x)=\frac{2 x^{2}+3 x+1}{x^{2}-7 x} continuous at a=7a=7? Justify using the checklist. Select all that apply.

See Solution

Problem 33045

Calculate the integral I=0π/2(2sin(θ)+sin3(θ))dθI=\int_{0}^{\pi / 2}(2 \sin (\theta)+\sin ^{3}(\theta)) d \theta.

See Solution

Problem 33046

Is the function f(x)={x24x2if x210if x=2f(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2} & \text{if } x \neq 2 \\ 10 & \text{if } x=2\end{array}\right. continuous at a=2a=2? Select true statements.

See Solution

Problem 33047

Calculate the derivative of f(x)=3x22xf(x)=3 x^{2}-2 x at the point (1,5)(-1,5). Find f(1)=f'(-1)=\square.

See Solution

Problem 33048

Redefine the function ff for continuity at x=0x=0: f(x)={9x+8x+36x(x4)x0,44x=0,4 f(x) = \begin{cases} \frac{9}{x} + \frac{-8x + 36}{x(x-4)} & x \neq 0, 4 \\ 4 & x = 0, 4 \end{cases}

See Solution

Problem 33049

Determine where the function p(x)=4x65x3+1p(x)=4 x^{6}-5 x^{3}+1 is continuous. Provide your answer in interval notation.

See Solution

Problem 33050

Find the slope of the tangent line to f(x)=x2+5f(x)=x^{2}+5 at point P(5,30)P(-5,30) and its equation.

See Solution

Problem 33051

Find limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow-\infty} f(x) for f(x)=39x7+2x219x63xf(x)=\frac{39 x^{7}+2 x^{2}}{19 x^{6}-3 x}. What are the horizontal asymptotes?

See Solution

Problem 33052

1. Find the domain of these functions in interval notation: (a) f(x)=3x+7x22x8f(x)=\frac{3x+7}{x^{2}-2x-8} (b) g(x)=3x+x+5g(x)=\sqrt{3-x}+\sqrt{x+5}
2. Graph the piecewise function: f(x)={x+1if x<12x2if 1x<12x1if x1 f(x)=\begin{cases} x+1 & \text{if } x<-1 \\ 2-x^{2} & \text{if } -1 \leq x<1 \\ 2x-1 & \text{if } x \geq 1 \end{cases}
Find limits and continuity at x=1x=-1 and x=1x=1.

See Solution

Problem 33053

Find limxf(x)\lim _{x \rightarrow \infty} f(x) and limxf(x)\lim _{x \rightarrow -\infty} f(x) for f(x)=39x7+4x219x63xf(x)=\frac{39 x^{7}+4 x^{2}}{19 x^{6}-3 x}. What are the horizontal asymptotes?

See Solution

Problem 33054

Find the slope of the tangent line to f(x)=x21f(x)=x^{2}-1 at P(2,3)P(2,3) using mtan=limx2f(x)3x2m_{\tan }=\lim _{x \rightarrow 2} \frac{f(x)-3}{x-2}. Then, find the tangent line equation and plot both.

See Solution

Problem 33055

Classify these first order equations as linear homogeneous, linear inhomogeneous, or nonlinear:
1) ut+xux=0u_{t}+x u_{x}=0 2) ut+uux=0u_{t}+u u_{x}=0 3) ut+xuxu=0u_{t}+x u_{x}-u=0 4) ut+uux+x=0u_{t}+u u_{x}+x=0 5) ut+uxu2=0u_{t}+u_{x}-u^{2}=0 6) ut2ux21=0u_{t}^{2}-u_{x}^{2}-1=0 7) ux2+uy21=0u_{x}^{2}+u_{y}^{2}-1=0 8) xux+yuy+zuz=0x u_{x}+y u_{y}+z u_{z}=0 9) ux2+uy2+uz21=0u_{x}^{2}+u_{y}^{2}+u_{z}^{2}-1=0 10) ut+ux2+uy2=0u_{t}+u_{x}^{2}+u_{y}^{2}=0

See Solution

Problem 33056

Find the slope of the tangent line to f(x)=x22f(x)=x^{2}-2 at P(4,14)P(4,14) using mtan=limx4f(x)14x4m_{\tan }=\lim _{x \rightarrow 4} \frac{f(x)-14}{x-4}.

See Solution

Problem 33057

Find the average rate of change of h(x)=x29xh(x)=x^{2}-9x from 2 to 3 and the secant line equation in slope-intercept form.

See Solution

Problem 33058

Classify these equations by order and type: linear homogeneous, linear inhomogeneous, or non-linear (where uu is unknown):
1. ut+(1+x2)uxx=0u_{t}+(1+x^{2}) u_{x x}=0
2. ut(1+u2)uxx=0u_{t}-(1+u^{2}) u_{x x}=0
3. ut+uxxx=0u_{t}+u_{x x x}=0
4. ut+uux+uxxx=0u_{t}+u u_{x}+u_{x x x}=0
5. utt+uxxxx=0u_{t t}+u_{x x x x}=0
6. utt+uxxxx+u=0u_{t t}+u_{x x x x}+u=0
7. utt+uxxxx+sin(x)=0u_{t t}+u_{x x x x}+\sin (x)=0
8. utt+uxxxx+sin(x)sin(u)=0u_{t t}+u_{x x x x}+\sin (x) \sin (u)=0

See Solution

Problem 33059

Find the slope of the tangent line to f(x)=13+2xf(x)=\frac{1}{3+2x} at P=(2,17)P=\left(2, \frac{1}{7}\right) using mtan=limh0f(2+h)f(2)hm_{\tan }=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}. Then, write the tangent line equation.

See Solution

Problem 33060

Find the point of discontinuity of F(x)=5x8F(x)=\frac{5}{x-8} and evaluate the one-sided limits at that point.

See Solution

Problem 33061

a) Find the IROC of f(x)=0.2x43x25x+6f(x)=0.2 x^{4}-3 x^{2}-5 x+6 on [1,4][-1,4]. b) Find the IROC of f(x)=3x35xf(x)=-\sqrt{3 x^{3}-5 x} on [0,3][0,3]. c) Find the IROC of h(x)=3xx+6h(x)=\frac{3 x}{x+6} at x=5x=-5 and x=15x=15.

See Solution

Problem 33062

Express the Riemann sum R100R_{100} for lnx\ln x on [1,e][1, e] in sigma notation without evaluating it.

See Solution

Problem 33063

Find the absolute extreme values of f(x)=2x26xf(x)=2x^{2}-6x on [0,5][0,5]. What are the global max and min?

See Solution

Problem 33064

Find the derivative ff' of f(x)=25x+3f(x)=\frac{2}{5x+3} and the tangent line at (a,f(a))(a, f(a)) where a=1a=-1.

See Solution

Problem 33065

Find if the limit exists: limx5(7x+11)\lim _{x \rightarrow 5}(-7 x+11). Choose A or B.

See Solution

Problem 33066

Find if the limit exists: limx11x23x54104x\lim _{x \rightarrow 11} \frac{\sqrt{x^{2}-3 x-54}}{10-4 x}. What is the limit or does it not exist?

See Solution

Problem 33067

Find if the limit exists: limx0x5+3xx\lim _{x \rightarrow 0} \frac{x^{5}+3 x}{x}. Choose A or B and simplify if A.

See Solution

Problem 33068

Find if the limit exists: limx13x2169x+13\lim _{x \rightarrow-13} \frac{x^{2}-169}{x+13}. What is the limit or does it not exist?

See Solution

Problem 33069

Calculate the limit: limx2x2+2x5x2+7500\lim _{x \rightarrow-\infty} \frac{2x^{2}+2x}{-5x^{2}+7500}.

See Solution

Problem 33070

Find the derivative ff^{\prime} of f(x)=3x+7f(x)=\sqrt{3x+7} and the tangent line at (3,f(3))(3, f(3)).

See Solution

Problem 33071

Find the limit: limt5t2+3t40t225\lim _{t \rightarrow 5} \frac{t^{2}+3 t-40}{t^{2}-25}. Does it exist? If so, compute it.

See Solution

Problem 33072

Find the derivative f(9)f^{\prime}(9) for f(x)=x2+5f(x)=x^{2}+5 using limits. f(9)=f^{\prime}(9)=\square.

See Solution

Problem 33073

Given limx8f(x)=3\lim _{x \rightarrow 8} f(x)=3 and limx8g(x)=4\lim _{x \rightarrow 8} g(x)=-4, find these limits:
a. limx8[f(x)+7g(x)]\lim _{x \rightarrow 8}[f(x)+7 g(x)] b. limx8[f(x)g(x)]\lim _{x \rightarrow 8}[f(x) g(x)] c. limx8[8f(x)g(x)]\lim _{x \rightarrow 8}[8 f(x) g(x)] d. limx8[f(x)f(x)g(x)]\lim _{x \rightarrow 8}\left[\frac{f(x)}{f(x)-g(x)}\right]

See Solution

Problem 33074

For the function F(x)=x4+8x2+9F(x)=-x^{4}+8 x^{2}+9, determine if it's even/odd, find a second local max, and calculate area from x=3x=-3 to x=0x=0.

See Solution

Problem 33075

Find the derivative ff^{\prime} of f(x)=2x27x+5f(x)=2 x^{2}-7 x+5 and the tangent line at (1,f(1))(1, f(1)).

See Solution

Problem 33076

Find the derivative ff^{\prime} of f(s)=5s3+2sf(s)=5 s^{3}+2 s and evaluate f(2)f^{\prime}(-2) and f(1)f^{\prime}(-1).

See Solution

Problem 33077

Find the derivative using limits: f(4)f^{\prime}(4) for f(x)=9x3f(x)=9 x^{3}. Calculate f(4)=f^{\prime}(4)= (simplify).

See Solution

Problem 33078

Evaluate the series n=3+nsin(6n)\sum_{n=3}^{+\infty} n \sin \left(\frac{6}{n}\right).

See Solution

Problem 33079

Find limxf(x)\lim_{x \to \infty} f(x) and limxf(x)\lim_{x \to -\infty} f(x) for f(x)=6x39x4+7x2f(x) = \frac{6x^3 - 9}{x^4 + 7x^2}. Determine horizontal asymptotes.

See Solution

Problem 33080

Find the derivative f(x)f^{\prime}(x) using limits for the function f(x)=9xf(x)=\sqrt{9-x}.

See Solution

Problem 33081

Find the derivative f(x)f^{\prime}(x) using limits for the function f(x)=5xx1f(x)=\frac{5 x}{x-1}.

See Solution

Problem 33082

Find the function f(x)f(x) and the value of aa from the limit: limh0132+h0.03125h\lim _{h \rightarrow 0} \frac{\frac{1}{32+h}-0.03125}{h}.

See Solution

Problem 33083

Find the function f(x)f(x) and the value of aa from the limit definition: limh0(8+h)686h\lim _{h \rightarrow 0} \frac{(8+h)^{6}-8^{6}}{h}. The function is f(x)=f(x)=\square.

See Solution

Problem 33084

Calculate the limit: limx(144x2+x12x)\lim _{x \rightarrow \infty} \left(\sqrt{144 x^{2}+x}-12 x\right).

See Solution

Problem 33085

Calculate the sum: n=6n3en4\sum_{n=6}^{\infty} n^{3} e^{-n^{4}}.

See Solution

Problem 33086

Find the limit: limx6x+52x+9\lim _{x \rightarrow \infty} \frac{6 x+5}{2 x+9}. Choose A or B.

See Solution

Problem 33087

Evaluate the series n=11+sin2(4n)n16\sum_{n=11}^{+\infty} \frac{\sin ^{2}(4 n)}{n^{16}}.

See Solution

Problem 33088

Find limx10x+100x220\lim _{x \rightarrow \infty} \frac{10 x+100}{x^{2}-20}. Is it A: \square or B: limit does not exist?

See Solution

Problem 33089

Find all numbers xx in (1,3)(-1,3) where f(x)=3x2+6x1f'(x)=3x^2+6x-1 equals the average rate of change of f(x)=x3+3x2x+6f(x)=x^3+3x^2-x+6.

See Solution

Problem 33090

Find the limit: limx5x3\lim _{x \rightarrow \infty} \frac{5}{x^{3}}. Choose A or B and simplify your answer.

See Solution

Problem 33091

Find the sum: n=3+(ln(n)+1n4)2n\sum_{n=3}^{+\infty}\left(\ln (n)+\frac{1}{n^{4}}\right)^{2 n}.

See Solution

Problem 33092

Find the limit as xx approaches infinity for 5x2+259x+6\frac{\sqrt{5 x^{2}+25}}{9 x+6}.

See Solution

Problem 33093

Find the limit: limx+(54x+3x3)\lim _{x \rightarrow+\infty}\left(5-4 x+3 x^{3}\right).

See Solution

Problem 33094

Calculate the limit: limx2x2+4911x+1\lim _{x \rightarrow \infty} \frac{\sqrt{2 x^{2}+49}}{11 x+1}.

See Solution

Problem 33095

Find the limit as xx approaches infinity for the expression 3x+12x5\frac{3 x+1}{2 x-5}.

See Solution

Problem 33096

Find the real number aa where the squeeze theorem applies to f(x)f(x), and determine the limit L=limxaf(x)L = \lim_{x \to a} f(x).

See Solution

Problem 33097

Find the limit as xx approaches infinity for the expression x4\sqrt[4]{x}.

See Solution

Problem 33098

Find the limit as yy approaches -\infty for the expression 3y+4\frac{3}{y+4}.

See Solution

Problem 33099

What does the concentration C(t)=44t2+11tC(t)=\frac{44 t}{2+11 t} approach as tt \rightarrow \infty?

See Solution

Problem 33100

Find the limit: limxx2x2+2x+1\lim _{x \rightarrow-\infty} \frac{x-2}{x^{2}+2 x+1}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord