Calculus

Problem 20501

Calculate the integral: =(16)06(8et)dt=\left(\frac{1}{6}\right) \int_{0}^{6}\left(8 e^{t}\right) d t

See Solution

Problem 20502

The volume of a cube is increasing at 1200 cm3/min1200 \mathrm{~cm}^{3} / \mathrm{min} when edges are 20 cm20 \mathrm{~cm}. Find the edge rate change.

See Solution

Problem 20503

Find the hourly growth rate of a bacteria population that grows from 2200 to 2346 in 2.5 hours. Express as a percentage.

See Solution

Problem 20504

Calculate (13)038etdt\left(\frac{1}{3}\right) \int_{0}^{3} 8 e^{t} \, dt.

See Solution

Problem 20505

A radioactive substance starts at 864 kg864 \mathrm{~kg} and decays at 3%3\% per day. Find its mass after 2 days.

See Solution

Problem 20506

Sketch the area between y=e2xy=e^{2x}, y=e6xy=e^{6x}, and x=1x=1. Calculate the enclosed area.

See Solution

Problem 20507

Calculate the integral 07(9et)dt\int_{0}^{7}(9 e^{t}) dt and multiply by 17\frac{1}{7}.

See Solution

Problem 20508

A conical tank is 24 ft high and 10 ft radius. Water flows in at 20 cu ft/min. Find the depth increase rate when water is 16 ft deep.

See Solution

Problem 20509

Calculate the area under the curve of ff from x=3x=3 to x=5x=5, where f(x)=x+9f(x)=x+9 for x4x \leq 4 and f(x)=1712xf(x)=17-\frac{1}{2} x for x>4x>4.

See Solution

Problem 20510

Calculate the area between the function f(x)f(x) and the xx-axis on the interval [6,4][-6,4] where: f(x)={x2+2x+2x<23x+4x2 f(x)=\begin{cases} x^{2}+2x+2 & x<2 \\ 3x+4 & x \geq 2 \end{cases}

See Solution

Problem 20511

Find the limit: limx4x2x2+1+2x\lim _{x \rightarrow-\infty} \sqrt{4 x^{2}-x^{2}+1}+2 x.

See Solution

Problem 20512

Find the derivative of f(x)=3x22x+3f(x)=\frac{3x-2}{2x+3}. Is f(x)=13(2x+3)2f'(x) = -\frac{13}{(2x+3)^{2}} true?

See Solution

Problem 20513

If 15f(x)dx=2\int_{1}^{5} f(x) d x=2, find 403f(x+5)\int_{-4}^{0} 3 f(x+5).

See Solution

Problem 20514

A cone has a radius of 5 in and height of 7 in. When water is 3 in deep and falling at 7in/sec-7 \mathrm{in/sec}, find the drain rate.

See Solution

Problem 20515

Given ff and its derivative in the table, find g(3)g^{\prime}(3) for the inverse function gg. Options: (A) 113\frac{1}{13} (B) 14\frac{1}{4} (C) 1 (D) 4 (E) 13.

See Solution

Problem 20516

Find the limit: limx4x2x+1+2x1\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}-x+1}+2 x}{1}.

See Solution

Problem 20517

Find total profit P(10)P(10) over the first 10 days given R(t)=140etR'(t)=140 e^{t} and C(t)=1400.2tC'(t)=140-0.2t. Round to the nearest cent.

See Solution

Problem 20518

Find f(2)f^{\prime}(2) if f(x)=e2x(x3+1)f(x)=e^{2 x}(x^{3}+1). Options: (A) 6e46 e^{4}, (B) 21e421 e^{4}, (C) 24e424 e^{4}, (D) 30e430 e^{4}.

See Solution

Problem 20519

Given the function h(x)=x3+sinxxh(x)=\frac{x^{3}+\sin x}{x}, show the steps for the quotient rule to find h(x)h^{\prime}(x) and verify it's h(x)=2x3+xcosxsinxx2h^{\prime}(x)=\frac{2 x^{3}+x \cdot \cos x-\sin x}{x^{2}}. Then, argue algebraically why the slope approaches 0 as xx approaches 0 without using graphs.

See Solution

Problem 20520

Given h(x)=x3+sinxxh(x)=\frac{x^{3}+\sin x}{x}, show h(x)=2x3+xcosxsinxx2h^{\prime}(x)=\frac{2 x^{3}+x \cdot \cos x-\sin x}{x^{2}} using the quotient rule. Then, argue why the slope approaches 0 as x0x \to 0 without using graphs or L'Hopital's rule.

See Solution

Problem 20521

Find the partial derivatives fx(x,y)f_{x}(x, y), fy(x,y)f_{y}(x, y), fxx(x,y)f_{xx}(x, y), and fxy(x,y)f_{xy}(x, y) for f(x,y)=6x63x2y2+4y5f(x, y)=-6 x^{6}-3 x^{2} y^{2}+4 y^{5}.

See Solution

Problem 20522

For small hh, which function approximates f(x)=tan(x+h)tanxhf(x)=\frac{\tan (x+h)-\tan x}{h} best? (A) sinx\sin x (B) sinxx\frac{\sin x}{x} (C) tanx\frac{\tan x}{\sim} (D) secx\sec x

See Solution

Problem 20523

Identify which series are suitable for the integral test: a) n=1nen\sum_{n=1}^{\infty} \frac{n}{e^n} b) n=11nlnn\sum_{n=1}^{\infty} \frac{1}{n \ln n} c) n=1n2n2+1\sum_{n=1}^{\infty} \frac{n^2}{n^2 + 1} d) n=1sinnn2\sum_{n=1}^{\infty} \frac{\sin n}{n^2} e) n=1tan(1n)\sum_{n=1}^{\infty} \tan\left(\frac{1}{n}\right)

See Solution

Problem 20524

Find dydx\frac{d y}{d x} in terms of yy for the equation 3xtany=43 x - \tan y = 4.

See Solution

Problem 20525

Evaluate the integral xln(x4)dx\int \sqrt{x} \ln \left(x^{4}\right) d x using integration by parts. Choose uu and dvd v.

See Solution

Problem 20526

Given continuous functions f(x)f(x) and g(x)g(x) with f(x)g(x)0f(x) \geq g(x) \geq 0, determine which statements about their integrals are true.

See Solution

Problem 20527

Calculate the future value of a 14-year continuous income of \$160,000 at a continuous compounding rate of 4.9\%.

See Solution

Problem 20528

Find limx04x2e4x4x1\lim _{x \rightarrow 0} \frac{4 x^{2}}{e^{4 x}-4 x-1}. Choose from (A) 0, (B) 1/21 / 2, (C) 8, (D) non existent.

See Solution

Problem 20529

Identify which series are suitable for the integral test: a) n=1nen\sum_{n=1}^{\infty} \frac{n}{e^n} b) n=11nln(n)\sum_{n=1}^{\infty} \frac{1}{n \ln(n)} c) n=1n3n2+1\sum_{n=1}^{\infty} \frac{n^3}{n^2 + 1} d) n=1sin(n)n2\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2} e) n=1tan(1n)\sum_{n=1}^{\infty} \tan\left(\frac{1}{n}\right)

See Solution

Problem 20530

For the function f(x)=x3x236f(x)=\frac{x^{3}}{x^{2}-36} on [18,16][-18,16], find vertical asymptotes and inflection points.

See Solution

Problem 20531

Find the equilibrium quantity where d(x)=9800.3x2d(x)=980-0.3 x^{2} and s(x)=0.5x2s(x)=0.5 x^{2}. Then, calculate consumer surplus.

See Solution

Problem 20532

Find the period of a pendulum of length 0.1016 m under gravity 9.81m/s29.81 \, \text{m/s}^2. Use the formula T=2πLgT = 2\pi \sqrt{\frac{L}{g}}.

See Solution

Problem 20533

Find the area represented by the integral 4416x2dx\int_{-4}^{4} \sqrt{16-x^{2}} d x using a sketch of the region.

See Solution

Problem 20534

Find the area represented by the integral 224x2dx\int_{-2}^{2} \sqrt{4-x^{2}} d x by sketching the region.

See Solution

Problem 20535

Find the area represented by the integral 17(72x)dx\int_{-1}^{7}(7-2 x) d x.

See Solution

Problem 20536

Find the object's position at t=190t=190 using the area under v(t)v(t), rounded to four decimal places.

See Solution

Problem 20537

Find the object's position at t=220t=220 using the area under the velocity function. Round to four decimal places.

See Solution

Problem 20538

Find the area under the graph of f(x)f(x) from x=5x = -5 to x=7x = 7 using the points (-5, 3), (-3, 3), (4, 8), (7, 8).

See Solution

Problem 20539

Find the equation of the line perpendicular to the tangent of f(x)=12exf(x)=\frac{1}{2} e^{x} at x=ln3x=\ln 3.

See Solution

Problem 20540

Evaluate the integral: sin2(θπ23)dθ=\int \sin^{2}\left(\theta-\frac{\pi}{23}\right) d\theta = \square (Type exact answer.)

See Solution

Problem 20541

Find the limit: limx0+8sin(x)ln(x)\lim _{x \rightarrow 0^{+}} 8 \sin (x) \ln (x). Use I'Hôpital's rule if needed.

See Solution

Problem 20542

For the sine function ff through (0, 0), (2, 4.4), (5, 0), (6.4, -1.8), (8, 0), order A, B, C, D by value.

See Solution

Problem 20543

Shade the area under f(x)=12x1f(x)=-\frac{1}{2} x-1 for 51f(x)dx\int_{-5}^{1} f(x) \, dx and evaluate it using the area of two triangles.

See Solution

Problem 20544

Evaluate the following integrals as areas under the graph of function f(x)f(x):
a) 02f(x)dx\int_{0}^{2} f(x) d x
b) 05f(x)dx\int_{0}^{5} f(x) d x
c) 57f(x)dx\int_{5}^{7} f(x) d x
d) 09f(x)dx\int_{0}^{9} f(x) d x

See Solution

Problem 20545

Evaluate the integral 1210f(x)dx\int_{-12}^{10} f(x) d x for the points (12,4)(-12,-4), (8,0)(-8,0), (3,5)(-3,5), (5,5)(5,5), (10,20)(10,-20).

See Solution

Problem 20546

Evaluate the integral 03/2(92x22x2y2x44)09+4y2dy\int_{0}^{3 / 2}\left(\frac{9}{2} x^{2}-2 x^{2} y^{2}-\frac{x^{4}}{4}\right) \bigg|_{0}^{\sqrt{-9+4 y^{2}}} dy.

See Solution

Problem 20547

Evaluate 1210f(x)dx\int_{-12}^{10} f(x) dx as the area under the curve, counting below the x-axis as negative.

See Solution

Problem 20548

Evaluate the limit: limx0+x6sin(x)\lim _{x \rightarrow 0^{+}} x^{6 \sin (x)} using L'Hospital's rule if needed.

See Solution

Problem 20549

Explain why the function y=ex+e2xy=e^{x}+e^{2 x} has no local extrema using algebra. Then graph it to confirm your findings.

See Solution

Problem 20550

Find the function f(x)f(x) given that f(x)=8x+9sin(x)f^{\prime \prime}(x)=8x+9\sin(x), with f(0)=3f(0)=3 and f(0)=2f^{\prime}(0)=2.

See Solution

Problem 20551

Approximate 131xdx\int_{1}^{3} \frac{1}{x} dx using the trapezoidal method with Δx=0.5\Delta x=0.5. Why is the result larger than ln3\ln 3?
How long for liquid depth hh to rise from 0.1 ft to 0.5 ft in a tank with base area 4 ft², inflow 0.08 ft³/sec, outflow 0.12 ft³/sec?

See Solution

Problem 20552

Evaluate the integral 48x2(x18)(x+6)2dx\int \frac{48 x^{2}}{(x-18)(x+6)^{2}} d x and find its partial fraction decomposition.

See Solution

Problem 20553

Find the general antiderivative of f(x)=8x3(1x2)1/2f(x)=-8 x-3(1-x^{2})^{-1/2} for 1<x<1-1<x<1. What is F(x)=?F(x)=?

See Solution

Problem 20554

Evaluate the integral 0π2xcosxdx\int_{0}^{\pi} 2 x \cos x \, dx using integration by parts. Choose the simpler integral option.

See Solution

Problem 20555

Find the general antiderivative of f(x)=4ex+8sec2(x)f(x)=4 e^{x}+8 \sec ^{2}(x) for π2<x<π2-\frac{\pi}{2}<x<\frac{\pi}{2}. F(x)=F(x) =

See Solution

Problem 20556

Evaluate the integral x2e6xdx\int x^{2} e^{6 x} \mathrm{dx} using integration by parts. Choose the correct answer.

See Solution

Problem 20557

Evaluate the integral t2e8tdt\int t^{2} e^{-8 t} dt using integration by parts. Choose the correct simplification: A, B, C, or D.

See Solution

Problem 20558

Show that 121xdx=5101xdx\int_{1}^{2} \frac{1}{x} dx = \int_{-5}^{-10} \frac{1}{x} dx without decimals. Find aa and cc for x+2x23x=ax+cx3\frac{x+2}{x^{2}-3x} = \frac{a}{x}+\frac{c}{x-3} to evaluate 47x+2x23xdx\int_{4}^{7} \frac{x+2}{x^{2}-3x} dx.

See Solution

Problem 20559

Evaluate I\mathrm{I} with the substitution u=x7u=x-7: x2x7dx=\int \frac{x^{2}}{x-7} d x=\square

See Solution

Problem 20560

Show that f(x)=x6+3x+1f(x)=x^{6}+3x+1 has exactly one root in [4,1][-4,-1] using the intermediate value and Rolle's theorems.

See Solution

Problem 20561

Evaluate the integral I=x2x7dxI=\int \frac{x^{2}}{x-7} d x using the substitution u=x7u=x-7. What is II?

See Solution

Problem 20562

Evaluate the integral I=x2x7dxI=\int \frac{x^{2}}{x-7} dx using substitution u=x7u=x-7 and long division. Reconcile results.

See Solution

Problem 20563

Untersuchen Sie das Verhalten der Funktionen an den Definitionslücken für x0=3x_{0}=3 und x0=0x_{0}=0 in den folgenden Fällen: a) f(x)=x292x6f(x)=\frac{x^{2}-9}{2 x-6} b) f(x)=x+1xf(x)=\frac{x+1}{x} c) f(x)=x+1x2f(x)=\frac{x+1}{x^{2}}

See Solution

Problem 20564

Untersuchen Sie die Funktion f(x)=0,125x3+0,75x2+1,5xf(x)=-0,125 x^{3}+0,75 x^{2}+1,5 x: Verhalten für x|x|, Symmetrie, Achsenschnittpunkte, Extrempunkte, Wendepunkte, Graph skizzieren, Wendetangente berechnen.

See Solution

Problem 20565

Find the general antiderivative of f(x)=8x3(1x2)1/2f(x)=-8x-3(1-x^{2})^{-1/2} for 1<x<1-1<x<1.

See Solution

Problem 20566

Calculate the integral: (3x2+2x3)dx\int (3 x^{2}+2 x^{3}) \, dx.

See Solution

Problem 20567

Calculate the integral: (4x35x2+72x)dx\int (4 x^{3}-5 x^{2}+\frac{7}{2} x) \, dx

See Solution

Problem 20568

Evaluate the integral from -7 to -2: 72(6u26u+8)du=\int_{-7}^{-2} (6u^{2} - 6u + 8) \, du = (round to three decimal places).

See Solution

Problem 20569

Evaluate the integral t2e8tdt\int t^{2} e^{-8 t} dt using integration by parts. Choose the correct answer for the new integral.

See Solution

Problem 20570

Evaluate the integral from -3 to -2: 32y56y2y4dy\int_{-3}^{-2} \frac{y^{5}-6 y^{2}}{y^{4}} d y

See Solution

Problem 20571

Find the total words memorized in 13 minutes using M(t)=0.001t2+0.3tM^{\prime}(t)=-0.001 t^{2}+0.3 t. Round to the nearest whole word.

See Solution

Problem 20572

Evaluate the integral I=x2x7dxI=\int \frac{x^{2}}{x-7} dx. Use substitution u=x7u=x-7 and perform long division on the integrand.

See Solution

Problem 20573

Evaluate the integral: x27x32x2+xdx\int \frac{x^{2}-7}{x^{3}-2 x^{2}+x} dx and find its partial fraction decomposition.

See Solution

Problem 20574

Is m(8)=12m(8)=12 guaranteed if m(3)=10m(3)=10, 38m(x)dx=2\int_{3}^{8} m^{\prime}(x) dx=2, and 38m(x)dx=2\int_{3}^{8} m(x) dx=2?

See Solution

Problem 20575

Evaluate the integral I=x2x7dxI=\int \frac{x^{2}}{x-7} dx using substitution u=x7u=x-7 and long division.

See Solution

Problem 20576

a. Show that f1(x)dx=yf(y)dy\int f^{-1}(x) dx=\int y f'(y) dy. b. Prove f1(x)dx=yf(y)f(y)dy\int f^{-1}(x) dx=y f(y)-\int f(y) dy if ff' is continuous. c. Find lnxdx\int \ln x dx in terms of xx. d. Find sin1xdx\int \sin^{-1} x dx in terms of xx. e. Find tan1xdx\int \tan^{-1} x dx in terms of xx.

See Solution

Problem 20577

Calculate the area under the curve y=5x3y=5 x^{3} from x=0x=0 to x=4x=4 in fractional form.

See Solution

Problem 20578

Find the area under f(x)=2x+6f(x)=2x+6 from x=17x=17 to x=22x=22 using the Fundamental Theorem of Calculus. Round to the nearest tenth.

See Solution

Problem 20579

Find the area under f(x)=x2+9xf(x)=-x^{2}+9x from x=3x=3 to x=7x=7 using the Fundamental Theorem of Calculus. Enter as a fraction.

See Solution

Problem 20580

If nvw(x)dx=h(v)h(n)\int_{n}^{v} w(x) d x=h(v)-h(n), what can we conclude about hh and ww? Choose true statements:
1. hh is an antiderivative of ww
2. ww is an antiderivative of hh
3. ww is the derivative of hh
4. hh is the derivative of ww
5. none of these

See Solution

Problem 20581

Calculate the area under the curve y=8xy=\frac{8}{x} from x=1x=1 to x=4x=4.

See Solution

Problem 20582

Evaluate the integral: 13y56y2y5dy\int_{-1}^{-3} \frac{y^{5}-6 y^{2}}{y^{5}} d y

See Solution

Problem 20583

Evaluate the integral: 23y66yy4dy\int_{-2}^{-3} \frac{y^{6}-6 y}{y^{4}} d y.

See Solution

Problem 20584

Calculate the integral from -2 to -1: 21y57yy4dy\int_{-2}^{-1} \frac{y^{5}-7 y}{y^{4}} d y.

See Solution

Problem 20585

Find f(x)f'(x) for f(x)=4xt4dtf(x)=\int_{4}^{x} t^{4} dt and calculate f(2)f'(-2).

See Solution

Problem 20586

Berechne lnxxdx\int \ln x \cdot x \, dx mit einfacher partieller Integration.

See Solution

Problem 20587

Find f(x)f'(x) and f(x)f''(x) if f(x)=0x(t3+6t2+1)dtf(x)=\int_{0}^{x} (t^{3}+6 t^{2}+1) dt.

See Solution

Problem 20588

Find h(x)h^{\prime}(x) for h(x)=0x29+t3dth(x)=\int_{0}^{x^{2}} \sqrt{9+t^{3}} d t.

See Solution

Problem 20589

Find the derivatives using the Fundamental Theorem of Calculus:
1. f(x)=2xt3+8dtf(x)=\int_{-2}^{x} \sqrt{t^{3}+8} dt, f(x)=f^{\prime}(x)=
2. g(x)=5x11+t4dtg(x)=\int_{5}^{x} \frac{1}{1+t^{4}} dt, g(x)=g^{\prime}(x)=

See Solution

Problem 20590

Find the area under f(x)=x2+7xf(x)=-x^{2}+7x from x=2x=2 to x=5x=5 using the Fundamental Theorem of Calculus. Answer as a fraction.

See Solution

Problem 20591

A cone has radius 4.5 cm and height 9 cm. A cylinder fits inside.
(a) Express height hh in terms of radius rr and show V=9πr22πr3V=9 \pi r^{2}-2 \pi r^{3}. (b) Find the stationary value of VV as rr varies.

See Solution

Problem 20592

Find the definite integral for the area under y=x+12y=-x+12, above the xx-axis, from x=3x=-3 to x=2x=2. 32(x+12)dx \int_{-3}^{2} (-x+12) \, dx

See Solution

Problem 20593

Berechnen Sie die Integrale mit partieller Integration: a) xcosxdx\int x \cdot \cos x \, dx b) lnxxdx\int \ln x \cdot x \, dx

See Solution

Problem 20594

Find the bounds aa and bb for the integral where abf(x)dx=28f(x)dx+811f(u)du22f(t)dt.\int_{a}^{b} f(x) dx=\int_{-2}^{8} f(x) dx+\int_{8}^{11} f(u) du-\int_{-2}^{2} f(t) dt.

See Solution

Problem 20595

Find the derivative of f(x)=x18t7dtf(x)=\int_{x}^{18} t^{7} dt and g(x)=x3sin(t2)dtg(x)=\int_{x}^{3} \sin(t^{2}) dt.

See Solution

Problem 20596

Evaluate the following integrals using geometry:
1. 365dx=\int_{-3}^{6} 5 \, dx = \square
2. 27(5x20)dx=\int_{2}^{7} (5x - 20) \, dx = \square

See Solution

Problem 20597

Bestimme den Wert der Reihe k=01((1)k+4)k\sum_{k=0}^{\infty} \frac{1}{\left((-1)^{k}+4\right)^{k}}.

See Solution

Problem 20598

Berechne x3exdx\int x^{3} \cdot e^{x} d x mit dreifacher partieller Integration.

See Solution

Problem 20599

Calculate 5121[4f(x)+5g(x)h(x)]dx\int_{-51}^{-21}[4 f(x)+5 g(x)-h(x)] d x given 5121f(x)dx=8\int_{-51}^{-21} f(x) d x=8, 5121g(x)dx=11\int_{-51}^{-21} g(x) d x=11, 5121h(x)dx=25\int_{-51}^{-21} h(x) d x=25.

See Solution

Problem 20600

Find the value of 41f(s)ds\int_{4}^{1} f(s) d s given that 14f(x)dx=167\int_{1}^{4} f(x) d x=\frac{16}{7}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord