Calculus

Problem 12701

Find the number of units xx (whole number) that minimizes the unit cost U(x)=1162x+1+2xU(x)=\frac{1}{162 x+1}+2 x for 0x10 \leq x \leq 1.

See Solution

Problem 12702

Find the critical numbers of the function f(x)=x348xf(x)=x^{3}-48x.

See Solution

Problem 12703

Find points on the curve y=ln(x2+1)y=\ln(x^{2}+1) where the tangent line is horizontal.

See Solution

Problem 12704

A farmer has 400 m of mesh to build three sides of a rectangular enclosure. What dimensions maximize the area?

See Solution

Problem 12705

Find the tangent line to y2(y24)=x2(x25)y^{2}(y^{2}-4)=x^{2}(x^{2}-5) at (0,2)(0,-2) using implicit differentiation.

See Solution

Problem 12706

Find the critical points of the function ff given its derivative f(x)=5x3+9x22xf^{\prime}(x)=5 x^{3}+9 x^{2}-2 x.

See Solution

Problem 12707

Evaluate the integral 01(x23x+6)dx\int_{0}^{1}(x^{2}-3x+6)dx and check if the result matches the given figure.

See Solution

Problem 12708

Calculate the integral from 0 to 1 of the function 2x2x2x - 2\sqrt{x}.

See Solution

Problem 12709

Evaluate the integral π/47π/4(sinx+cosx)dx\int_{-\pi / 4}^{7 \pi / 4}(\sin x+\cos x) dx and check consistency with the provided figure.

See Solution

Problem 12710

1. Given marginal profit values for sales levels: Sales: 50, 100, 150, 200, 250, 300, 350, 400; Marginal Profit: 7, 3, 1, 0, -4, -2, 0, 5. (a) Estimate profit change from sales level 100 to 120 using linear approximation. (b) Determine the sign of the second derivative of profit near sales level 100 and its implication on the previous estimate. (c) Identify sales levels for local minimum and maximum profit.

See Solution

Problem 12711

Given f(x)=2x36f(x)=2 x^{3}-6, find critical points, intervals for f(x)>0f^{\prime}(x)>0, f(x)<0f^{\prime}(x)<0, local maxima, and minima.

See Solution

Problem 12712

Find R(2)R^{\prime}(-2) for R(x)=P(x25)R(x)=P\left(x^{2}-5\right) given P(2)=4P(-2)=4, P(2)=3P^{\prime}(-2)=-3.

See Solution

Problem 12713

Create a sign diagram for the derivative of the function f(x)=x36x215x+5f(x)=x^{3}-6 x^{2}-15 x+5.

See Solution

Problem 12714

Estimate the profit change from sales of 100 to 120 using linear approximation given marginal profits: 7, 3, 1, 0, -4, -2, 0, 5. Answer: 60.

See Solution

Problem 12715

Determine at which point (Point #1, #2, or #3) a falling puck has maximum kinetic energy, given no info on their heights.

See Solution

Problem 12716

Sneaker price is \600,rising$40/day.Estimatepriceafter30daysusinglinearapproximationandfunction600, rising \$40/day. Estimate price after 30 days using linear approximation and function L(t)$. Explain results.

See Solution

Problem 12717

Find the derivative of the function 2xx+1\frac{2 x}{x+1} with respect to xx.

See Solution

Problem 12718

Find f(1)f^{\prime}(1) for the function f(x)=(2x+1)(x7+3x)f(x)=(2 x+1)(x^{7}+3 x). Choices: 0, 12, 38, 1.

See Solution

Problem 12719

Find critical numbers, local minima, and local maxima for f(x)=x4+3x33f(x)=\sqrt{x^{4}+3}-\frac{x^{3}}{3}.

See Solution

Problem 12720

Find the rate of change of demand D(p)=100pD(p)=\frac{100}{\sqrt{p}} at p=625p=625 dollars per ton (units not "million tons").

See Solution

Problem 12721

Find the correct derivative of f(x)=x21x7+1f(x)=\frac{x^{2}-1}{x^{7}+1}. Options include:
1. f(x)=2x7x6f^{\prime}(x)=\frac{2 x}{7 x^{6}}
2. f(x)=2x(x7+1)(x21)(7x6)(x7+1)2f^{\prime}(x)=\frac{2 x(x^{7}+1)-(x^{2}-1)(7 x^{6})}{(x^{7}+1)^{2}}
3. f(x)=2x(x7+1)x2(7x6)7x6f^{\prime}(x)=\frac{2 x(x^{7}+1)-x^{2}(7 x^{6})}{7 x^{6}}
4. f(x)=2x17x61f^{\prime}(x)=\frac{2 x-1}{7 x^{6}-1}

See Solution

Problem 12722

Find the rate of change of demand for rice in 2020 using p(t)=535+9t5t2p(t)=535+9t-5t^2. Calculate for t=0t=0 and t=6t=6. Include units.

See Solution

Problem 12723

Evaluate these limits using the definition of derivative:
1. limx1x2x+1+x2x1\lim _{x \rightarrow 1} \frac{x^{2 x+1}+x-2}{x-1}
2. limx0log3(x2+3x+1)x\lim _{x \rightarrow 0} \frac{\log _{3}\left(x^{2}+3 x+1\right)}{x}
Also, find g(0)g^{\prime}(0) for g(x)=f(x)3f(x)g(x)=f(x)^{3 f(x)} if the tangent line at x=0x=0 is y=3x+2y=3 x+2.

See Solution

Problem 12724

Find the limit as xx approaches 0 from the right for 4x8e2x1\frac{4}{x} - \frac{8}{e^{2x}-1}. Combine into one fraction first.

See Solution

Problem 12725

Find the rate of revenue increase when 180 units are sold, given R=1100xx2R=1100 x-x^{2} and sales increase by 30 units/day.

See Solution

Problem 12726

Find dAdt\frac{d A}{d t} for a circle's area AA with radius rr when r=2r=2 and drdt=3\frac{d r}{d t}=3.

See Solution

Problem 12727

Find the local maximum and minimum of the function f(x)=x312xf(x)=x^{3}-12x.

See Solution

Problem 12728

Find the critical numbers of the function f(z)=5z+55z2+5z+5f(z)=\frac{5 z+5}{5 z^{2}+5 z+5} in increasing order. Use N\mathrm{N} for unused blanks.

See Solution

Problem 12729

Calculate the account value after 7 years for an investment of \29800ata3.529800 at a 3.5% annual rate, using V=P e^{rt}$.

See Solution

Problem 12730

Find if the limit limx1x81x31\lim _{x \rightarrow 1} \frac{x^{8}-1}{x^{3}-1} exists and calculate its value.

See Solution

Problem 12731

Find the slope of the tangent line to y=tan1(x)y=\tan^{-1}(-x) at x=4x=4.

See Solution

Problem 12732

Find the derivative of the inverse of f(x)=x29f(x)=x^{2}-9 for x>0x>0.

See Solution

Problem 12733

Find the limit as xx approaches 1 for ln(4x2+2x5)3x23\frac{\ln(4x^2 + 2x - 5)}{3x^2 - 3}.

See Solution

Problem 12734

Find the limit: limx01cos(3x)sin2(2x)\lim _{x \rightarrow 0} \frac{1-\cos (3 x)}{\sin ^{2}(2 x)}.

See Solution

Problem 12735

An electron oscillates at 50 Hz with positions +10 and -10. Find the amplitude, period, and key characteristics.

See Solution

Problem 12736

Find if the limit limx04sin(x)16x\lim _{x \rightarrow 0} \frac{4^{\sin (x)}-1}{6 x} exists and calculate its value.

See Solution

Problem 12737

Calculate the limit: limx02x7x4x \lim _{x \rightarrow 0} \frac{2^{x}-7^{x}}{4 x} .

See Solution

Problem 12738

Find values of xx for which the series n=0(1)nx2n\sum_{n=0}^{\infty}(-1)^{n} x^{-2 n} converges and its sum as a function of xx.

See Solution

Problem 12739

Determine if the series n=61n3125\sum_{n=6}^{\infty} \frac{1}{n^{3}-125} converges or diverges using one test.

See Solution

Problem 12740

Find f(4)f(4) given that f(x)=x+3x3f^{\prime}(x)=\frac{\sqrt{x}+3}{x^{3}} for x>0x>0 and f(1)=0f(1)=0.

See Solution

Problem 12741

Evaluate: (a) i=597(1i1i1)\sum_{i=5}^{97}\left(\frac{1}{i}-\frac{1}{i-1}\right); (b) limni=1n1n[(2in)3+10]\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left[\left(\frac{2 i}{n}\right)^{3}+10\right].

See Solution

Problem 12742

Evaluate 05f(t)dt+7\int_{0}^{5} f(t) d t + 7 given 05f(t)dt=10\int_{0}^{5} f(t) d t = 10.

See Solution

Problem 12743

Find the local minimum and maximum of the function f(x)=2x3+39x2216x+2f(x)=-2 x^{3}+39 x^{2}-216 x+2.

See Solution

Problem 12744

Evaluate four of these integrals given 05f(t)dt=10\int_{0}^{5} f(t) d t=10: (a) 057f(t)dt\int_{0}^{5} 7 f(t) d t, (b) 05(f(t)+7)dt\int_{0}^{5}(f(t)+7) d t, (c) 05f(t)dt+7\int_{0}^{5} f(t) d t+7, (d) 057f(t+7)dt\int_{0}^{5} 7 f(t+7) d t.

See Solution

Problem 12745

Evaluate the limit: limni=1n1n[(2in)3+10]\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left[\left(\frac{2 i}{n}\right)^{3}+10\right]

See Solution

Problem 12746

Find the time tt when the drug concentration C(t)=90t6t2+45C(t)=\frac{90 t}{6 t^{2}+45} is highest. t=t=\square.

See Solution

Problem 12747

Find if the limit limx4(7ln(x3)2x4)\lim _{x \rightarrow 4}\left(\frac{7}{\ln (x-3)}-\frac{2}{x-4}\right) exists, and its value.

See Solution

Problem 12748

Find the intervals where the power P(R)=120R(0.4+R)2P(R)=\frac{120 R}{(0.4+R)^{2}} is increasing based on resistance RR.

See Solution

Problem 12749

Find the derivative of f(x)=(x33x2+1)3f(x)=\left(x^{3}-3 x^{2}+1\right)^{-3} using the chain rule.

See Solution

Problem 12750

Find the remaining amount of technetium 99 m-99 \mathrm{~m} from a 40 g40 \mathrm{~g} sample after 2 days. Also, calculate the original value of a car sold for \$4200 with a 15% annual depreciation.

See Solution

Problem 12751

Find g(4)g^{\prime}(4) given f(4)=5f(4)=5, f(4)=6f^{\prime}(4)=6, and g(x)=xf(x)g(x)=\sqrt{x} f(x).

See Solution

Problem 12752

Find the differential dyd y of the function dy=x(1cos(x))d y=x(1-\cos (x)) using dxd x.

See Solution

Problem 12753

A rock is thrown up at 13 m/s from a 38 m cliff. When is it 11 m above ground? Round to two decimal places.

See Solution

Problem 12754

Calculate the surface area when a 6x16 rectangle rotates around line zz. How does it change if zz is a side?

See Solution

Problem 12755

Calculate the area between the curves f(x)=x2+4x+4f(x) = x^2 + 4x + 4 and g(x)=4x+20g(x) = 4x + 20 from x=4x = -4 to x=4x = 4.

See Solution

Problem 12756

Find the differential dyd y for the function y=10x4/5y=10 x^{4/5}. Use " dxd x " for dxd x.

See Solution

Problem 12757

Sketch the graphs of ff and ff'' given that ff' is a parabola with roots at (-2,0) and (2,0) and a minimum at (0,-4).

See Solution

Problem 12758

Find the differential dyd y for the function y=xtan(x)y = x \tan(x).

See Solution

Problem 12759

Sketch the function ff and its second derivative ff'' from the graph of ff': a parabola with roots at -2 and 2, min at (0,-4).

See Solution

Problem 12760

Find the number of people the vaccine prevented from getting sick, given N1(t)=0.1t2+0.5t+150N_{1}(t)=0.1 t^{2}+0.5 t+150 for 0t250 \leq t \leq 25 and N2(t)=0.2t2+6t+200N_{2}(t)=-0.2 t^{2}+6 t+200 for 25<t5025 < t \leq 50.

See Solution

Problem 12761

Approximate the area under y=x2y=x^{2} from x=1x=1 to x=4x=4 using a Right Endpoint method with 6 subdivisions.

See Solution

Problem 12762

Find the advertising spend ss (in thousands) for max profit given P=110s3+15s2+400P=-\frac{1}{10} s^{3}+15 s^{2}+400. What is ss?

See Solution

Problem 12763

Find dydx\frac{d y}{d x} for the curve ex2y=y9x+5e^{x^{2}-y}=y^{9 x+5} using logarithmic differentiation.

See Solution

Problem 12764

Find the derivative of y=e2e0.02xy=e^{-2 e^{-0.02 x}}. What is y=y^{\prime}=\square?

See Solution

Problem 12765

Find the limit: limx1tan1(1x1)\lim _{x \rightarrow 1^{-}} \tan ^{-1}\left(\frac{1}{x-1}\right).

See Solution

Problem 12766

Find the derivative f(x)f^{\prime}(x) for the function f(x)=ex14f(x)=e^{\sqrt{x-14}}.

See Solution

Problem 12767

Find the limit: limxtan1x\lim _{x \rightarrow \infty} \tan ^{-1} x.

See Solution

Problem 12768

Find the limit: limxcos1(x12x+1)\lim _{x \rightarrow \infty} \cos ^{-1}\left(\frac{\sqrt{x-1}}{\sqrt{2 x+1}}\right).

See Solution

Problem 12769

Find the limit: limxsin1(1x2x+1)\lim _{x \rightarrow \infty} \sin ^{-1}\left(\frac{1-x}{2 x+1}\right).

See Solution

Problem 12770

Differentiate the function f(x)=(x+1x)e4xf(x)=\left(x+\frac{1}{x}\right) e^{4 x}. Find ddxf(x)=\frac{\mathrm{d}}{\mathrm{dx}}f(x)=\square.

See Solution

Problem 12771

A well pumps 40000 L on day 1, decreasing by 5%5\% daily. Find total water pumped over its lifetime.

See Solution

Problem 12772

Find the vertical asymptote(s) of g(x)=1(x4)2g(x)=\frac{1}{(x-4)^{2}}. Choose A, B, or C and complete the equations if needed.

See Solution

Problem 12773

Find the limit: limx1cos1(x+12)\lim _{x \rightarrow 1} \cos ^{-1}\left(x+\frac{1}{2}\right).

See Solution

Problem 12774

Differentiate y=x2sinxy=\frac{x}{-2 \sin x} with respect to xx.

See Solution

Problem 12775

Simplify the derivative: ddx(ex+7e6xex)=\frac{d}{d x}\left(\frac{e^{x}+7 e^{6 x}}{e^{x}}\right)=\square

See Solution

Problem 12776

Find the horizontal asymptote of N(t)=0.9t+11005t+7N(t)=\frac{0.9t+1100}{5t+7} as tt \rightarrow \infty and explain its meaning.

See Solution

Problem 12777

Invest \12,367at6.412,367 at 6.4% interest, compounded continuously. Find the function for amount after t$ years, balances for 1, 2, 5, 10 years, and doubling time.

See Solution

Problem 12778

Find the horizontal asymptote of N(t)=0.9t+11005t+7N(t)=\frac{0.9t+1100}{5t+7} as tt \to \infty and explain its significance.

See Solution

Problem 12779

Find the area of the largest rectangle between the xx-axis, yy-axis, and the curve y=8x3y=8-x^{3}.

See Solution

Problem 12780

Find dimensions of an open-top box with volume 389344 cm3389344 \mathrm{~cm}^{3} that minimizes surface area.
1. Surface area formula A(x)A(x) in terms of xx (base side length).
2. Derivative A(x)A^{\prime}(x).
3. Solve A(x)=0A^{\prime}(x)=0 for xx.
4. Find second derivative A(x)A^{\prime \prime}(x) and evaluate it.

See Solution

Problem 12781

Find a point cc in the interval [16,36] such that the Mean Value Theorem applies to y(x)=xy(x)=\sqrt{x}. c=c=

See Solution

Problem 12782

Find the cost, average cost, marginal cost, and optimal production level for the cost function C(x)=57600+700x+x2C(x)=57600+700x+x^{2} at x=1850x=1850.

See Solution

Problem 12783

Bestimmen Sie die Intervalle, in denen ff steigt oder fällt, und skizzieren Sie den Verlauf von ff aus dem Graphen von ff'.

See Solution

Problem 12784

Ricardo metabolizes caffeine at 14.7%14.7\% per hour. Find time to metabolize half of 96mg96 \mathrm{mg}, 190mg190 \mathrm{mg}, and cc mg.

See Solution

Problem 12785

Find the derivative f(θ)f'(\theta) for f(θ)=θsin(θ)f(\theta)=\theta \sin (\theta) and evaluate it at π\pi.

See Solution

Problem 12786

Model Ni-65 decay with a function, find remaining fraction after 10h, and time to decay to 11024\frac{1}{1024} of original mass.

See Solution

Problem 12787

Berechne die Extrempunkte der Funktion f(x)=13ax3x2f(x)=\frac{1}{3a} x^{3}-x^{2} für a>0a>0.

See Solution

Problem 12788

Calculate zx\frac{\partial z}{\partial x} for z=f(x,y)z=f(x, y) given xez+zey=x+yx e^{z}+z e^{y}=x+y.

See Solution

Problem 12789

Finde die Extrempunkte der Funktion f(x)=13ax3x2f(x)=\frac{1}{3 a} x^{3}-x^{2} für a>0a>0.

See Solution

Problem 12790

Calculate the limit: limxπ2(1+ctgx)tgx\lim _{x \rightarrow \frac{\pi}{2}}(1+\operatorname{ctg} x)^{\operatorname{tg} x}.

See Solution

Problem 12791

Estimate the area under y=x2y=x^{2} from x=0x=0 to x=3x=3 using a Right Endpoint method with 6 subdivisions.

See Solution

Problem 12792

Find the limit: limx0(1+3x4)1sin2x\lim _{x \rightarrow 0}\left(1+3 x^{4}\right)^{\frac{1}{\sin ^{2} x}}

See Solution

Problem 12793

Calculate the limit: limx03tgx2tgxarctgxarcsinx\lim _{x \rightarrow 0} \frac{3^{\operatorname{tg} x}-2^{\operatorname{tg} x}}{\operatorname{arctg} \sqrt{x} \cdot \arcsin \sqrt{x}}

See Solution

Problem 12794

Gegeben ist ft(x)=x312t2xf_{t}(x)=x^{3}-12 t^{2} x für tR+t \in \mathbb{R}^{+}. Finde Hoch-/Tiefpunkte, Ortskurve, gemeinsame Punkte und Steigung im Ursprung.

See Solution

Problem 12795

Gegeben ist die Funktion fk(x)=x33kx2f_{k}(x)=x^{3}-3 k x^{2}.
a) Zeichne den Graphen für k=1,0,5,0,0,5,1k=-1, -0,5, 0, 0,5, 1. b) Finde die Nullstellen von fkf_{k}. c) Berechne die ersten drei Ableitungen von fkf_{k}. d) Bestimme die Extrempunkte und deren Art. e) Finde den Wendepunkt und zeige, dass es sich um eine Wendestelle handelt. f) Bestimme die Wendetangente. g) Finde kk, damit die Wendetangente durch P(0,8)P(0, 8) verläuft.

See Solution

Problem 12796

Find the limit: limxπ2(sinx)tg2x\lim _{x \rightarrow \frac{\pi}{2}}(\sin x)^{\operatorname{tg}^{2} x}.

See Solution

Problem 12797

Calculate u8=18k=07(k8)2u_{8} = \frac{1}{8} \sum_{k=0}^{7} \left(\frac{k}{8}\right)^{2}. What is u8u_{8}?

See Solution

Problem 12798

Find the third derivative of the function f(x)=x2+3xf(x)=x^{2}+\frac{3}{x}.

See Solution

Problem 12799

Determine the radius and interval of convergence for the series k=0(2)kxk+1k+1\sum_{k=0}^{\infty} \frac{(-2)^{k} x^{k+1}}{k+1}.

See Solution

Problem 12800

Calculate u8=18k=07(k8)2u_{8} = \frac{1}{8} \cdot \sum_{k=0}^{7} \left(\frac{k}{8}\right)^{2} and find its approximate value.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord