Calculus

Problem 7901

Find the antiderivative of f(x)=(15)xf(x)=\left(\frac{1}{5}\right)^{x} over the interval I=[0,5]I=[0, 5].

See Solution

Problem 7902

Evaluate the second derivative f(5),f(3)f^{\prime \prime}(5), f^{\prime \prime}(3), and f(4)f^{\prime \prime}(4) for f(x)=6x2f(x)=\sqrt{6x-2}.

See Solution

Problem 7903

Find the second derivative of the function f(x)=2x25x39f(x)=-2 x^{2}-5 \sqrt[3]{x}-9.

See Solution

Problem 7904

Find the intervals where the function f(x)=4x372x2+5x2f(x)=-4 x^{3}-72 x^{2}+5 x-2 is concave up or down.

See Solution

Problem 7905

Find the second derivative of the function f(x)=8x3+6x29xf(x)=-8 x^{3}+6 x^{2}-9 x.

See Solution

Problem 7906

Find the point of diminishing returns for the sales function S(x)=123+31.5x20.5x3S(x)=123+31.5 x^{2}-0.5 x^{3}, where 0x420 \leq x \leq 42.

See Solution

Problem 7907

Evaluate the second derivative f(1)f^{\prime \prime}(1), f(5)f^{\prime \prime}(5), and f(7)f^{\prime \prime}(7) for f(x)=8x3+6x29xf(x)=-8 x^{3}+6 x^{2}-9 x.

See Solution

Problem 7908

Find points of inflection for the function f(x)=4x384x2+6x2f(x)=-4 x^{3}-84 x^{2}+6 x-2. Provide your answer as (x,y)(x, y)-pairs.

See Solution

Problem 7909

Find intervals where the function f(x)=4x384x2+6x2f(x)=-4 x^{3}-84 x^{2}+6 x-2 is concave up or down.

See Solution

Problem 7910

Find the function ff and the number aa in the limit that represents the derivative: limh0(1+h)101h\lim _{h \rightarrow 0} \frac{(1+h)^{10}-1}{h}.

See Solution

Problem 7911

Find the derivative of f(x)=4x384x2+6x2f(x)=-4x^{3}-84x^{2}+6x-2.

See Solution

Problem 7912

Find the function ff and the number aa in the limit representing the derivative: limh0(1+h)101h\lim _{h \rightarrow 0} \frac{(1+h)^{10}-1}{h}.

See Solution

Problem 7913

Find the constant cc that ensures the function f(x)f(x) is continuous for all xx in (,)(-\infty, \infty).

See Solution

Problem 7914

Gegeben ist f(x)=3x24f^{\prime}(x) = 3x^2 - 4.
a) Bestimme den Grad von f(x)f(x) und begründe.
b) Zeichne den Graphen von f(x)f(x).
c) Finde die Steigung von f(x)f(x) im Tiefpunkt.

See Solution

Problem 7915

Check if the function f(x)=x29x3f(x)=\frac{x^{2}-9}{x-3} for x3x \neq 3 and f(3)=10f(3)=10 is continuous at a=3a=3. Select all that apply.

See Solution

Problem 7916

Find the function ff and the number aa such that limh0416+h24\lim _{h \rightarrow 0} \sqrt[4]{\frac{4}{16+h}-2} is the derivative of ff at aa.
a= a= f= f=

See Solution

Problem 7917

Find slopes of secant lines for f(x)=19x3xf(x)=19 x^{3}-x and conjecture the tangent slope at x=1x=1. Round as needed.

See Solution

Problem 7918

Find the function ff and the number aa such that limh016+h2\lim_{h \rightarrow 0} \sqrt{16+h}-2 represents the derivative. a= a= f= f=

See Solution

Problem 7919

Check if the series n=12n2+7n+10\sum_{n=1}^{\infty} \frac{2}{n^{2}+7 n+10} converges or diverges. If convergent, find the sum.

See Solution

Problem 7920

Zeigen Sie, dass die Differenzenquotienten von f(x)=x2f(x)=x^{2} in [a;b][a ; b] und [a1;b+1][a-1 ; b+1] gleich sind.

See Solution

Problem 7921

Find the limit: limx2x+2x2+124\lim _{x \rightarrow-2} \frac{x+2}{\sqrt{x^{2}+12}-4}

See Solution

Problem 7922

Find which statements about the tangent line L(x)=8(x2)+1L(x)=8(x-2)+1 to g(x)=x34x+1g(x)=x^{3}-4x+1 at (2,1)(2,1) are true.

See Solution

Problem 7923

Given the equation dydt=t2\frac{d y}{d t}=t-2, find the slope at points (0,1)(0,1), (0,5)(0,5), and (525,152)(525,152). Which functions could be solutions? Also, what info determines the slope at a point? A. yy-value B. slope at t=0t=0 C. tt-value D. None.

See Solution

Problem 7924

Find the function ff and the number aa for the limit limh010+h42h\lim _{h \rightarrow 0} \frac{\sqrt[4]{10+h}-2}{h} where a=16a=\sqrt{16}.

See Solution

Problem 7925

Find the net change and average rate of change of r(t)=515tr(t)=5-\frac{1}{5} t for t=5t=5 and t=10t=10.

See Solution

Problem 7926

Find the function ff and the number aa where a=16a=16 given the limit limh010+h42h\lim_{h \rightarrow 0} \frac{\sqrt[4]{10+h}-2}{h}.

See Solution

Problem 7927

Find the limit limh010+h42h\lim_{h \rightarrow 0} \frac{\sqrt[4]{10+h}-2}{h}, where a=16a=16 and f=f=?

See Solution

Problem 7928

Find the function ff and the number aa for the limit limh016+h42h\lim _{h \rightarrow 0} \frac{\sqrt[4]{16+h}-2}{h}, where a=16a=16.

See Solution

Problem 7929

Find the function ff and the number aa such that limh010+h42h\lim _{h \rightarrow 0} \frac{\sqrt[4]{10+h}-2}{h} represents the derivative. a=16 a = 16 f= f =

See Solution

Problem 7930

Find the average velocity of an object with s(3)=177s(3)=177 and s(5)=233s(5)=233 over the interval [3,5][3,5].

See Solution

Problem 7931

Find the derivative R(1)R'(1) for the function R(x)=ln(x2g(x))R(x)=\ln \left(x^{2} \cdot \sqrt{g(x)}\right), where g(x)g(x) is undefined.

See Solution

Problem 7932

Find the derivative of the function f(x)=(x2+3x)sin(x)f(x)=(x^{2}+3x) \cdot \sin(x). What is f(x)f^{\prime}(x)?

See Solution

Problem 7933

Find the derivative of f(x)=(2x1)2xf(x)=(2x-1)^{2} \cdot \sqrt{x}.

See Solution

Problem 7934

Calculate the integral of the function f(x)=e12xf(x) = e^{\frac{1}{2} x}.

See Solution

Problem 7935

Berechnen Sie das Integral von e12x2e^{\frac{1}{2} x^{2}}.

See Solution

Problem 7936

Berechnen Sie das Integral von f(x)=4exf(x)=4 e^{-x}.

See Solution

Problem 7937

Find the derivative of f(x)=(43x)2sin(x)f(x)=(4-3x)^{2} \cdot \sin(x).

See Solution

Problem 7938

Leiten Sie die Funktion ff mit der Produktregel und der Kettenregel ab. Beispiele: a) f(x)=xsin(3x)f(x)=x \cdot \sin(3x), b) f(x)=(2x1)2xf(x)=(2x-1)^{2} \cdot \sqrt{x}, usw.

See Solution

Problem 7939

Berechnen Sie das Integral von f(x)=4x3f(x) = 4x^{-3}.

See Solution

Problem 7940

Integrieren Sie die Funktion f(x)=6x2f(x)=\frac{6}{x^{2}}.

See Solution

Problem 7941

Find the derivative of the function f(x)=3x5cos(2x)f(x)=3 x^{5} \cdot \cos (2 x). What is f(x)f^{\prime}(x)?

See Solution

Problem 7942

Find the derivative of F(t)=(19t+1)5F(t)=\left(\frac{1}{9 t+1}\right)^{5}. What is F(t)=?F^{\prime}(t)=?

See Solution

Problem 7943

How long for a shell to hit the ground if fired from a cliff at 80m/s80 \mathrm{m/s} at a 4040^\circ angle, 200 m down?

See Solution

Problem 7944

Calculate the indefinite integral: ex+exdx\int e^{x+e^{x}} d x

See Solution

Problem 7945

Calculate the integral (cos3x)sinx3dx\int \left(\cos^{3} x\right) \sqrt[3]{\sin x} \, dx.

See Solution

Problem 7946

Find the integral using trigonometric substitution: x34+x2dx\int \frac{x^{3}}{\sqrt{4+x^{2}}} d x

See Solution

Problem 7947

Find the indefinite integral using integration by parts: x2sin2xdx\int x^{2} \sin 2 x \, dx

See Solution

Problem 7948

Find the integral of the natural logarithm: lnxdx\int \ln x \, dx.

See Solution

Problem 7949

Find the derivative of y=xsinx1+cosxy=\frac{x \sin x}{1+\cos x} without simplifying. Show all work. [5pts]

See Solution

Problem 7950

Finde die Tangentengleichung t1t_{1} für f(x)=13x2f(x)=\frac{1}{3} x^{2} bei x0=2x_{0}=-2 und die orthogonale Tangente.

See Solution

Problem 7951

Evaluate the integral 0π/2cos8xdx\int_{0}^{\pi / 2} \cos ^{8} x \, dx using Wallis's Formula.

See Solution

Problem 7952

Find the derivative of (5x+4)100(5x + 4)^{100} with respect to xx. Do not simplify your answer. [3pts]

See Solution

Problem 7953

Zeigen Sie, dass der Punkt T(x00)T(x_{0} \mid 0) auch ein Tiefpunkt von g(x)=x2f(x)g(x)=x^{2} \cdot f(x) ist, wenn f(x0)>0f^{\prime \prime}(x_{0})>0.

See Solution

Problem 7954

Find the derivative of y=csc(ex)y=\csc(e^{x}). Do not simplify your answer. [3pts]

See Solution

Problem 7955

Calculate the car's acceleration if it speeds from 0 m/s0 \mathrm{~m/s} to 4 m/s4 \mathrm{~m/s} in 0.5 seconds. I m/s2\mathrm{m/s}^{2}

See Solution

Problem 7956

Find the derivative of y=csc(ex)y=\csc(e^{x}). Do not simplify your answer. [3pts]

See Solution

Problem 7957

Find the derivative of y=tan10(x5)y=\tan^{10}(x^{5}), denoted as yy'. Do not simplify your answer. [4pts]

See Solution

Problem 7958

Calculate the car's acceleration if its velocity changes from 0 m/s0 \mathrm{~m/s} to 10 m/s10 \mathrm{~m/s} in 0.5 seconds. m/s2\mathrm{m/s}^{2}

See Solution

Problem 7959

How much will \$2000 grow in 10 years at a continuous interest rate of 6\%? Use the formula for continuous compounding.

See Solution

Problem 7960

Differentiate implicitly: xsin(y)+ysin(x)=3x \sin (y) + y \sin (x) = 3. Find dydx\frac{d y}{d x}.

See Solution

Problem 7961

Find the tangent line equation using implicit differentiation for ysin(16x)=xcos(2y)y \sin (16 x) = x \cos (2 y) at (π/2,π/4)(\pi / 2, \pi / 4).

See Solution

Problem 7962

Gegeben ist die Funktion f(x)=19(3x+2)3f(x)=\frac{1}{9}(3 x+2)^{3}.
a) Bestimme die Steigung von ff bei P(2f(2))P(2 \mid f(2)). b) Gibt es Punkte mit waagerechter Tangente? c) Wo hat die Tangente die Steigung 1? Finde die Gleichung in diesen Punkten.

See Solution

Problem 7963

Find the tangent line equation y=y= to the curve ysin(16x)=xcos(2y)y \sin (16 x)=x \cos (2 y) at (π/2,π/4)(\pi / 2, \pi / 4) using implicit differentiation.

See Solution

Problem 7964

Find the derivative of f(x)=2x2xcos(x)f(x)=2 x^{2} x^{\cos (x)}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 7965

How much will $2000\$ 2000 grow in 10 years at a continuous interest rate of 3%3 \%?

See Solution

Problem 7966

Find (f1)(x)\left(f^{-1}\right)^{\prime}(x) for these functions using (f1)(x)=1f(f1(x))\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}: 3) f(x)=5x+1f(x)=-5 x+1, 4) f(x)=2x+2f(x)=-2 x+2, 5) f(x)=2x3f(x)=\sqrt{-2 x-3}, 6) f(x)=4x34f(x)=-4 x^{3}-4.

See Solution

Problem 7967

Find the derivative of ln((6x+3)53x23x+43)\ln \left(\frac{(6 x+3)^{5}}{\sqrt[3]{3 x^{2}-3 x+4}}\right).

See Solution

Problem 7968

Find the tangent line equation for y=f(323)(x323)+f(323)y=f\left(\frac{\sqrt{3}-2}{3}\right)\left(x \cdot \frac{\sqrt{3}-2}{3}\right)+f\left(\frac{\sqrt{3}-2}{3}\right), where f(x)=19(3x+2)3f(x)=\frac{1}{9}(3 x+2)^{3} and slope is 1.

See Solution

Problem 7969

Find (f1)(x)\left(f^{-1}\right)^{\prime}(x) using (f1)(x)=1f(f1(x))\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} for: 3) f(x)=5x+1f(x)=-5 x+1 4) f(x)=2x+2f(x)=-2 x+2 5) f(x)=2x3f(x)=\sqrt{-2 x-3} 6) f(x)=4x34f(x)=-4 x^{3}-4

See Solution

Problem 7970

Find the horizontal asymptotes of f(x)=3000+60xxf(x)=\frac{3000+60x}{x}.

See Solution

Problem 7971

Find the rate of change of pp with respect to qq given pp from a lens with focal length 6cms6 \mathrm{cms} and 16=1p+1q\frac{1}{6}=\frac{1}{p}+\frac{1}{q}.

See Solution

Problem 7972

Find the limit: limx0sin3(x)sinxtanx\lim _{x \rightarrow 0} \frac{\sin ^{3}(x)}{\sin x-\tan x}.

See Solution

Problem 7973

Find the limit: L=limx02cos(3x)cos(4x)xL = \lim _{x \rightarrow 0} \frac{2-\cos (3 x)-\cos (4 x)}{x}.

See Solution

Problem 7974

Find the limit: limx0tan2(3x)+sin(5x2)x2\lim _{x \rightarrow 0} \frac{\tan ^{2}(3 x)+\sin \left(5 x^{2}\right)}{x^{2}}.

See Solution

Problem 7975

Calculate the limit: limx0sin(3x)sin(4x)\lim _{x \rightarrow 0} \frac{\sin (3 x)}{\sin (4 x)}.

See Solution

Problem 7976

A cylinder's height equals its diameter. If height increases at 2 in/s, find the volume increase rate, VV, when height is 4 in.

See Solution

Problem 7977

Determine concavity, inflection points, and critical points for f(x)=(4x+4sin(x))f(x)=-(4x+4\sin(x)), 0x2π0 \leq x \leq 2\pi.

See Solution

Problem 7978

The radius of a circle grows at 7ft/sec7 \mathrm{ft}/\mathrm{sec}. Find the area change rate in terms of circumference CC.

See Solution

Problem 7979

Find the rocket's velocity at t=10t = 10 seconds given height h(t)=3t2h(t) = 3t^{2} ft.

See Solution

Problem 7980

Find the derivative f(a)f^{\prime}(a) for the function f(x)=2x23x+1f(x)=2 x^{2}-3 x+1.

See Solution

Problem 7981

Find f(7)f^{\prime}(7) for the function f(x)=6x+7f(x)=\sqrt{6x+7}.

See Solution

Problem 7982

An object is dropped from a 600 m cliff. Find its speed after 7 seconds using 6004.9t2600 - 4.9 t^{2}.

See Solution

Problem 7983

Rocket height after tt seconds is 3t23t^{2} ft. Find velocity and acceleration at t=10t=10 seconds.

See Solution

Problem 7984

Find the rocket's velocity and acceleration at t=10t = 10 seconds, given height h=3t2h = 3t^{2} ft.

See Solution

Problem 7985

A rocket moves up at 900 km/hr900 \mathrm{~km/hr}. Find the angle's increase rate from a telescope 2 km2 \mathrm{~km} away after 3 min3 \mathrm{~min}.

See Solution

Problem 7986

Find the quantity qq (in thousands) that maximizes profit for P(q)=0.03q2+5q25P(q)=-0.03 q^{2}+5 q-25. What is the max profit?

See Solution

Problem 7987

Find the number of thousands of sunglasses, qq, to maximize profit from P(q)=0.01q2+3q24P(q)=-0.01 q^{2}+3 q-24. What is the max profit?

See Solution

Problem 7988

A cylinder leaks water at 3ft3/s3 \mathrm{ft}^3/\mathrm{s}. Find the height change rate when height is 10ft10 \mathrm{ft}.

See Solution

Problem 7989

Find the rate of change of surface area at t=2t=2 min for a sphere with r=18r=18 cm and dr/dt=70dr/dt=70 cm/min.

See Solution

Problem 7990

Find G(a)G^{\prime}(a) for G(x)=5x2x3G(x)=5x^{2}-x^{3} and the tangent lines at (3,18)(3,18) and (4,16)(4,16). G(a)=G^{\prime}(a)= Line 1: y1(x)=y_{1}(x)=, Line 2: y2(x)=y_{2}(x)=.

See Solution

Problem 7991

Show that for spheres with radii in [1,5][1,5], the volume v=275v = 275 cm³ exists using the Intermediate Value Theorem.

See Solution

Problem 7992

Find the slope of the tangent line for y(t)y(t) at points (0,1)(0,1), (0,5)(0,5), and (541,141)(541,141) for dydt=t2\frac{d y}{d t}=t-2. Identify possible solutions from options A-E. What info is needed for the slope?

See Solution

Problem 7993

Find the slope of the tangent line for y(t)y(t) at points (0,1)(0,1), (0,5)(0,5), and (541,141)(541,141) for dydt=t2\frac{d y}{d t}=t-2. Which functions could be solutions? What info is needed for the slope?

See Solution

Problem 7994

Find f(3)f(3) and f(3)f^{\prime}(3) if the tangent line to y=f(x)y=f(x) at (3,2)(3,2) passes through (0,1)(0,1).

See Solution

Problem 7995

Sketch the graph of f(x)=x1/3f(x)=x^{1/3} and show it has a vertical tangent at x=0x=0 using limits.

See Solution

Problem 7996

Find the derivative of the area A=πr2A=\pi r^{2} with respect to the radius rr: compute dAdr\frac{d A}{d r}.

See Solution

Problem 7997

Find the derivative f(4)f'(4) for f(x)=xf(x)=\sqrt{x}, then use it to find the tangent line and approximate 4.1\sqrt{4.1}.

See Solution

Problem 7998

Find the slope of the tangent line to the parabola y=7xx2y=7x-x^{2} at (1,6)(1,6) and its equation.

See Solution

Problem 7999

Find the derivative of f(x)=7x3f(x)=\sqrt{7-x^{3}}. What is f(x)f^{\prime}(x)?

See Solution

Problem 8000

Sketch the graph of f(x)=x1/3f(x)=x^{1/3}. Show that it has a vertical tangent at x=0x=0 using limits.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord