Applications

Problem 1

Given forces A=10.2kN,B=4.08kN,θ=30A=10.2 \mathrm{kN}, B=4.08 \mathrm{kN}, \theta=30^{\circ}, find angle β\beta and force CC for resultant 6.5kN6.5 \mathrm{kN}.

See Solution

Problem 2

Find the force SS (in kN) so that P=35P = 35 kN, Q=45Q = 45 kN, and the resultant is 5555 kN to the right.

See Solution

Problem 3

Find (a) the complement and (b) the supplement of an angle measuring 171517^{\circ} 15^{\prime}.

See Solution

Problem 4

1. A boat sees a lighthouse foot at 3434^{\circ} elevation; cliff height is 150 m. Find the boat's distance from the cliff base.
2. Flying at 037037^{\circ}, turn left 4545^{\circ}. What is the new heading?

See Solution

Problem 5

Convert the angle 5130-51^{\circ} 30^{\prime} to decimal degree notation.

See Solution

Problem 6

Convert the angle 753-75^{\circ} 3^{\prime} to decimal degrees.

See Solution

Problem 7

Convert the angle 4154-41^{\circ} 54^{\prime} to decimal degrees.

See Solution

Problem 8

Convert the angle 7612-76^{\circ} 12^{\prime} to decimal degree notation.

See Solution

Problem 9

Convert the angle 8133-81^{\circ} 33^{\prime} to decimal degrees.

See Solution

Problem 10

Sketch the least positive angle θ\theta from the line 7x3y=0-7x - 3y = 0 where x0x \leq 0, and find the six trig functions of θ\theta.

See Solution

Problem 11

Convert the angle 3730-37^{\circ} 30^{\prime} to decimal degrees.

See Solution

Problem 12

John, at 6ft6 \mathrm{ft} high, measures a 3535^{\circ} angle to a tree. After moving 30 ft closer, it's 4747^{\circ}. Find the tree's height.

See Solution

Problem 13

Find the distance between two cars below a 1000-foot cliff with angles of depression 2121^{\circ} and 2828^{\circ}.

See Solution

Problem 14

Find the resultant velocity when crossing a river with a current of 15 m/s15 \mathrm{~m/s} downstream and crossing at 2 m/s2 \mathrm{~m/s} north.

See Solution

Problem 15

A car on a 1.71.7^{\circ} incline has a grade resistance of 123lb123 \, \mathrm{lb}. Find the car's weight in hundreds using: Grade Resistance = Weight * sin(incline). Consider other forces too.

See Solution

Problem 16

Find the grade resistance for a 2100-pound car on a 0.50.5^{\circ} uphill grade using F=WsinθF=W \sin \theta. Round to the nearest pound.

See Solution

Problem 17

Light changes speed and direction when moving between media. Use Snell's Law: c1c2=sinθ1sinθ2\frac{c_{1}}{c_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}}. Given c1=3×108 m/sc_{1}=3 \times 10^{8} \mathrm{~m/s}, find c2c_{2} for: (a) θ1=47\theta_{1}=47^{\circ}, θ2=34\theta_{2}=34^{\circ}; (b) θ1=39\theta_{1}=39^{\circ}, θ2=25\theta_{2}=25^{\circ}.

See Solution

Problem 18

A light ray changes speed and direction when moving between media. Use Snell's Law: c1c2=sinθ1sinθ2\frac{c_{1}}{c_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}}, with c1=3×108 m/sc_{1}=3 \times 10^{8} \mathrm{~m/s}.
(a) Find c2c_{2} for θ1=41\theta_{1}=41^{\circ}, θ2=25\theta_{2}=25^{\circ}. (b) Find c2c_{2} for θ1=38\theta_{1}=38^{\circ}, θ2=24\theta_{2}=24^{\circ}.

See Solution

Problem 19

A plane is 3.83.8^{\circ} off course after flying 127 miles. How far off course is it? Round to 1 decimal place.

See Solution

Problem 20

How far is a plane off course after being 3.03.0^{\circ} off track for 187 miles? Round to 1 decimal place.

See Solution

Problem 21

A ship is anchored off a shore with two points 13 miles apart. Find the shortest distance to the shore, rounding to the nearest tenth.

See Solution

Problem 22

Carmen sees two hot air balloons. One is 670 m away at 4242^{\circ} and the other 945 m away at 3636^{\circ}. Find the height difference.

See Solution

Problem 23

Find angle θ2\theta_{2} using Snell's law: c1c2=sinθ1sinθ2\frac{c_{1}}{c_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}} given c1=3.00×108c_{1}=3.00 \times 10^{8} m/s and c2=2.251×108c_{2}=2.251 \times 10^{8} m/s.

See Solution

Problem 24

Two ships leave a port simultaneously. One sails at 5656^{\circ}, 14 knots; the other at 146146^{\circ}, 26 knots. Distance apart after 1.5 hours?

See Solution

Problem 25

Ein Aussichtsturm ist 30,75 m30,75 \mathrm{~m} hoch. Die Felswand hat einen Tiefenwinkel von 2,52,5^{\circ} und einen Höhenwinkel von 10,310,3^{\circ}. Berechne die Entfernung zur Felswand und deren Höhe.

See Solution

Problem 26

Amy jogs 3 miles straight, then turns 50 degrees right and runs xx miles. Find her distance from the start. Round to 0.1.

See Solution

Problem 27

Karl sieht ein Flugzeug in 10 km10 \mathrm{~km} Höhe. a) Finde die Flugdistanz bei α=60\alpha=60^{\circ} und β=25\beta=25^{\circ}. b) Bestimme die Geschwindigkeit.

See Solution

Problem 28

Berechne die Steigung in Prozent für die Winkel: c) γ=27,5\gamma=27,5^{\circ}, a) a=35a=35^{\circ}, b) β=70\beta=70^{\circ}.

See Solution

Problem 29

A soccer player kicks a ball at 27 m/s27 \mathrm{~m/s} and 2020^{\circ}. Find: (a) air time, (b) impact speed, (c) range.

See Solution

Problem 30

An airplane flies at 600 km/hr600 \mathrm{~km/hr} with a 50 km/hr50 \mathrm{~km/hr} southwest wind. What angle should it head to go west?

See Solution

Problem 31

What bearing must the aeroplane fly to return from city G to city F after flying at a bearing of 055055^{\circ}?

See Solution

Problem 32

Ein Sendemast ist 150 m150 \mathrm{~m} hoch. Berechne den Neigungswinkel der 160 m160 \mathrm{~m} langen Seile bei 125 m125 \mathrm{~m}. Dann, bestimme die Länge der Seile, die bei 2525^{\circ} in 60 m60 \mathrm{~m} Höhe befestigt sind.

See Solution

Problem 33

Find the max weight WW a block can have if cords support up to 80lb80 \, \mathrm{lb} at a 3030^\circ angle from vertical.

See Solution

Problem 34

A crate on an incline has a static friction coefficient of 0.29. Find θ\theta when it slips and its acceleration with kinetic friction 0.26.

See Solution

Problem 35

A 40.2 kg sign is held by two wires at angles 43.8° and 52.7°. Find the tension in wire 1 and the y-direction acceleration.

See Solution

Problem 36

A football is kicked at 18 m/s18 \mathrm{~m/s} and 6565^{\circ}. How long is it in the air? Options: A. 1.1 s1.1 \mathrm{~s} B. 4.0 s4.0 \mathrm{~s} C. 3.3 s3.3 \mathrm{~s} D. 2.0 s2.0 \mathrm{~s} E. 1.6 s1.6 \mathrm{~s}

See Solution

Problem 37

A man rows at 8 km/h8 \mathrm{~km/h} across a 1.5 km1.5 \mathrm{~km} river with a 5 km/h5 \mathrm{~km/h} current. Find the heading, time, and downstream distance.

See Solution

Problem 38

Projectile motion problem: A football is kicked with a velocity of 25 m/s25 \mathrm{~m/s} at a 50-degree angle.
a. Draw velocity and acceleration motion maps. b. Calculate vxv_x and vyv_y. c. Determine the time in the air.

See Solution

Problem 39

A projectile launched at 45 degrees takes 2.4 seconds to land. What was its launch speed? Options: 12 m/s12 \mathrm{~m/s}, 17 m/s17 \mathrm{~m/s}, 34 m/s34 \mathrm{~m/s}, 24 m/s24 \mathrm{~m/s}.

See Solution

Problem 40

Find the right angle in gradians and the radian measure of 150 grads.

See Solution

Problem 41

London Eye problem:
a) Find the angle in radians for 5 min. b) Calculate distance traveled in 5 min. c) Time for 2 radians? d) Angular velocity in radians/sec? e) Angular velocity in degrees/sec?

See Solution

Problem 42

A cyclist's bike wheels (2.1 ft diameter) turn at 270 RPM. Find angular speed in radians/min and cyclist speed in ft/min.

See Solution

Problem 43

Ceiling fan with 14-inch blades spins at 46 RPM.
(a) Calculate angular speed in radians/min. (b) Calculate linear speed of blade tip in feet/sec.

See Solution

Problem 44

Berechne den Schnittwinkel der Graphen ff und gg für die Anstiege: a) mf=3m_{f}=3, mg=1m_{g}=1; b) mf=3m_{f}=3, mg=1m_{g}=-1; c) mf=2m_{f}=-2, mg=0,5m_{g}=-0,5; d) mf=3m_{f}=\sqrt{3}, mg=1m_{g}=1. Runde auf Zehntel.

See Solution

Problem 45

Two planes leave an airport simultaneously. Plane 1: 660 m/h660 \mathrm{~m/h} at 12.312.3^{\circ}, Plane 2: 580 m/h580 \mathrm{~m/h} at 148148^{\circ}. Find distance apart after 3.3 h3.3 \mathrm{~h} in m\mathrm{m}.

See Solution

Problem 46

Find the complement: 90273515=62244590^{\circ} - 27^{\circ} 35^{\prime} 15^{\prime \prime} = 62^{\circ} 24^{\prime} 45^{\prime \prime}

See Solution

Problem 47

Find the supplement of an angle measuring 27351527^{\circ} 35^{\prime} 15^{\prime \prime}.

See Solution

Problem 48

Find the expression for an angle coterminal with a 300300^{\circ} angle: 300860300^{\circ}-860^{\circ}, 300840300^{\circ}-840^{\circ}, 300740300^{\circ}-740^{\circ}, 300720300^{\circ}-720^{\circ}.

See Solution

Problem 49

Bestimme die Modellfunktion für eine Kugel, die aus 1,80 m1,80 \mathrm{~m} Höhe mit 4242^{\circ} abgeworfen wird, bei 8,40 m8,40 \mathrm{~m} Stoßweite. Finde die maximale Höhe und den Aufprallwinkel.

See Solution

Problem 50

Find the height of a building 40 feet away, with angles of elevation 6262^{\circ} and depression 5555^{\circ}. Round to nearest foot.

See Solution

Problem 51

Hikers observe a mountain with a 3535^{\circ} elevation from 1250 m away. Find slant heights using slopes of 4848^{\circ} and 6565^{\circ}.

See Solution

Problem 52

A projectile is launched at 11 m/s11 \mathrm{~m/s} at 3030^{\circ} from vertical. Find time to max height. Options: (a) 0.97 s0.97 \mathrm{~s} (b) 0.56 s0.56 \mathrm{~s} (c) 0.79 s0.79 \mathrm{~s} (d) 1.12 s1.12 \mathrm{~s}.

See Solution

Problem 53

A jet traveling at 651mph651 \mathrm{mph} east encounters a 516mph516 \mathrm{mph} wind at 3535^{\circ} north of east. Find its new speed in mph.

See Solution

Problem 54

A ball is launched at 38.0m/s38.0 \, \text{m/s} at 60.060.0^{\circ}. Find: a) horizontal velocity, b) horizontal distance, c) max height.

See Solution

Problem 55

What force is needed to pull a 56.5 N56.5 \mathrm{~N} weight up a 12.612.6^{\circ} slope, ignoring friction?

See Solution

Problem 56

Two ropes pull a crate: one with 994 N994 \mathrm{~N} at 15.515.5^{\circ} and another with 624 N624 \mathrm{~N} at 25.225.2^{\circ}. Find the crate's weight in newtons.

See Solution

Problem 57

Find the resistance and reactance of a circuit with an impedance of 975ohm975 \mathrm{ohm} and a phase angle of 28.0 degrees (3 SIG FIGS).

See Solution

Problem 58

In a snowball fight, if one snowball is thrown at 6161^{\circ} with speed 11 m/s11 \mathrm{~m/s}, at what angle should the second be thrown?

See Solution

Problem 59

A boat moves east at 6.16 m/s6.16 \mathrm{~m/s} while the river flows north at 2.34 m/s2.34 \mathrm{~m/s}. Find the resultant speed and angle.

See Solution

Problem 60

In a snowball fight, if one snowball is thrown at 6969^{\circ} with speed 18 m/s18 \mathrm{~m/s}, what angle should the second one be thrown at to hit the same point? Use g=9.8 m/s2g = 9.8 \mathrm{~m/s}^{2}.

See Solution

Problem 61

In a snowball fight, if one snowball is thrown at 6060^{\circ} with speed 34.4 m/s34.4 \mathrm{~m/s}, what angle should the second snowball be thrown at to hit the same point? Use g=9.8 m/s2g = 9.8 \mathrm{~m/s}^{2}.

See Solution

Problem 62

Find the angle between vectors v=2i+5jv = 2i + 5j and w=7i+8jw = -7i + 8j. Round to one decimal place if needed.

See Solution

Problem 63

Austin and Bill are 103 m103 \mathrm{~m} apart. A roller coaster car moves at 5 m/s5 \mathrm{~m/s} at 3333^{\circ}. Find distance rr after 16 seconds. Round to the nearest tenth.

See Solution

Problem 64

Austin and Bill are 103 m103 \mathrm{~m} apart. A roller coaster car moves at 5 m/s5 \mathrm{~m/s} at a 3333^{\circ} angle. Find remaining distance rr to the highest point after 16 seconds. Round to the nearest tenth of a meter.

See Solution

Problem 65

Calculate the arc length of a basketball shot with an initial velocity of 17 ft/s and a launch angle of 60 degrees.

See Solution

Problem 66

已知单位向量 a,b\vec{a}, \vec{b}2a+b=3|2 \vec{a}+\vec{b}|=\sqrt{3},求向量 a,b\vec{a}, \vec{b} 的夹角。

See Solution

Problem 67

Ein Segelflugzeug ist in 1250 m1250 \mathrm{~m} Höhe, 42 km42 \mathrm{~km} vom Ziel entfernt und hat einen Gleitwinkel von 1,51,5^{\circ}. Bestimme die Höhe, in der es das Ziel überfliegt.

See Solution

Problem 68

Find the angle of the resultant force with the horizontal when two forces of 17.3 lbs and 42.5 lbs act at 21.9°. Options: 6.36.3^{\circ}, 21.921.9^{\circ}, 15.715.7^{\circ}, 10.910.9^{\circ}.

See Solution

Problem 69

A plane flies at 290mph290 \mathrm{mph}, 24.5° South of West, with a 30.5mph30.5 \mathrm{mph} wind, 21° East of North. Find ground speed.

See Solution

Problem 70

Find the angle between vectors v=3i+2j+kv = 3i + 2j + k and w=6i+8j+2kw = 6i + 8j + 2k. Round to one decimal place.

See Solution

Problem 71

Find the angle between vectors v=3i+2j+kv = 3i + 2j + k and w=6i+8j+2kw = 6i + 8j + 2k. Round to one decimal place.

See Solution

Problem 72

A sphere hangs from a string in a van. If θ=10.7\theta=10.7^{\circ}, find the van's acceleration.

See Solution

Problem 73

A climber weighing 515 N515 \mathrm{~N} rests on a rope between cliffs. Angles are 6565^\circ (left) and 8080^\circ (right). Find tensions.

See Solution

Problem 74

Jahi "Tornado" liigub põhjasuunas, hoides nurka 3030^{\circ}. Leidke läänetuule kiirus, kui kiirus on 18,52 kmh\frac{km}{h}. Vastus ms\frac{m}{s}.

See Solution

Problem 75

Find one positive and one negative coterminal angle for each given angle in degrees: (a) 135135^{\circ}, (b) 315-315^{\circ}.

See Solution

Problem 76

Ein Turm ist 34 m34 \mathrm{~m} hoch. Unter einem Winkel von 1818^{\circ} sieht man das hintere Ufer und 6161^{\circ} das vordere Ufer.
a) Wie weit ist das vordere Ufer vom Turm? b) Wie weit ist das hintere Ufer vom Turm? c) Wie breit ist der Fluss?

See Solution

Problem 77

Find the diagonal length AG of a cuboid with length 33, width 21, and angle 72° with the base using trigonometry.

See Solution

Problem 78

Find the tension in a support cable inclined at 71.571.5^{\circ} to the horizontal, with a horizontal pull of 875 N875 \mathrm{~N}.

See Solution

Problem 79

A shell is fired at 50.0 m/s50.0 \mathrm{~m/s} and 53.153.1^{\circ}. Find vertical/horizontal/resultant velocities at 25 m25 \mathrm{~m} up, times to reach, and max height velocity.

See Solution

Problem 80

Find the gravitational force component down a 40.540.5^{\circ} incline for a box weighing 365 N365 \mathrm{~N}. Answer in N\mathrm{N}.

See Solution

Problem 81

A cable car goes from point PP to restaurant RR. Angles of elevation from PP and point QQ (1.8 km closer) are 2222^{\circ} and 6363^{\circ}. Find the height of the mountain.

See Solution

Problem 82

A hot-air balloon has wires at points AA and CC. The wire from AA is 84 m84 \mathrm{~m} long with angles 5858^{\circ} and 6767^{\circ}. Find the balloon's height and wire length from CC.

See Solution

Problem 83

A golfer is 480ft480 \mathrm{ft} away and 50ft50 \mathrm{ft} above the hole. With an initial speed of 120ft/s120 \mathrm{ft/s}, what angle(s) should the ball be hit?

See Solution

Problem 84

Find the components of vector AA with magnitude 8.6 in the fourth quadrant at a 37-degree angle to the xx-axis.

See Solution

Problem 85

A rocket moves up at 900 km/hr900 \mathrm{~km/hr}. An observer is 2 km2 \mathrm{~km} away. Find the angle's increase rate in degrees/min after lift-off.

See Solution

Problem 86

A golfer hits a ball at 42 m/s42 \mathrm{~m/s} at 3232^{\circ}. Find the horizontal range ignoring air resistance.

See Solution

Problem 87

A jet flying at 148mph148 \mathrm{mph} east encounters a 445mph445 \mathrm{mph} wind at 7777^{\circ} north of east. Find its new speed in mph\mathrm{mph}.

See Solution

Problem 88

A worker on a 15 ft pole sees angles of depression of 2626^{\circ} and 4040^{\circ}. Find the distance across the yard.

See Solution

Problem 89

Aufgabe 1: Eine Tanne wirft einen Schatten von 38 m38 \mathrm{~m}. Bei einem Winkel von 2828^{\circ}, wie hoch ist die Tanne?
Aufgabe 2: Eine Rampe mit 1919^{\circ} Neigungswinkel soll an eine 1,2 m hohe LKW-Ladefläche. Wie lang muss die Rampe sein?
Aufgabe 3: Eine Seilbahn überwindet 160 m160 \mathrm{~m} auf 500 m500 \mathrm{~m}. Wie groß ist der Steigungswinkel?

See Solution

Problem 90

A fish is reeled in at 1 ft/sec from 10 ft above water. Find the angle's change rate when 25 ft of line is out.

See Solution

Problem 91

1. Find kk if 11 is a root of 3x2+kx22x2k+23x^{2}+kx^{2}-2x-2k+2.
2. A ladder at 3030^{\circ} is 88 ft long. What is the height of the tree?
3. Is f(x)=2x34xf(x)=2x^{3}-4x odd, even, or neither?
4. In triangle ABCABC, cscA=135\csc A=\frac{13}{5}. Find tanA\tan A.
5. What is the period of y=4sin(23x)y=-4\sin\left(\frac{2}{3}x\right)?
6. A 1010 ft guy wire makes a 6060^{\circ} angle. Find the distance to the tree base.
7. Compute (tanβ)(cotβcosβ+sinβ)(\tan \beta)(\cot \beta \cos \beta+\sin \beta).
8. For f(x)=5xf(x)=\frac{5}{x}, find f(x+2)f(x)f(x+2)-f(x).
9. Given g(x)=3x25g(x)=3x^{2}-5, find g(x+2)g(x+2).
10. From a 200200 ft cliff, the angle of depression to a boat is 6060^{\circ}. Find the distance to the cliff base.
11. What is the amplitude of y=2sinxy=2\sin x?
12. A 2020 ft flagpole casts a 6060 ft shadow. Find the sun's angle of elevation.

See Solution

Problem 92

Gegeben ist eine Feuerwehrdrehleiter von 8 m8 \mathrm{~m} bis 30 m30 \mathrm{~m}. Bei l=20 ml=20 \mathrm{~m} berechne hh für α=0\alpha=0^{\circ} bis 8080^{\circ} mit h=lsin(α)h=l \cdot \sin(\alpha).

See Solution

Problem 93

Find the distance the tip of a 3-foot pendulum swings at a 4040^{\circ} angle in 1 second. Round to 1 decimal place.

See Solution

Problem 94

Find the distance from tracking station B to an airplane with angles of elevation 4747^{\circ} and 5353^{\circ}, 5.8 km apart.

See Solution

Problem 95

Black Panther slides down a rooftop at 6565^{\circ} with a friction coefficient of 0.50. Find his acceleration. If he starts from rest, how fast is he sliding after 10 m10 \mathrm{~m}?

See Solution

Problem 96

Die Zugbrücke ist 12 m12 \mathrm{~m} lang und bildet einen Winkel von 142142^{\circ}. Wie lang muss die Kette sein, wenn sie 3,45 m3,45 \mathrm{~m} in der Mauer benötigt?

See Solution

Problem 97

A balloon rises while tracked by an observer 2 miles away. If the angle is π6\frac{\pi}{6} and changing at 0.1rad/min0.1 \mathrm{rad/min}, find the rise rate. Answer: miles/min

See Solution

Problem 98

What was the launch angle of a projectile with an initial speed of 12 m/s12 \mathrm{~m/s} and a speed of 6 m/s6 \mathrm{~m/s} at its highest point?

See Solution

Problem 99

Convert the angle 24432924^{\circ} 43^{\prime} 29^{\prime \prime} to decimal degrees.

See Solution

Problem 100

A plane flies at 6 km altitude and 600 km/h. Find the rate of change of angle θ\theta 24 min after passing the radar.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord