Calculus

Problem 23001

Find the dimensions xx and yy of a Norman window with a perimeter of 20 ft for maximum area.

See Solution

Problem 23002

Find the dimensions of a Norman window with a semicircle on top that has a maximum area and a total perimeter of 20 feet.

See Solution

Problem 23003

Use Newton's Method to find xx where f(x)=x4f(x)=x^4 and g(x)=cos(x)g(x)=\cos(x), stopping when values differ by less than 0.001.

See Solution

Problem 23004

Analyze the function f(x)=15x2/310xf(x)=15 x^{2 / 3}-10 x. Find intercepts, extrema, inflection points, and asymptotes.

See Solution

Problem 23005

Find the average value of f(x)=1xf(x)=\frac{1}{x} on [7,7e][7,7e] and graph it. The average value is f=f=\square. Choose the correct graph.

See Solution

Problem 23006

Evaluate the integral 01(x22x+5)dx\int_{0}^{1}(x^{2}-2 x+5) dx and check if it matches the figure. Is it A, B, C, or D?

See Solution

Problem 23007

Use Newton's Method with f(x)=x99f(x)=x^{9}-9 and initial guess x1=1.4x_{1}=1.4 to find two approximations. Round to three decimals.

See Solution

Problem 23008

Find the area function A(x)=9x(t+9)dtA(x)=\int_{-9}^{x} (t+9) dt and verify A(x)=f(x)A'(x)=f(x). Graph A(x)A(x).

See Solution

Problem 23009

Find and graph the area function A(x)=6x(t+6)dtA(x)=\int_{-6}^{x} (t+6) dt and verify that A(x)=f(x)A'(x)=f(x).

See Solution

Problem 23010

Find the tangent line TT to f(x)=x2f(x)=x^{2} at (9,81) and complete the table. Round answers to four decimal places. T(x)=T(x)=\square

See Solution

Problem 23011

Find the average value of f(x)=3xf(x)=\frac{3}{x} on [2,2e][2,2e] and graph the function with the average value indicated.

See Solution

Problem 23012

Evaluate the integrals: (a) 12(x5/4x5/6)dx\int_{1}^{2}\left(x^{5 / 4}-x^{5 / 6}\right) d x (b) ππsin(x)cos(x)dx\int_{-\pi}^{\pi} \sin (x) \cos (x) d x

See Solution

Problem 23013

Find the initial velocity needed to throw an object to 580 feet with acceleration a(t)=32a(t)=-32 ft/s². Round to three decimal places.

See Solution

Problem 23014

A particle moves along the xx-axis with x(t)=t312t2+21t7x(t)=t^{3}-12t^{2}+21t-7 for 0t100 \leq t \leq 10. Find: (a) x(t)x^{\prime}(t), x(t)x^{\prime \prime}(t); (b) intervals moving right; (c) velocity when x(t)=0x^{\prime \prime}(t)=0.

See Solution

Problem 23015

Evaluate the integral 01(x23x+4)dx\int_{0}^{1}(x^{2}-3x+4) \, dx and check if your result matches the graph.

See Solution

Problem 23016

A rock is dropped from a 1400 m canyon. How long will it take to hit the floor? Use a(t)=9.8a(t)=-9.8 m/s². Round to 1 decimal place.

See Solution

Problem 23017

Find the inflection points of f(x)=0xet2dtf(x) = \int_{0}^{x} e^{-t^{2}} \, dt and evaluate 0π2ddx(sin(cos(x))cos(sin(x))x10000000000)dx\int_{0}^{\frac{\pi}{2}} \frac{d}{dx} \left(\sin(\cos(x)) \cos(\sin(x)) x^{10000000000}\right) \, dx.

See Solution

Problem 23018

Determine if the series 158+4564135512+4054096-\frac{15}{8}+\frac{45}{64}-\frac{135}{512}+\frac{405}{4096} \cdots converges or diverges. If it converges, find the sum.

See Solution

Problem 23019

Calculate the future value of a 16-year continuous income stream of \$230,000 at a continuous compound rate of 4.4%.

See Solution

Problem 23020

Approximate the area under g(x)=9sinxg(x)=9 \sin x from [0,π][0, \pi] using 6 rectangles (left and right endpoints). Round to four decimals.

See Solution

Problem 23021

Approximate the area under g(x)=9sinxg(x)=9 \sin x over [0,π][0, \pi] using 6 rectangles with left and right endpoints. Round to four decimals.

See Solution

Problem 23022

Approximate the area under g(x)=9sinxg(x) = 9 \sin x on [0,π][0, \pi] using 6 rectangles (left and right endpoints).

See Solution

Problem 23023

Approximate the area under g(x)=9sinxg(x)=9 \sin x on [0,π][0, \pi] using 6 rectangles with left and right endpoints. Round to four decimals.

See Solution

Problem 23024

Approximate the area under g(x)=9sinxg(x)=9 \sin x over [0,π][0, \pi] using 6 rectangles (left and right endpoints). Round to 4 decimal places.

See Solution

Problem 23025

Evaluate the integral from 0 to 8 of x26x+5|x^{2}-6x+5|. Use a graphing tool to check your answer.

See Solution

Problem 23026

Evaluate the integral from π6-\frac{\pi}{6} to π6\frac{\pi}{6} of 5sec2xdx5 \sec^2 x \, dx and verify with a graphing tool.

See Solution

Problem 23027

Calculate the right Riemann sum R4R_{4} for g(x)=cos(πx)g(x)=\cos (\pi x) on the interval [0,1][0,1].

See Solution

Problem 23028

Calculate the area using the integral π/12π/4csc2xcot2xdx\int_{\pi / 12}^{\pi / 4} \csc 2 x \cot 2 x \, dx and verify with a graphing tool.

See Solution

Problem 23029

Find the area between the curve y=x+sinxy = x + \sin x and the x-axis from 00 to π\pi.

See Solution

Problem 23030

Evaluate the integral: 66x(7x2+4)3dx\int_{-6}^{6} x\left(7 x^{2}+4\right)^{3} d x using even and odd function properties.

See Solution

Problem 23031

Find the average of f(x)=16x2f(x)=16-x^{2} over [4,4][-4,4]. Then, find xx where f(x)f(x) equals this average value.

See Solution

Problem 23032

Find F(x)=π/3xsec2tdtF(x)=\int_{\pi / 3}^{x} \sec ^{2} t \, dt. (a) Integrate to get F(x)F(x). (b) Differentiate F(x)F(x) to show the Second Fundamental Theorem.

See Solution

Problem 23033

Find the limit as x approaches 6 from the right: limx6+ln(x6)\lim _{x \rightarrow 6^{+}} \ln (x-6). Round to four decimal places.

See Solution

Problem 23034

Find the derivative of f(x)=ln(6xx+1)f(x)=\ln \left(\frac{6 x}{x+1}\right). What is f(x)f^{\prime}(x)?

See Solution

Problem 23035

Find the derivative of f(x)=ln(x+8+x2)f(x)=\ln(x+\sqrt{8+x^{2}}). What is f(x)f'(x)?

See Solution

Problem 23036

Find dy/dxd y / d x using logarithmic differentiation for y=(x+1)(x4)(x1)(x+4)y=\frac{(x+1)(x-4)}{(x-1)(x+4)}, x>4x>4.

See Solution

Problem 23037

Find the derivative of y=ln(csc(5x))y=\ln (|\csc (5 x)|). What is y(x)y^{\prime}(x)?

See Solution

Problem 23038

Calculate the area between y=2sec(πx6)y=2 \sec \left(\frac{\pi x}{6}\right), x=0x=0, x=2x=2, and y=0y=0. Round to three decimal places.

See Solution

Problem 23039

Differentiate the integral 0x3e3tdt\int_{0}^{x^{3}} e^{-3 t} d t with respect to xx.

See Solution

Problem 23040

Find the derivative of 0x3e3tdt\int_{0}^{x^{3}} e^{-3t} dt using two methods: a. evaluate then differentiate, b. differentiate directly.

See Solution

Problem 23041

Calculate the cooling time from 300F300^{\circ} \mathrm{F} to 220F220^{\circ} \mathrm{F} using the formula: t=10ln22203001T100dTt=\frac{10}{\ln 2} \int_{220}^{300} \frac{1}{T-100} d T, rounding to four decimal places.

See Solution

Problem 23042

Evaluate the integral: 182lnxxdx=\int_{1}^{8} \frac{2 \ln x}{x} dx = \square

See Solution

Problem 23043

Find the area of the shaded region between the curves x=6y26y3x=6y^2-6y^3 and x=4y24yx=4y^2-4y.

See Solution

Problem 23044

Find the derivative of the integral: ddx0x3e3tdt.\frac{\mathrm{d}}{\mathrm{dx}} \int_{0}^{\mathrm{x}^{3}} e^{-3 \mathrm{t}} \mathrm{dt}.

See Solution

Problem 23045

Rewrite the integral using uu: 182lnxxdx=0du\int_{1}^{8} \frac{2 \ln x}{x} dx=\int_{0}^{\square} \square du

See Solution

Problem 23046

Find (f1)(1)\left(f^{-1}\right)^{\prime}(1) for f(x)=cos(4x)f(x)=\cos(4x), 0xπ40 \leq x \leq \frac{\pi}{4}. Answer DNE if not exist.

See Solution

Problem 23047

Graph V=11000e0.6250tV=11000 e^{-0.6250 t} for 0t100 \leq t \leq 10. Find V(4)V^{\prime}(4) and V(6)V^{\prime}(6), rounded to two decimals.

See Solution

Problem 23048

Find the area under the curve y=2(sinx)1+cosxy=2(\sin x) \sqrt{1+\cos x} from x=πx=-\pi to x=πx=\pi.

See Solution

Problem 23049

Given functions f(x)=x1f(x)=\sqrt{x-1} and f1(x)=x2+1f^{-1}(x)=x^{2}+1 (for x0x \geq 0), find their domains, ranges, graph them, and show slopes at points (5,2)(5,2) and (2,5)(2,5).

See Solution

Problem 23050

Find the extrema and inflection points of g(x)=12πe(x6)2/2g(x)=\frac{1}{\sqrt{2 \pi}} e^{-(x-6)^{2} / 2}. Round to three decimals.

See Solution

Problem 23051

Find the derivative of y=eex+coshxy=e^{e^{\sqrt{x}}}+\cosh \sqrt{x}. Select the correct expression for yy'.

See Solution

Problem 23052

Is it true that 101ex2dxe1 \leq \int_{0}^{1} e^{x^{2}} dx \leq e? Select True or False.

See Solution

Problem 23053

The integral of cot(x)\cot(x) is lncscx+C\ln |\csc x| + C. Is this statement true or false?

See Solution

Problem 23054

Calculate the integral from 1 to 3 of x+3x2+6xdx\frac{x+3}{x^2+6x} \, dx. Choose the correct answer: a, b, c, d, or e.

See Solution

Problem 23055

Calculate the integral from 0 to 1 of (x21)3(x^{2}-1)^{3}.

See Solution

Problem 23056

Berechnen Sie die Ableitung von f(x)=(5x)(3+x)f(x) = (5-x)(3+x) mit der Produktregel.

See Solution

Problem 23057

Berechnen Sie die Ableitung von g(x)=3x(0.5x+1)2g(x) = 3x \cdot (0.5x + 1)^2.

See Solution

Problem 23058

Berechnen Sie die Ableitung von g(x)=3x(0.5x+1)2g(x) = 3x \cdot (0.5x + 1)^2 mit Produkt- und Kettenregel, dann mit Potenz- und Summenregel.

See Solution

Problem 23059

Find the derivative of the function f(x)=4xxf(x)=\frac{4}{x \sqrt{x}}.

See Solution

Problem 23060

Zeichne die Tangente an f(x)=x3+3x2f(x)=-x^{3}+3x^{2} im Punkt P(1,2)P(1, 2) und finde die Steigung mm durch f(1)f'(1). Bestimme die Tangentengleichung.

See Solution

Problem 23061

Calcula la población a largo plazo de mosquitos Aedes aegypti dada por P(t)=5+27t2(3t2)2P_{(t)}=\frac{5+27 t^{2}}{(3 t-2)^{2}}.

See Solution

Problem 23062

Halla la constante de integración de G(x)G(x) si (12x512x3x)dx=G(x)\int(12 x^{5}-12 x^{3}-x) dx=G(x) y G(2)=90G(2)=90.

See Solution

Problem 23063

Ein Heißluftballon sinkt mit v(t)=0,0015t20,3tv(t)=0,0015 t^{2}-0,3 t. Finde h(t)h(t), Höhe nach 2 Minuten und Landungszeit/Höhe.

See Solution

Problem 23064

Gegeben ist die Funktion fa(x)=1ax3xf_{a}(x) = \frac{1}{a} \cdot x^{3} - x. Bestimme (a) den Graphen von faf_{a} und (b) den Wert von aa, sodass faf_{a} bei x=3x=3 einen Extrempunkt hat.

See Solution

Problem 23065

Un móvil tiene velocidad V(t)=3t22t3V(t)=3 t^{2}-2 t-3 m/s. ¿Cuál es su desplazamiento en el cuarto segundo? 28, 30, 27, 25 o 45 m?

See Solution

Problem 23066

Find the sum of the infinite geometric series: n=05(14)n\sum_{n=0}^{\infty} 5\left(-\frac{1}{4}\right)^{n}.

See Solution

Problem 23067

Gegeben ist die Funktion f(x)=23x24x+1f(x)=\frac{2}{3} x^{2}-4 x+1. Finde die Tangentengleichung in B(6,f(6))B(6, f(6)) und einen Punkt QQ mit paralleler Tangente zur Linie y=8x+5y=-8 x+5.

See Solution

Problem 23068

Given a function f(x)f(x) with a critical point at x=5x=5, analyze g(x)=30f(20x+10)g(x)=-30 f(20 x+10) on [1,0][-1,0]. Which statements are true? A, B, C, or D?

See Solution

Problem 23069

A spherical cell's volume VV grows at a rate proportional to surface area SS. Which rate drdt\frac{d r}{d t} is true? (A) 1, (B) 1/2, (C) 1/3, (D) 1/4.

See Solution

Problem 23070

Which statement is always true? (A) Continuous at aa implies differentiable at aa (B) Continuous function has a global maximum (C) If ff max at pp, then f(p)=0f'(p)=0 (D) Differentiable at aa implies continuous at aa (E) f(p)=0f''(p)=0 means ff has an inflection point at pp (F) Critical point pp means local extremum at pp

See Solution

Problem 23071

Formuliere eine Leitfrage zur Funktion h(t)=0,2e0,1t0,9h(t)=0,2 \cdot e^{0,1 \cdot t-0,9}. Berechne h(0)h(0) und den Zeitpunkt für h=50 cmh=50 \mathrm{~cm}. Bestimme das Wachstumshöchstmaß.

See Solution

Problem 23072

A house plan has a passageway width of 34 m\frac{3}{4} \mathrm{~m} and a room width of 6 m6 \mathrm{~m}.
(a) Prove that L=34secα+6cosecαL=\frac{3}{4} \sec \alpha+6 \operatorname{cosec} \alpha. (b.i) Calculate dL dα\frac{\mathrm{d} L}{\mathrm{~d} \alpha}. (b.ii) Show that when dL dα=0\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=0, then α=arctan2\alpha=\arctan 2.

See Solution

Problem 23073

Find the quantity qq that maximizes the profit function P(q)=16q2q224P(q)=16q-2q^{2}-24 and the corresponding profit.

See Solution

Problem 23074

Find local and absolute extrema of f(x)=3x48x3+11x2+26xf(x)=-3 x^{4}-8 x^{3}+11 x^{2}+26 x. List local minima or state none exist.

See Solution

Problem 23075

Calculate the integral sin2x2cosx2dx\int \sin^{2} \frac{x}{2} \cos \frac{x}{2} \, dx.

See Solution

Problem 23076

Calculate the integral from 20 to 30 of the function 0.02e0.1t+3.10.02 e^{-0.1 t + 3.1}.

See Solution

Problem 23077

Find where the function f(x)=xe2x2+3xf(x)=xe^{-2x^2+3x} has relative extrema. Steps: 1) Derivative f(x)f'(x), 2) Critical points, 3) Maxima or minima.

See Solution

Problem 23078

Öltank:
1. Bestimme die Funktion für Ölmenge nach xx Stunden: f(x)=0,12x32,64x2+12,6xf(x)=0,12 x^{3}-2,64 x^{2}+12,6 x.
2. Zuflussrate nach 6 und 9 Stunden.
3. Finde Zeitpunkte für max. Zufluss und wann 12 m3/h12 \mathrm{~m}^{3} / \mathrm{h} erreicht wird.
4. Bestimme max. und min. Füllmenge.
5. Ölmenge nach 5 und 12 Stunden; Ölfluss zwischen 1. und 4. Stunde.
6. Berechne 810f(x)dx\int_{8}^{10} f(x) dx und erläutere.

See Solution

Problem 23079

Find the horizontal asymptote of f(x)=ex2f(x)=e^{-x}-2. Provide your answer as an equation.

See Solution

Problem 23080

Pflanzenwachstum:
1. Funktionsgleichung der Höhe nach xx Tagen.
2. Wachstum am 6. Tag: f(6)=f(6)=
3. Höhe nach 6 Tagen: F(6)=F(6)=
4. Wann ist die Pflanze ausgewachsen?
5. (1) Durchschnittliche Höhenzunahme von Tag 3 bis 6. (2) Berechne das Integral.

See Solution

Problem 23081

Determine the horizontal asymptote of the function f(x)=2x3f(x)=\frac{2}{x-3}.

See Solution

Problem 23082

Wachstum einer Pflanze:
a) Funktionsgleichung für Höhe nach xx Tagen. b) Wachstum am 6. Tag: f(6)=f(6)= c) Höhe nach 6 Tagen: F(6)=F(6)= d) Wann ist die Pflanze ausgewachsen und wie groß? e) (1) Durchschnittliche Höhenzunahme zwischen Tag 3 und 6. (2) Berechne 9f(x)dx\int^{9} f(x) d x.

See Solution

Problem 23083

Find xx that minimizes the average cost given C(x)=10,000+250x+10x2C(x)=10,000+250x+10x^2. Round to two decimals.

See Solution

Problem 23084

A particle moves along a line with position s(t)=5t2t2s(t)=5t-2t^2. When does it revisit s(0)s(0), and how far right does it travel?

See Solution

Problem 23085

A train's location is s(t)=140ts(t)=\frac{140}{t} for 2t82 \leq t \leq 8. Graph it and find the average velocity from t=2t=2 to t=8t=8.

See Solution

Problem 23086

A train's position is given by s(t)=140ts(t)=\frac{140}{t} for 2t82 \leq t \leq 8. Find the average velocity between t=2t=2 and t=8t=8. Where is it on the graph?

See Solution

Problem 23087

A balloon inflates at 27πin3/min27 \pi \mathrm{in}^{3}/\mathrm{min}. Find the radius increase rate at r=3r=3 in using V=43πr3V=\frac{4}{3} \pi r^{3}. Options: a. 1.24in/sec1.24 \mathrm{in}/\mathrm{sec} b. 0.75in/sec0.75 \mathrm{in}/\mathrm{sec} c. 0.54in/sec0.54 \mathrm{in}/\mathrm{sec} d. 0.24in/sec0.24 \mathrm{in}/\mathrm{sec}.

See Solution

Problem 23088

For the function f(x)=14x33xf(x)=\frac{1}{4} x^{3}-3 x, complete (a) graph y=f(x)y=f(x), (b) find turning points, (c) estimate local extrema.

See Solution

Problem 23089

Stromverbrauch:
Gegeben ist die Funktion p(t)=351200t4+113200t353800t2+2150t+110p(t)=-\frac{3}{51200} t^{4}+\frac{11}{3200} t^{3}-\frac{53}{800} t^{2}+\frac{21}{50} t+\frac{1}{10} für die Leistung.
a) Finde die Funktion für die verbrauchte Energie. b) (1) Bestimme die Leistung um 6 Uhr. (2) Wann war die Leistung 0,5265625 kW? (3) Wann war die maximale/minimale Leistung? c) (1) Wie viel Energie wurde an einem Tag verbraucht? (2) Bis wann waren 8,184 kWh verbraucht? d) (1) Energieverbrauch zwischen 6 und 9 Uhr? (2) Berechne 1012p(t)dt\int_{10}^{12} p(t) d t und erkläre die Bedeutung.

See Solution

Problem 23090

Find where the function g(x)=2+x142xg(x) = 2 + \frac{x-1}{4-2x} is increasing or decreasing and identify any extremum points.

See Solution

Problem 23091

What is the derivative of ϵ1/2\epsilon^{1/2} with respect to ϵ\epsilon?

See Solution

Problem 23092

Find the velocity v(1)v(1) and acceleration a(1)a(1) for s(t)=t23ts(t)=t^{2}-3t at t=1 st=1 \mathrm{~s}. v(1)=v(1)=\square \square

See Solution

Problem 23093

Calculate the growth rate dHdt\frac{\mathrm{dH}}{\mathrm{dt}} for head circumference H=30.22+1.811t20.0214t2logtH=-30.22+1.811 t^{2}-0.0214 t^{2} \log t. Compare at t=8t=8 and t=36t=36 weeks. Also find the fractional rate 1HdHdt\frac{1}{H} \frac{\mathrm{dH}}{\mathrm{dt}}.

See Solution

Problem 23094

The function f(t)=104,0001+4800etf(t)=\frac{104,000}{1+4800 e^{-t}} models flu cases. Find: a) initial cases, b) cases after 4 weeks, c) max cases.

See Solution

Problem 23095

Determine if the piecewise function f(x)={x21if 2x01x2if 0<x2f(x)=\begin{cases} x^{2}-1 & \text{if } -2 \leq x \leq 0 \\ 1-x^{2} & \text{if } 0<x \leq 2 \end{cases} is continuous on its domain.

See Solution

Problem 23096

Determine the continuity of the function ff at x=1x=1 based on its definition. What can you conclude?

See Solution

Problem 23097

A bacteria population of 2,000 grows at 50%50\% daily. Find the number of bacteria after one week.

See Solution

Problem 23098

Differentiate f(x3)f(x^3) and show it equals f(3x2)f'(3x^2).

See Solution

Problem 23099

True or false: If ff is differentiable, is ddx[f(x3)]=f(3x2)\frac{d}{dx}[f(x^{3})]=f'(3x^{2})?

See Solution

Problem 23100

True or False: If ff is differentiable, is ddx[3+f(sin(x))]=cos(x)f(sin(x))2f(sin(x))\frac{d}{d x}[3+\sqrt{f(\sin (x))}] = \frac{\cos (x) f^{\prime}(\sin (x))}{2 \sqrt{f(\sin (x))}}?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord