Calculus

Problem 30201

Soit f(x)=x26x+5f(x)=\sqrt{|x^{2}-6x+5|}, étudiez sa continuité, dérivabilité, variations, asymptotes et symétrie sur [1;5][1;5].

See Solution

Problem 30202

Differentiate the function: f(x)=x2(4x2+1)+2x3f(x) = \sqrt{x-2} (4x^2 + 1) + 2x^3.

See Solution

Problem 30203

Find the limit as xx approaches infinity for the expression 1+8x32x\frac{1+8 x}{3-2 x}.

See Solution

Problem 30204

Find the limits for f(x)=x2+1(2x+3)(x5)f(x)=\frac{x^{2}+1}{(2 x+3)(x-5)} as xx approaches 5 from left, right, and directly. Enter 'P', 'N', or 'D'.

See Solution

Problem 30205

Find dydx\frac{dy}{dx} for the function y=x3(x2+5)4y = x^{3}(x^{2} + 5)^{4}.

See Solution

Problem 30206

Evaluate these limits: (a) Find limx1+8x32x\lim _{x \rightarrow \infty} \frac{1+8 x}{3-2 x}. (b) Find limx1+8x32x\lim _{x \rightarrow-\infty} \frac{1+8 x}{3-2 x}.

See Solution

Problem 30207

Evaluate the integral: 3x9x2\int \frac{3-x}{\sqrt{9-x^{2}}}.

See Solution

Problem 30208

Find the limit: limx7+4x23+8x\lim _{x \rightarrow-\infty} \frac{\sqrt{7+4 x^{2}}}{3+8 x}.

See Solution

Problem 30209

Find the limit: limx(11x)(10+7x)(34x)(4+9x)\lim _{x \rightarrow \infty} \frac{(11-x)(10+7 x)}{(3-4 x)(4+9 x)}

See Solution

Problem 30210

Find the limit: limx7+4x23+8x\lim _{x \rightarrow \infty} \frac{\sqrt{7+4 x^{2}}}{3+8 x}.

See Solution

Problem 30211

Find the limit: limx6x38x23x811x3x3\lim _{x \rightarrow \infty} \frac{6 x^{3}-8 x^{2}-3 x}{8-11 x-3 x^{3}}.

See Solution

Problem 30212

Find the limit: limx(11x)(10+7x)(34x)(4+9x)\lim _{x \rightarrow-\infty} \frac{(11-x)(10+7 x)}{(3-4 x)(4+9 x)}.

See Solution

Problem 30213

Find the limit: limx1+8x32x\lim _{x \rightarrow-\infty} \frac{1+8 x}{3-2 x}.

See Solution

Problem 30214

Find the limit: limx2x+210x22x+8\lim _{x \rightarrow \infty} \frac{2 x+2}{10 x^{2}-2 x+8}.

See Solution

Problem 30215

Identify intervals where the function is increasing or decreasing, and points of relative maxima and minima.

See Solution

Problem 30216

Find the limit: limx6x38x23x811x3x3\lim _{x \rightarrow-\infty} \frac{6 x^{3}-8 x^{2}-3 x}{8-11 x-3 x^{3}}.

See Solution

Problem 30217

Find the limit as xx approaches infinity: limx(9x2+x3x)\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+x}-3 x\right).

See Solution

Problem 30218

Differentiate y=7x2(1x2+1)y = \frac{7x}{2} \left( \frac{1}{x^2 + 1} \right) using the product rule and explain the steps.

See Solution

Problem 30219

Find the limits: (a) limx(26x2+28x3)\lim _{x \rightarrow \infty}(-26 x^{2}+28 x^{3}) and (b) limx(26x2+28x3)\lim _{x \rightarrow -\infty}(-26 x^{2}+28 x^{3}).

See Solution

Problem 30220

Find the limit: limx+(x2+4x26)\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}+4}-\sqrt{x^{2}-6}\right).

See Solution

Problem 30221

Sketch the graph of y=x36x215x+10y=x^{3}-6x^{2}-15x+10. Identify local max/min, end behavior, and intervals for yy, yy', and yy''.

See Solution

Problem 30222

Calculate the limit: limx10x10+x\lim _{x \rightarrow \infty} \frac{10-\sqrt{x}}{10+\sqrt{x}}.

See Solution

Problem 30223

Find the derivative f(3)f^{\prime}(-3) for the function f(x)=x3+4f(x)=x^{3}+4 using the definition of a derivative.

See Solution

Problem 30224

E. coli bacteria grow at 1.9% per minute. If the current population is 172 million, what will it be in 7.2 minutes? a) 197.2 million b) 220.2 million c) 10 million d) 101.2 million

See Solution

Problem 30225

Find the limits: (a) limxx2(9x)(8x)\lim _{x \rightarrow \infty} x^{2}(9 x)(-8 x) and (b) limxx2(9x)(8x)\lim _{x \rightarrow -\infty} x^{2}(9 x)(-8 x).

See Solution

Problem 30226

1. Find limx52(x5)6\lim _{x \rightarrow 5} \frac{2}{(x-5)^{6}}.
2. Find limx32x3\lim _{x \rightarrow 3^{-}} \frac{2}{x-3}.
3. Find limx01x2(x+7)\lim _{x \rightarrow 0} \frac{1}{x^{2}(x+7)}.
4. Find limx71x2(x+7)\lim _{x \rightarrow-7^{-}} \frac{1}{x^{2}(x+7)}.

See Solution

Problem 30227

Find the average rate of change of f(x)=x35x2f(x)=x^{3}-5x^{2} from x=5x=5 to x=10x=10.

See Solution

Problem 30228

Evaluate the line integral of F(x,y)=(x2+y2)i+2xyj\mathbf{F}(x, y)=(x^{2}+y^{2}) \mathbf{i}+2xy \mathbf{j} along r(t)=2ti+t3j\mathbf{r}(t)=2t \mathbf{i}+t^{3} \mathbf{j} for 0t10 \leq t \leq 1.

See Solution

Problem 30229

Find the integral of ex5e^{\sqrt[5]{x}} with respect to xx: ex5dx\int e^{\sqrt[5]{x}} d x.

See Solution

Problem 30230

Find the limits as xx approaches aa: (a) lim[f(x)+2g(x)]\lim [f(x)+2 g(x)] (b) lim[h(x)3g(x)+1]\lim [h(x)-3 g(x)+1] (c) lim[f(x)g(x)]\lim [f(x) g(x)] (d) lim[g(x)]2\lim [g(x)]^{2} (e) lim6+f(x)3\lim \sqrt[3]{6+f(x)} (f) lim2g(x)\lim \frac{2}{g(x)}

See Solution

Problem 30231

Find F(2)\mathrm{F}^{\prime}(2) if F(x)=5f(x)+2g(x)F(x)=5 f(x)+2 g(x), given f(2)=3f(2)=-3, f(2)=4f^{\prime}(2)=4, g(2)=1g(2)=1, g(2)=5g^{\prime}(2)=-5.

See Solution

Problem 30232

A particle moves along the xx-axis with position x(t)=t315t2+72t9x(t)=t^{3}-15 t^{2}+72 t-9.
a. Find when it's farthest right for 3t93 \leq t \leq 9.
b. Determine its maximum speed on the same interval.

See Solution

Problem 30233

Calculate limx2+(x+3)x+2x+2\lim _{x \rightarrow-2^{+}}(x+3) \frac{|x+2|}{x+2} and limx2(x+3)x+2x+2\lim _{x \rightarrow-2^{-}}(x+3) \frac{|x+2|}{x+2}.

See Solution

Problem 30234

Find dydx\frac{\mathrm{dy}}{\mathrm{dx}} for y=2u14u\mathrm{y}=\frac{2 \mathrm{u}}{1-4 \mathrm{u}} with u=(5x2+1)4\mathrm{u}=(5 \mathrm{x}^{2}+1)^{4}.

See Solution

Problem 30235

Mr. Sullivan's apple juice function A(t)A(t) is given. Estimate the rate of change at t=10t=10 days and check if A(t)=23A'(t)=\frac{2}{3} for 0t120 \leq t \leq 12.

See Solution

Problem 30236

Determine if the functions x2x^{2} and ex2e^{-x^{2}} are acceptable in quantum mechanics. Plot and normalize if acceptable.

See Solution

Problem 30237

Find F(2)F^{\prime}(2) for F(x)=f(x)3g(x)F(x)=f(x)-3g(x) given f(2)=3,f(2)=4,g(2)=1,g(2)=5\mathrm{f}(2)=-3, \mathrm{f}^{\prime}(2)=4, \mathrm{g}(2)=1, \mathrm{g}^{\prime}(2)=-5.

See Solution

Problem 30238

Find dydx\frac{\mathrm{dy}}{\mathrm{dx}} for y=(u+3)2y=(u+3)^{2}, where u=v3u=\sqrt{v-3} and v=x2v=x^{2}.

See Solution

Problem 30239

Find the derivative of the function f(x)=2x3ln(x)f(x) = 2x^3 \ln(x).

See Solution

Problem 30240

Find the derivative of the function f(x)=log2csc(x)f(x) = \log_{2}|\csc(x)|.

See Solution

Problem 30241

Find f(2)f(2) given that f(x)=sin(πex2)f^{\prime}(x)=\sin \left(\frac{\pi e^{x}}{2}\right) and f(0)=1f(0)=1.

See Solution

Problem 30242

Find the value of aa in the equation d(ln(1+y))dx=a1+ydydx\frac{d(\ln (1+y))}{d x}=\frac{a}{1+y} \frac{d y}{d x}.

See Solution

Problem 30243

Find aa and bb in the equation: d(4(x2+y2))dx=ax+bydydx\frac{d(4(x^{2}+y^{2}))}{dx} = ax + by \frac{dy}{dx}.

See Solution

Problem 30244

Find dxdt\frac{d x}{d t} when y=2sin(x)y=2 \sin (x) and dydt=1\frac{d y}{d t}=1 at x=π3x=\frac{\pi}{3}.

See Solution

Problem 30245

Find dydt\frac{d y}{d t} when y=12cos(x)y=12 \cos (x) and dxdt=1\frac{d x}{d t}=1 at x=π6x=\frac{\pi}{6}.

See Solution

Problem 30246

Find the intervals where the function f(x)=x412x336x2f(x)=-x^{4}-12 x^{3}-36 x^{2} is increasing.

See Solution

Problem 30247

Find the intervals where the function f(x)=x4+12x336x2f(x)=-x^{4}+12 x^{3}-36 x^{2} is increasing.

See Solution

Problem 30248

Find the intervals where the function f(x)=x44x3f(x)=x^{4}-4 x^{3} is decreasing.

See Solution

Problem 30249

If dAdt=3dCdt\frac{d A}{d t}=3 \frac{d C}{d t}, find rr given dAdt=2πrdrdt\frac{d A}{d t}=2 \pi r \frac{d r}{d t} and dCdt=2πdrdt\frac{d C}{d t}=2 \pi \frac{d r}{d t}.

See Solution

Problem 30250

Find the intervals where the function f(x)=x5+10x425x3f(x)=-x^{5}+10 x^{4}-25 x^{3} is increasing.

See Solution

Problem 30251

Find F(x)=lnxe2xsintarctantdtF(x)=\int_{\ln x}^{e^{2 x}} \sin t \arctan t \, dt using the Leibniz rule.

See Solution

Problem 30252

Find the average rate of change of the function h(x)h(x) over the interval 4x64 \leq x \leq 6.

See Solution

Problem 30253

Find the largest area of a rectangle with its base on the xx-axis and top corners on y=6x2y = 6 - x^2.

See Solution

Problem 30254

Find the correct limit statements for the end behavior of h(x)=2x(x3)2(x+4)3h(x)=-2 x(x-3)^{2}(x+4)^{3}. Options: (A), (B), (C), (D).

See Solution

Problem 30255

Differentiate y2y^2 with respect to xx: d(y2)dx=f(y)dydx\frac{d\left(y^{2}\right)}{d x}=f(y) \cdot \frac{d y}{d x}. What is f(y)f(y)?

See Solution

Problem 30256

Find the value of α\alpha in the equation: d(x2+y2)dx=2x+αydydx\frac{d\left(x^{2}+y^{2}\right)}{d x}=2 x+\alpha y \cdot \frac{d y}{d x}.

See Solution

Problem 30257

Find dydt\frac{d y}{d t} when y=4x2y=-4 x^{2}, dxdt=1\frac{d x}{d t}=-1 unit/s, and x=2x=2 units.

See Solution

Problem 30258

Find the value of β\beta in the equation: d(cos(y2))dx=βysin(y2)dydx\frac{d\left(\cos \left(y^{2}\right)\right)}{d x}=\beta y \sin \left(y^{2}\right) \cdot \frac{d y}{d x}.

See Solution

Problem 30259

Solve the initial-value problem: dydx=3x2sinx\frac{d y}{d x}=3 x^{2}-\sin x, with y(0)=2y(0)=2.

See Solution

Problem 30260

Find these limits:
1. limx2020x2xx3+x2+1\lim _{x \rightarrow \infty} \frac{2020 x^{2}-x}{x^{3}+x^{2}+1}
2. limx2020x3+10000x3999999\lim _{x \rightarrow \infty} \frac{2020 x^{3}+10000}{x^{3}-999999}
3. limx0sin2x5x\lim _{x \rightarrow 0} \frac{\sin 2 x}{5 x}
4. limx2sinxx\lim _{x \rightarrow \infty} \frac{2 \sin x}{x}
5. limx23x+2x32x2\lim \frac{x^{2}-3 x+2}{x^{3}-2 x^{2}} as xx \rightarrow \infty

See Solution

Problem 30261

Find the integral of the function xex21x e^{x^{2}-1} with respect to xx: xex21dx\int x e^{x^{2}-1} d x.

See Solution

Problem 30262

Find the correct horizontal asymptote for h(x)=(x2)5x53x4h(x)=\frac{(x-2)^{5}-x^{5}}{3 x^{4}}: A) 13\frac{1}{3}, B) 53\frac{5}{3}, C) 23-\frac{2}{3}, D) 103-\frac{10}{3}, E) none.

See Solution

Problem 30263

Find the limit of x23x+2x32x2\frac{x^{2}-3x+2}{x^{3}-2x^{2}} as: a) x0+x \rightarrow 0^{+}, b) x2+x \rightarrow 2^{+}, c) x2x \rightarrow 2^{-}, d) x2x \rightarrow 2.

See Solution

Problem 30264

Find the correct horizontal asymptote for h(x)=(x2)5x53x4h(x)=\frac{(x-2)^{5}-x^{5}}{3 x^{4}}: (A) y=13y=\frac{1}{3}, (B) y=53y=\frac{5}{3}, (C) y=23y=-\frac{2}{3}, (D) y=103y=-\frac{10}{3}, (E) no asymptote.

See Solution

Problem 30265

Find the limit: limx2sinxx=\lim _{x \rightarrow \infty} \frac{2 \sin x}{x}=

See Solution

Problem 30266

1. For bacteria growth, find the average rate of change from t=0t=0 to t=6t=6 using N(t)=75000+64t3N(t)=75000+64t^3.
2. For a particle's displacement s(t)=4t210t+13s(t)=4t^2-10t+13, calculate the average rate of change from 1s1s to 4s4s and estimate the instantaneous rate after 1s1s.
3. For a Ferris wheel, use h=18sin(πt100)+20h=18\sin\left(\frac{\pi t}{100}\right)+20 to find the average rate of change of height between given time intervals.

See Solution

Problem 30267

Find the derivative using the limit: f(3)=limh0(9+6h+h2+15+5h24)hf^{\prime}(3)=\lim _{h \rightarrow 0} \frac{(9+6 h+h^{2}+15+5 h-24)}{h}.

See Solution

Problem 30268

Given y=2xsin(kx)y=2 x-\sin (k x) and x=2ktx=2 k t, find: (a) dydx=\frac{d y}{d x}= A (in terms of kk and xx) (b) dxdt=\frac{d x}{d t}= A (in terms of kk and/or tt) (c) For k=1k=1, at t=π2t=\frac{\pi}{2}, find dydt=\frac{d y}{d t}= A (to 1 decimal place)

See Solution

Problem 30269

Evaluate the integral 0π2xcosxdx\int_{0}^{\frac{\pi}{2}} x \cos x \, dx.

See Solution

Problem 30270

Calculate the integral: 2x3+2x2+2x+1x2(x2+1)dx\int \frac{2 x^{3}+2 x^{2}+2 x+1}{x^{2}(x^{2}+1)} dx.

See Solution

Problem 30271

Find f(3)f^{\prime}(3) for f(x)=x2+5xf(x)=x^2+5x using the limit definition: f(3)=limh0f(3+h)f(3)hf^{\prime}(3)=\lim_{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}.

See Solution

Problem 30272

Find the limit as xx approaches 0: limx0x+366x\lim _{x \rightarrow 0} \frac{\sqrt{x+36}-6}{x}

See Solution

Problem 30273

1. Find a function f(x)f(x) continuous everywhere except x=1x=1 with a removable discontinuity. Explain why it's discontinuous there.
2. Find a function g(x)g(x) continuous everywhere except x=2x=2 with a nonremovable discontinuity. Explain why it's discontinuous.

See Solution

Problem 30274

Find the limit as xx approaches 6 from the left for the expression 2xx236\frac{2 x}{x^{2}-36}.

See Solution

Problem 30275

Show that f(x)=x+2x2+5x+6f(x)=\frac{x+2}{x^{2}+5x+6} has a continuous extension at x=2x=2, and determine the extension.

See Solution

Problem 30276

1. For y=2yxy^{\prime}=2 y-x, sketch slopes at (1,2), (1,1), (2,1).
2. Find a diff. eq. and initial condition for y=1x1tdty=\int_{1}^{x} \frac{1}{t} dt.
3. Apply Euler's method for y=2yxy^{\prime}=\frac{2 y}{x}, y(1)=1y(1)=-1, dx=0.5dx=0.5 to get 3 points.

See Solution

Problem 30277

5) Determine convergence or divergence of n=18n+2\sum_{n=1}^{\infty} \frac{8}{\sqrt{n+2}} using the integral test. 6) Determine convergence or divergence of n=113n+6\sum_{n=1}^{\infty} \frac{1}{3^{n}+6} using the direct comparison test. 7) Determine convergence or divergence of n=1nn2+1\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+1} using the limit comparison test.

See Solution

Problem 30278

1. Solve the initial value problem: xy+y=sinxx y' + y = \sin x, x>0x > 0, y(π2)=1y\left(\frac{\pi}{2}\right) = 1.
2. For an=2n12na_n = \frac{2^n - 1}{2^n}, write the first four terms.
3. Find a formula for each sequence: a) 1,4,7,10,13,1, -4, 7, -10, 13, \ldots b) 51,82,116,1424,\frac{5}{1}, \frac{8}{2}, \frac{11}{6}, \frac{14}{24}, \ldots

See Solution

Problem 30279

Determine if the series converges or diverges. If converges, find its sum: a) 12+48+1-2+4-8+\cdots b) (23)2+(23)3+\left(\frac{-2}{3}\right)^{2}+\left(\frac{-2}{3}\right)^{3}+\cdots c) n=0cosnπ\sum_{n=0}^{\infty} \cos n \pi d) n=16(2n1)(2n+1)\sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)}

See Solution

Problem 30280

Find the limit: limn2n2+nn3+22n\lim _{n \rightarrow \infty} \frac{\sqrt{2 n^{2}+n}}{\sqrt{n^{3}+2-2 n}}

See Solution

Problem 30281

Find the minimum surface area S=12x2+78xS=12 x^{2}+\frac{7}{8 x} for a container with capacity 0.75 m30.75 \mathrm{~m}^{3} at x=0.332 mx=0.332 \mathrm{~m}. Justify the minimum.

See Solution

Problem 30282

Determine if the series n=1(n+an+b)n2\sum_{n=1}^{\infty}\left(\frac{n+a}{n+b}\right)^{n^{2}} converges or diverges for b<ab<a. Justify.

See Solution

Problem 30283

Aufgabe: Analysiere die Funktion g(x)=0,25x3+2,7x26xg(x)=-0,25 x^{3}+2,7 x^{2}-6 x für Damm und Graben. Finde Breiten, maximale Höhe, Steigung und Monotonie im Intervall [2;5][2; 5].

See Solution

Problem 30284

Skizzieren Sie ff und bestimmen Sie die lokale Änderungsrate an x0x_{0}: a) f(x)=0,5x2,x0=2f(x)=0,5 x^{2}, x_{0}=2 b) f(x)=1x2,x0=2f(x)=1-x^{2}, x_{0}=2 c) f(x)=1x,x0=1f(x)=\frac{1}{x}, x_{0}=1.

See Solution

Problem 30285

Gegeben ist die Weg-Zeit-Funktion s(t)=0,00006t3+0,01983t2s(t)=-0,00006 \cdot t^{3}+0,01983 \cdot t^{2}. Bestimme die Geschwindigkeitsfunktion v(t)v(t), finde den Zeitpunkt der maximalen Geschwindigkeit und berechne die mittlere Geschwindigkeit im Intervall [50 s; 150 s].

See Solution

Problem 30286

Find the derivative of f(x)=2xf(x)=\frac{2}{\sqrt{x}} and calculate f(4)f^{\prime}(4).

See Solution

Problem 30287

Berechnen Sie die lokale Änderungsrate von ff an x0x_{0} mit der h-Methode oder der (xx0)(x-x_{0})-Methode: a) f(x)=0,5x2,x0=2f(x)=0,5 x^{2}, x_{0}=2 b) f(x)=1x2,x0=2f(x)=1-x^{2}, x_{0}=2 c) f(x)=2x+1,x0=3f(x)=2 x+1, x_{0}=3

See Solution

Problem 30288

Find the integral: x32x4+3dx\int \frac{x^{3}}{2 x^{4}+3} d x

See Solution

Problem 30289

Zad 1. Sprawdź zbieżność szeregów: (a) n=3+(n3+23n2+7)\sum_{n=3}^{+\infty}\left(\sqrt[3]{n^{3}+2}-\sqrt{n^{2}+7}\right).

See Solution

Problem 30290

Find the limit as xx approaches 0 from the right: limx0+lnx\lim _{x \rightarrow 0^{+}} \ln x.

See Solution

Problem 30291

Prove that for all x,yRx, y \in \mathbb{R}, the inequality arctan(x3)arctan(y3)Mxy|\arctan(x^3) - \arctan(y^3)| \leq M|x-y| holds, where M=suptR3t21+t6M = \sup_{t \in \mathbb{R}} \frac{3t^2}{1+t^6}.

See Solution

Problem 30292

Find the limit: limxlnx \lim_{x \rightarrow \infty} \ln x .

See Solution

Problem 30293

Find the infimum and supremum of f(t)=3t21+t6f(t)=\frac{3 t^{2}}{1+t^{6}}, and determine if it has a max or min. Sketch the graph.

See Solution

Problem 30294

Bestimmen Sie die Ableitung von f(x)=ex+x3f(x)=e^{x}+x^{3}. Was ist f(x)=?f^{\prime}(x)=?

See Solution

Problem 30295

Find the limit as xx approaches infinity for sinx\sin x.

See Solution

Problem 30296

Find the derivative of the function f(x)=4x2exf(x) = 4x^{2} - e^{x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 30297

If pp is an even positive integer, find limxxp\lim _{x \rightarrow-\infty} x^{p}.

See Solution

Problem 30298

Find the limit: limx(1+a14n2+1)2n21\lim _{x \rightarrow \infty}\left(1+\frac{a-1}{4 n^{2}+1}\right)^{2 n^{2}-1}.

See Solution

Problem 30299

Find the limit as x x approaches -\infty for xp x^{p} . What is limxxp \lim _{x \rightarrow-\infty} x^{p} ?

See Solution

Problem 30300

8 Wassermelonen wachsen täglich um 12%12\%. Berechne Zeiträume für 1%,100%,500%1\%, 100\%, 500\% Gewichtszunahme und beantworte weitere Fragen.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord