Given log10x=a, log10y=b, log10z=c, express:
(i) 102a−3 in terms of x;
(ii) 103b−1 in terms of y;
(iii) P=102a+2b−3c in terms of x,y,z;
(iv) xy if log10x=a, log10y=b;
(v) b2a3 in terms of log10a=m, log10b=n;
(vi) 10a in terms of x if log10x=2a;
(vii) 102b+1 in terms of y;
(viii) P=103a−2b in terms of x,y;
(ix) 72x in terms of y,z if log2y=x, log3z=x;
(x) 1002a−1 in terms of x,y if log2x=a, log5y=a.
Evaluate f(3) for f(x)=x2. A. 3 B. 6 C. 9 D. 12
Solve: 3t−2z=4, 4t+z=7. A. (2,−1) B. (−1,2) C. (1,3) D. (−3,−2)
Find the inverse of f(x)=2. A. f−1(x)=log2x B. f−1(x)=lnx C. f−1(x)=ex D. f−1(x)=x2
Calculate log28. A. 2 B. 3 C. 4 D. 8
What is log525? A. 2 B. 4 C. 6 D. 8
Given log3m+log3m4=2, find m. A. 2 B. 4 C. 5 D. 6
1. Find the identity element for the operation a∗b=a+b−3.
A. 3 B. 2 C. 0 D. -3 2. Calculate the sum of the sequence 4,−2,1,−21,….
A. −43 B. 43 C. 38 D. 8 3. Solve 256(x+1)=8(1−x2).
A. −1,−35 B. −83,−35 C. 38,53 D. 38,35 4. For roots α and β of x2+3x−4=0, find α2+β2−3αβ.
A. -11 B. 20 C. 21 D. 29 5. Rationalize 3−21.
A. 3−2 B. 33+2 C. 23+2 D. 3+2 6. Solve log5(6x+7)−log56=2 for x.