Calculus

Problem 12201

Ein Fiebermittel senkt eine Temperatur von 41C41^{\circ} \mathrm{C} um 60%60\% pro Tag. Bestimme die Funktion, skizziere den Graphen und finde den Zeitpunkt, wann die Temperatur unter 37,5C37,5^{\circ} \mathrm{C} sinkt. Berechne auch f(0)f^{\prime}(0) und f(1)f^{\prime}(1).

See Solution

Problem 12202

Find the derivative of f(x)=x(x+1)2f(x)=\sqrt{x} \cdot(x+1)^{2} using product and chain rules. Rearrange if needed.

See Solution

Problem 12203

Given the demand equation p=300q2+50p=300-\sqrt{q^{2}+50}, find:
(a) dpdq\frac{d p}{d q}, the rate of change of pp with respect to qq.
(b) dp/dqp\frac{d p / d q}{p}, the relative rate of change of pp.
(c) drdq\frac{d r}{d q}, the marginal-revenue function.

See Solution

Problem 12204

Wildschweine:
a) Bestimme f(0.5)f(0.5) und interpretiere das Ergebnis. b) Zeige, dass f(t)=(200100t)e0.5tf'(t)=(200-100t)e^{-0.5t} gilt. c) Berechne die Wachstumsrate zu Beginn und die durchschnittliche Zuwachsrate in den ersten 2 Jahren. d) Finde die langfristige Population und den Zeitpunkt des maximalen Bestands. e) Bestimme, wann die Wildschweinpopulation am schnellsten abnimmt.

See Solution

Problem 12205

Find the limit of f(x)=x2+11x3+9f(x)=\frac{x^{2}+11}{x^{3}+9} as xx \rightarrow \infty. What is limxf(x)=\lim _{x \rightarrow \infty} f(x)=\square?

See Solution

Problem 12206

Find the marginal-revenue function for the demand equation p=8q+56q+1p=\frac{8 q+5}{6 q+1}, where revenue =pq=p q.

See Solution

Problem 12207

Differentiate f(x)=(x+2)3xf(x) = (x+2)^{3} \cdot x using the product and chain rules, or simplify first.

See Solution

Problem 12208

Find the rate of change of income y=4x7/2+5200y=4 x^{7/2}+5200 with respect to education xx at x=10x=10. What is dydx\frac{d y}{d x}?

See Solution

Problem 12209

Find the difference quotient for f(x)=6x1f(x)=-6x-1: a. f(a+h)f(a)h\frac{f(a+h)-f(a)}{h}; b. limh0f(a+h)f(a)h\lim_{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}.

See Solution

Problem 12210

Find the derivative of the function f(x)=17x3f(x) = \sqrt[3]{17x}.

See Solution

Problem 12211

Bestimme die Stammfunktion FF von f(t)=0.2t348t2+2880tf(t)=0.2t^3 - 48t^2 + 2880t und das Wasservolumen im Becken nach 120 Tagen.

See Solution

Problem 12212

Aufgabe 2.1: Klettergarten
Gegeben sind die Funktionen fa(x)=e12axa+e12ax+af_{a}(x)=e^{\frac{1}{2} a x-a}+e^{-\frac{1}{2} a x+a}, a0a \neq 0.
a) Zeigen Sie, dass faf_{a} keine Nullstelle hat und beschreiben Sie das Verhalten für x±x \rightarrow \pm \infty.
b) Bestimmen Sie die yy-Achsen-Schnittpunkte von GaG_{a}, wenn Sy(0,174)S_{y}\left(0, \frac{17}{4}\right) gilt.
c) Bestimmen Sie die Koordinaten des lokalen Extrempunkts von G1G_{1} und zeigen Sie, dass dies für alle GaG_{a} gilt.
d) Finden Sie die Gleichung der Tangente tt an G1G_{1} im Punkt P(0,e+1e)P\left(0, e+\frac{1}{e}\right) und zeigen Sie, dass das Dreieck mit der xx-Achse nicht rechtwinklig ist.
e) Berechnen Sie den Höhenunterschied und den steilsten Winkel der Hängebrücke G0,5G_{0,5} im Intervall [0;8].
f) Bestimmen Sie die Fläche unter der Hängebrücke, die von Aufstellern genutzt werden kann (60% der Fläche).
g) Finden Sie den Parameterwert a>0a>0 für den Punkt Q(1,e1+e1)Q\left(-1, e^{1}+e^{-1}\right) des Seils.

See Solution

Problem 12213

Find the derivative of f(x)=1x(x4+3x2)f(x)=\frac{1}{x}(x^{4}+3x^{2}) using product and chain rules or simplify first.

See Solution

Problem 12214

Find the derivative of 2x2-\sqrt{2x^{2}} directly, avoiding the chain rule.

See Solution

Problem 12215

Find the limit as xx approaches -21 for 20x241x+21\frac{20-\sqrt{x^{2}-41}}{x+21}. What is the result?

See Solution

Problem 12216

Differentiate the function y=9x85x+9y=\frac{9 x-8}{5 x+9}. Find yy^{\prime}.

See Solution

Problem 12217

Find the marginal cost function for the total-cost function c=4q2q2+2+7000c=\frac{4 q^{2}}{\sqrt{q^{2}+2}}+7000.

See Solution

Problem 12218

Find the derivative of f(w)=(7w2+5)ew2f(w)=(7 w^{2}+5) e^{w^{2}}. What is f(w)f^{\prime}(w)?

See Solution

Problem 12219

Find the derivative f(x)f'(x) of the function f(x)=2x3+x2f(x)=-2 \sqrt{x^{3}}+\frac{\sqrt{x}}{2} and calculate f(3)f'(3).

See Solution

Problem 12220

Find the tangent line equation for f(x)=5x7x+1f(x)=\frac{5 x-7}{x+1} at x=0x=0.

See Solution

Problem 12221

Find the derivative of H(t)=sintsec2tH(t)=\sin t \sec ^{2} t without applying the chain rule.

See Solution

Problem 12222

Find the slope of the tangent line for f(x)=3x3+2x2xf(x)=-3 x^{3}+2 x^{2}-x at x=2x=2.

See Solution

Problem 12223

Two cylindrical pools fill at the same rate. Smaller pool radius is 5 m5 \mathrm{~m}, rising at 0.5 m/min0.5 \mathrm{~m/min}. Find the rise rate for the larger pool with radius 8 m8 \mathrm{~m}.

See Solution

Problem 12224

Find the rate of change of the cost function c=0.8q2+2.6q+6c=0.8 q^{2}+2.6 q+6 at q=14q=14 and its percentage change.

See Solution

Problem 12225

Wildschweinpopulation:
a) Bestimme f(0.5)f(0.5) und interpretiere das Ergebnis.
b) Zeige, dass f(t)=(200100t)e0,5tf^{\prime}(t)=(200-100 t) \cdot e^{-0,5 t}.
c) Wie schnell wächst die Population zu Beginn?
d) Berechne die durchschnittliche Zuwachsrate in den ersten 2 Jahren.

See Solution

Problem 12226

Find the marginal-revenue function from the demand equation p=6q+74q+1p=\frac{6 q+7}{4 q+1}, where revenue =pq=p q.

See Solution

Problem 12227

Find the derivative f(5)f^{\prime}(5) for the function f(x)=5x3+x3f(x)=-\frac{5 \sqrt{x}}{3}+\sqrt{x^{3}}.

See Solution

Problem 12228

Find the derivative of the function y=64x3cosxy=\sqrt[3]{64 x} \cos x, i.e., compute dydx\frac{d y}{d x}.

See Solution

Problem 12229

Given the cost function c(q)=1300+90q0.1q2c(q)=1300+90q-0.1q^{2}, find: (a) average cost for 140 appliances, (b) marginal cost at 140 appliances.

See Solution

Problem 12230

Find the derivative of the function f(x)=x2xcosxf(x)=x-2 x \cos x, denoted as f(x)f^{\prime}(x).

See Solution

Problem 12231

Find the derivative of h(x)=9x43x3+5x7h(x)=9 x^{4}-\sqrt{3} x^{3}+5 x-7.

See Solution

Problem 12232

Find the volume V\mathrm{V} of the region defined by z=26x2+y2z=26-\sqrt{x^{2}+y^{2}} where it's nonnegative, and set up the double integral in polar coordinates.

See Solution

Problem 12233

Find the derivative f(x)f'(x) of the function f(x)=x2x2sinxf(x) = x^{2} - x^{2} \sin x.

See Solution

Problem 12234

Find the derivative f(x)f'(x) of the function f(x)=5+x2x4f(x)=\frac{5+x}{2-x^{4}}.

See Solution

Problem 12235

Bestimmen Sie die Ableitung der Funktion f(x)=12x2f(x) = -\frac{1}{2} x^{2}.

See Solution

Problem 12236

Find the derivative of the function y=x56x2y=\frac{x}{5-6 x^{2}} in simplified form.

See Solution

Problem 12237

Find the derivative of the function y=3tan(x)y=-3 \tan (x) with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 12238

Find the derivative of the function f(x)=3sin(x)f(x)=-3 \sin (x). What is f(x)f^{\prime}(x)?

See Solution

Problem 12239

Bestimmen Sie die Ableitung von f(x)=1x2f(x) = \frac{1}{x^{2}}.

See Solution

Problem 12240

Find the derivative of the function y=x45x4y=\frac{x}{4-5 x^{4}} and simplify it.

See Solution

Problem 12241

Write an iterated integral of a continuous function ff over the region R={(x,y):0xy(1y)}R=\{(x, y): 0 \leq x \leq y(1-y)\} using dydxd y d x.

See Solution

Problem 12242

Bestimmen Sie die Mindestgeschwindigkeit v0v_{0}, um Steine bis h=2 kmh=2 \mathrm{~km} zu schleudern, bei g=10 m s2g=10 \mathrm{~m} \mathrm{~s}^{-2}.

See Solution

Problem 12243

Find f(2)f^{\prime}(2) for the function f(x)=x3ln(x)f(x)=x^{3} \ln (x).

See Solution

Problem 12244

Find h(1)h^{\prime}(1) for h(x)=f(x)g(x)h(x)=f(x) \cdot g(x) using the values from the chart.

See Solution

Problem 12245

Find the tangent line equation for g(x)=3x2f(x)g(x)=3x^{2}f(x) at x=1x=1, given f(1)=2f(1)=2 and f(1)=5f'(1)=-5.

See Solution

Problem 12246

Find the tangent line equation for g(x)=(x26)f(x)g(x)=(x^{2}-6)f(x) at x=4x=4 given f(4)=2f(4)=2 and f(4)=1f^{\prime}(4)=-1.

See Solution

Problem 12247

Find the critical values of the function f(x)=x4xf(x)=x \sqrt{4-x} for x4x \leq 4.

See Solution

Problem 12248

Analyze the limits of f(x)=x8f(x)=-x^{8} as xx \rightarrow -\infty and xx \rightarrow \infty. What do they approach?

See Solution

Problem 12249

Two cylindrical pools fill at the same rate. Smaller pool radius is 5 m5 \mathrm{~m}, rising at 0.5 m/min0.5 \mathrm{~m/min}. Find the rise rate for the larger pool with radius 8 m8 \mathrm{~m}.

See Solution

Problem 12250

Analyze the behavior of f(x)=x3f(x)=-x^{3} as xx \rightarrow -\infty and xx \rightarrow \infty. What are the limits?

See Solution

Problem 12251

Find the limits limx+f(x)\lim_{x \to +\infty} f(x) and limxf(x)\lim_{x \to -\infty} f(x), and determine where f(x)f(x) is increasing or decreasing.

See Solution

Problem 12252

Analyze the limits of f(x)=x5f(x)=x^{5} as xx \rightarrow -\infty and xx \rightarrow \infty. What do they approach?

See Solution

Problem 12253

Analyze the limits of f(x)=x2f(x)=x^{2} as xx \rightarrow -\infty and xx \rightarrow \infty. What are the results?

See Solution

Problem 12254

Find aa and bb so that the function f(x)f(x) is differentiable at x=1x=1:
f(x)={ax2 for x<13bx26x+10 for x1 f(x)=\left\{\begin{array}{lll} a x-2 & \text { for } & x<1 \\ 3 b x^{2}-6 x+10 & \text { for } & x \geq 1 \end{array}\right.

See Solution

Problem 12255

Evaluate the limit: limx5π43sec(x)3sec(5π4)x5π4\lim _{x \rightarrow \frac{5 \pi}{4}} \frac{3 \sec (x)-3 \sec \left(\frac{5 \pi}{4}\right)}{x-\frac{5 \pi}{4}}

See Solution

Problem 12256

Evaluate the limit: limxπ2sin(x)1xπ2\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (x)-1}{x-\frac{\pi}{2}}.

See Solution

Problem 12257

Find values of aa and bb for which the function f(x)f(x) is differentiable at x=4x=4:
f(x)={ax+9 for x42bx2+x8 for x>4 f(x)=\left\{\begin{array}{lll} a x+9 & \text { for } & x \leq 4 \\ 2 b x^{2}+x-8 & \text { for } & x>4 \end{array}\right.

See Solution

Problem 12258

Bestimmen Sie die 1. Ableitung der Funktionen: a) f(x)=xt3f(x)=x^{t-3}, b) f(x)=13x3+x1f(x)=\frac{1}{3} x^{3}+x-1, c) f(b)=4abf(b)=4 a b, d) f(z)=4z+zf(z)=\frac{4}{z}+\sqrt{z}, e) f(x)=4x2+0,5x+1f(x)=-4 x^{2}+0,5 x+1.

See Solution

Problem 12259

Maximize the volume of a cylinder with a ribbon of length 168cm168 \, \text{cm} (after bow) wrapping around it. Find radius and height.

See Solution

Problem 12260

Write the iterated integral of a continuous function ff over the region R={(x,y):0xy(2y)}R=\{(x, y): 0 \leq x \leq y(2-y)\} using dydxd y d x.

See Solution

Problem 12261

Set up the double integral for the volume VV under z=71+x2+y2z=7-\sqrt{1+x^{2}+y^{2}} and above region R={(r,θ):3r26,0θ2π}R=\{(r, \theta): \sqrt{3} \leq r \leq 2 \sqrt{6}, 0 \leq \theta \leq 2 \pi\}.

See Solution

Problem 12262

Calculate the volume of the solid above region R={(x,y):0x3,0y223x}R=\{(x, y): 0 \leq x \leq 3, 0 \leq y \leq 2-\frac{2}{3} x\}, bounded by z=4x2+9y2z=4 x^{2}+9 y^{2} and z=724x29y2z=72-4 x^{2}-9 y^{2}.

See Solution

Problem 12263

Estimate the area between the curves y=1.5xy=1.5 x and y=0.25x2y=0.25 x^{2} using a graphing calculator.

See Solution

Problem 12264

Calculate the area under the curve y=19x2+2y=19 x^{2}+2 from x=0x=0 to x=1x=1 using a calculator.

See Solution

Problem 12265

Find the time for a bacteria population to double with a growth rate of 1.6%1.6\% per hour using continuous exponential growth.

See Solution

Problem 12266

Graph the curves y=3xy=3x and y=8xy=8\sqrt{x}. Find the other intersection point's x\mathrm{x}-coordinate and the area between them.

See Solution

Problem 12267

Encuentra la vida media de una sustancia radiactiva con una tasa de descomposición del 7.9%7.9\% por día.

See Solution

Problem 12268

Find the center of mass coordinates (B,yˉ)(\overline{\mathscr{B}}, \bar{y}) for the region between x=2x=2 and y=x+2y=x+2 with density ρ=3x\rho=3x.

See Solution

Problem 12269

Find the mass of the half annulus R={(r,θ):1r2,0θπ}R=\{(r, \theta): 1 \leq r \leq 2,0 \leq \theta \leq \pi\} with density ρ(r,θ)=6+rsinθ\rho(r, \theta)=6+r \sin \theta.
M= M=\square

See Solution

Problem 12270

Determine if the series n=12n2en/2\sum_{n=1}^{\infty} \frac{2 n^{2}}{e^{n / 2}} converges or diverges using the Integral Test.

See Solution

Problem 12271

Find the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) for the region between the axes and lines x=2x=2, y=x+2y=x+2 with density ρ=3x\rho=3x.

See Solution

Problem 12272

Find the derivative of D(x)=ex22σ2D(x)=e^{-\frac{x^{2}}{2 \sigma^{2}}}.

See Solution

Problem 12273

Estimate n=18n3\sum_{n=1}^{\infty} \frac{8}{n^{3}} within 0.112 of its exact value.

See Solution

Problem 12274

Una sustancia crece a una tasa del 15%15\% diario. Si inicia con 198 g, ¿cuánto pesará después de 2 días? Round a la décima.

See Solution

Problem 12275

Encuentra la población de bacterias después de 6 horas, comenzando con 666 y creciendo al 19%19\% por hora.

See Solution

Problem 12276

A radioactive substance starts at 4814 kg4814 \mathrm{~kg} and decays at 4%4\% per day. What's its mass after 5 days?

See Solution

Problem 12277

Find the distance traveled by a car with velocity f(t)=9tf(t)=9t m/s from t=0t=0 to t=10t=10 seconds. Distance == (in meters)

See Solution

Problem 12278

Estimate how many terms of the series n=13n1.1\sum_{n=1}^{\infty} \frac{3}{n^{1.1}} are needed for an error of at most 0.00010.0001.

See Solution

Problem 12279

Calculate the area between y=x1/2y=x^{1/2} and y=x1/4y=x^{1/4} for 0x10 \leq x \leq 1. Area =

See Solution

Problem 12280

Find if the function f(x)=5x2+50x+121f(x)=5 x^{2}+50 x+121 has a max, min, or neither. If so, determine the value and location.

See Solution

Problem 12281

Find the volume change rate VV of a ball with radius r=10.5 mr=10.5 \mathrm{~m}, given V=43πr3V=\frac{4}{3} \pi r^{3}.

See Solution

Problem 12282

Find the difference quotient, f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}, for the function f(x)=2x6f(x)=2x-6.

See Solution

Problem 12283

A school uses 120 meters of fencing for 3 sides of a playground.
(a) Find the area function A(x)A(x) in terms of xx. A(x)= A(x)=\square
(b) What length xx maximizes the area? Length x:x: \square meters
(c) What is the maximum area? Maximum area: \square square meters

See Solution

Problem 12284

Find a number aa so that the average rate of change of f(x)=1xf(x)=\frac{1}{x} on [4,a][4, a] equals 119-\frac{1}{19}.

See Solution

Problem 12285

Find the average cost per appliance for the first 150 appliances and the marginal cost at 150 appliances.

See Solution

Problem 12286

Find the long-run behavior of the following functions:
1. x2+1x2+2\frac{x^{2}+1}{x^{2}+2}
2. x2+1x3+2\frac{x^{2}+1}{x^{3}+2}
3. x3+1x2+2\frac{x^{3}+1}{x^{2}+2}

See Solution

Problem 12287

Skizziere den Funktionsgraphen, sodass f(x)<0f'(x) < 0 und f(x)<0f''(x) < 0 im gewählten Intervall erfüllt sind.

See Solution

Problem 12288

Find the average velocity of a particle with displacement s(t)=3ts(t)=-3t between t=4t=4 and t=4+ht=4+h, where h0h \neq 0.

See Solution

Problem 12289

Find the average velocity of a particle with displacement s(t)=t2s(t)=-t^{2} between t=4t=4 and t=4+ht=4+h, where h0h \neq 0.

See Solution

Problem 12290

Find the average velocity of a particle with displacement s(t)=10t2s(t)=10 t^{2} from t=1t=1 to t=1+ht=1+h, h0h \neq 0.

See Solution

Problem 12291

Find the instantaneous velocity of the particle at t=3t=3 given its displacement s(t)=t3s(t)=t^{3} in meters.

See Solution

Problem 12292

Find the average velocity of a particle with displacement s(t)=t211s(t)=t^{2}-11 from t=5t=5 to t=5+ht=5+h, where h0h \neq 0.

See Solution

Problem 12293

Find the instantaneous velocity of a particle moving with displacement s(t)=5t2s(t)=5 t^{2} at t=1t=1 hour.

See Solution

Problem 12294

Find the instantaneous velocity of the particle at t=0t=0 given its displacement s(t)=t29t22s(t)=t^{2}-9t-22.

See Solution

Problem 12295

Evaluate the integrals: 6. 14+(x3)2dx\int \frac{1}{4+(x-3)^{2}} d x and 8. 1xx44dx\int \frac{1}{x \sqrt{x^{4}-4}} d x.

See Solution

Problem 12296

Bestimme die Stammfunktion F(x)F(x) für f(x)=xnf(x)=x^{n} und vervollständige: F(x)=1n+1xn+1+CF(x)=\frac{1}{n+1} x^{n+1} + C.

See Solution

Problem 12297

Find the average velocity of a particle with displacement s(t)=t+8s(t)=-t+8 between t=7t=7 and t=7+ht=7+h, where h0h \neq 0.

See Solution

Problem 12298

Welche Funktionsterme sind Stammfunktionen von f(x)=x3f(x)=x^{3}? Wähle die richtigen Antworten aus: 14x4,4x4+7,14x4+7,14x4+4,3x2\frac{1}{4} x^{4}, 4 x^{4}+7, \frac{1}{4} x^{4}+7, \frac{1}{4} x^{4}+4, 3 x^{2}.

See Solution

Problem 12299

Find the slope of the secant line for k(x)=3x219x+10k(x)=-3 x^{2}-19 x+10 from x=0x=0 to x=hx=h where h0h \neq 0.

See Solution

Problem 12300

Calculate the average rate of change of g(x)=9x2g(x)=9 x^{2} from x=1x=1 to x=1+hx=1+h, with h0h \neq 0.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord