Calculus

Problem 29301

Evaluate the integral 10x512x2+4dx\int_{-1}^{0} \frac{x^{5}}{\sqrt{12 x^{2}+4}} d x.

See Solution

Problem 29302

Calculate the indefinite integral and include the constant CC:
x+4x2+8x6dx \int \frac{x+4}{\sqrt{x^{2}+8 x-6}} d x

See Solution

Problem 29303

Differentiate the function 4x54x+3x4x^{5}-\frac{4}{x}+3\sqrt{x}.

See Solution

Problem 29304

Find dvdt\frac{dv}{dt} for the function 3tan(2t)4e3t+ln(5)3 \tan(2t) - 4e^{3t} + \ln(5).

See Solution

Problem 29305

Find uu and dvd v to solve the integral xe237xdx\int x e^{237 x} d x where dv=dvdxd v = {}^{d v} d x.

See Solution

Problem 29306

Differentiate f(θ)=(2θ+1)ln(1+2θ)f(\theta)=(2 \theta+1) \ln (1+2 \theta) with respect to θ\theta.

See Solution

Problem 29307

Find the derivative of y=43x2+1y=\frac{4}{\sqrt{3x^{2}+1}} with respect to xx, simplified.

See Solution

Problem 29308

Evaluate the integral π/6π/23cscx9cscxcscxcotxdx\int_{\pi / 6}^{\pi / 2} 3^{\csc x} 9^{\csc x} \csc x \cot x \, dx.

See Solution

Problem 29309

Find the derivative of the integral: ddx43xcos(4t)dt\frac{d}{d x} \int_{4}^{\sqrt{3 x}} \cos (4 t) d t.

See Solution

Problem 29310

Find the average rate of change of g(x)=4x2+3x3g(x)=4x^{2}+\frac{3}{x^{3}} over the interval [2,1][-2,1].

See Solution

Problem 29311

Find the derivative of the function f(x)=03xsin(t2)dtf(x)=\int_{0}^{3 x} \sin(t^{2}) dt. What is f(x)f^{\prime}(x)?

See Solution

Problem 29312

Evaluate the integral: x24x+4x3+1dx\int \frac{x^{2}-4 x+4}{x^{3}+1} d x

See Solution

Problem 29313

Find the derivative of the function 3sin(5x)+73 \sin (5 x) + 7.

See Solution

Problem 29314

Find the derivative of y=(x39)4y=\left(x^{3}-9\right)^{4} with respect to xx: dydx\frac{d y}{d x}.

See Solution

Problem 29315

Evaluate the integral: 112x18xx2dx\int \frac{11-2 x}{\sqrt{1-8 x-x^{2}}} d x

See Solution

Problem 29316

Find the derivative dydx\frac{d y}{d x} for the function y=xx2y=\frac{x}{x-2}.

See Solution

Problem 29317

Find f(π2)f^{\prime \prime}\left(\frac{\pi}{2}\right) for the function f(x)=sin(3x)f(x)=\sin(3x).

See Solution

Problem 29318

Evaluate the integral: 112x18xx2dx\int \frac{11-2 x}{\sqrt{1-8 x-x^{2}}} \, dx

See Solution

Problem 29319

Find dydx\frac{d y}{d x} if x3+y3=3xyx^{3}+y^{3}=3 x y.

See Solution

Problem 29320

Find the value of kk if y=xekxy=x e^{k x} and d2ydx2=6\frac{d^{2} y}{d x^{2}}=6 at x=0x=0.

See Solution

Problem 29321

Find the derivative of tan(3x)+e3y\tan(3x) + e^{3y} with respect to xx.

See Solution

Problem 29322

Find the derivative of the integral 2x5t2tdt\int_{-2}^{x^{5}} \sqrt{t^{2}-t} d t with respect to xx.

See Solution

Problem 29323

Find the limit as xx approaches 0 from the left: limx0sinxx\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}.

See Solution

Problem 29324

Find f(x)f^{\prime}(x) for the function f(x)=13xcos(t2)dtf(x)=\int_{-1}^{3 x} \cos(t^{2}) dt.

See Solution

Problem 29325

Find the acceleration of a particle at time t=4t=4 if its velocity is v(t)=3+4.1cos(0.9t)v(t)=3+4.1 \cos (0.9 t).

See Solution

Problem 29326

Find F(x)F^{\prime}(x) for the function F(x)=4x3sin(t2+2t)dtF(x)=\int_{4}^{x^{3}} \sin(t^{2}+2t) dt.

See Solution

Problem 29327

Find g(2)g'(2) where g(x)=1xf(t)dtg(x)=\int_{-1}^{x} f(t) dt and ff is the derivative of gg.

See Solution

Problem 29328

Find the value of 34(f(x)1)dx\int_{3}^{-4}(f(x)-1) d x given 35f(x)dx=2\int_{3}^{5} f(x) d x=2 and 45f(x)dx=4\int_{-4}^{5} f(x) d x=-4.

See Solution

Problem 29329

Find the average value of the function f(x)=x2+4f(x)=-x^{2}+4 over the interval [1,1][-1,1] in simplest form.

See Solution

Problem 29330

Calculate the integral: (10x+2x2+25)dx\int\left(\frac{10 x+2}{x^{2}+25}\right) d x

See Solution

Problem 29331

Explore Taylor polynomials up to degree five for f(x)=exf(x)=e^{x} at a=1a=1. Find T0(x)T_0(x) to T5(x)T_5(x) and coefficients.

See Solution

Problem 29332

Calculate the integral: 5x49x4+16dx\int \frac{5x}{49x^4 + 16} \, dx

See Solution

Problem 29333

Calculate the integral: (4x+581x2)dx\int\left(\frac{4 x+5}{\sqrt{81-x^{2}}}\right) dx

See Solution

Problem 29334

Evaluate the integral: ex181e2xdx\int \frac{e^{x}}{\sqrt{1-81 e^{2 x}}} d x

See Solution

Problem 29335

Find the total cost for 30 units using C(x)=14x+1500C(x)=14x+1500, the marginal cost, and the cost to increase production to 31 units.

See Solution

Problem 29336

Calculate the integral: 5sin(x)cos(x)10+sin2(x)dx\int \frac{5 \sin (x) \cos (x)}{\sqrt{10+\sin ^{2}(x)}} \, dx

See Solution

Problem 29337

Calculate the integral: (4x33(x+4)26x2+16)dx\int\left(\frac{4}{x-3}-\frac{3}{(x+4)^{2}}-\frac{6}{x^{2}+16}\right) dx

See Solution

Problem 29338

Evaluate the integral: 0a6xa2x2dx\int_{0}^{a} 6 x \sqrt{a^{2}-x^{2}} \, dx, with aa being a constant.

See Solution

Problem 29339

Calculate the integral of (12f(x)g(x))\left(\frac{1}{2} f(x)-g(x)\right) with respect to xx.

See Solution

Problem 29340

Find the limit as xx approaches 1 from the left: limx1cosh(1x)\lim _{x \rightarrow 1^{-}} \cosh (\sqrt{1-x}).

See Solution

Problem 29341

Find the limit: limx0tan2(3x)xsin(7x)\lim _{x \rightarrow 0} \frac{\tan ^{2}(3 x)}{x \sin (7 x)}

See Solution

Problem 29342

Find the limit as θ\theta approaches π2\frac{\pi}{2} for the expression 5θsinθ5 \theta \sin \theta.

See Solution

Problem 29343

Differentiate y=[9lnx+sin2(xe)]sin1xy=\left[9^{\ln x}+\sin ^{2}\left(x^{e}\right)\right]^{\sin ^{-1} x} using logarithmic differentiation.

See Solution

Problem 29344

Find the definite integral of the piecewise function with points (2,3), (4,-3), (7,6) and determine its starting point.

See Solution

Problem 29345

Find the area under the curve y=f(x)y=f(x) from x=2x=2 to x=7x=7 using geometric formulas and definite integral properties.

See Solution

Problem 29346

Find the limit: L=limh04(a+h)4ahL = \lim _{h \rightarrow 0} \frac{\sqrt{4(a+h)}-\sqrt{4 a}}{h}.

See Solution

Problem 29347

Find the point of inflection and the slope of the tangent for the function y=x3+3x2y = x^3 + 3x^2.

See Solution

Problem 29348

Calculate the integral from 3 to 4 of the function 5v\frac{5}{v}.

See Solution

Problem 29349

Find the limit: limx1x22x+1x41\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x^{4}-1}.

See Solution

Problem 29350

A 5 kg book falls and lands at 5.7 m/s. Calculate the height it fell from. A. 3.3 m B. 1.7 m C. 16.7 m D. 0.9 m

See Solution

Problem 29351

Compare the vertical distance a projectile falls below a straight-line path with the distance it would fall from rest in the same time.

See Solution

Problem 29352

Bestimmen Sie die Fläche zwischen f(x)=14x3f(x) = \frac{1}{4}x^3 und der x-Achse von x=0x=0 bis x=2x=2.

See Solution

Problem 29353

Bestimmen Sie die Steigung von ff bei x0=πx_{0}=\pi und die Tangentengleichung an ff im Punkt PP.

See Solution

Problem 29354

Bestimmen Sie die Steigung von ff bei x0=πx_{0}=\pi für a) f(x)=9sin(x)f(x)=-9 \sin (x), b) f(x)=5+cos(x)f(x)=5+\cos (x), c) f(x)=5xcos(x)f(x)=5 x-\cos (x). Finden Sie die Tangentengleichung für a) f(x)=cos(x)f(x)=\cos (x) bei P(74π,)P\left(\frac{7}{4} \pi, \square\right), b) f(x)=3sin(x)f(x)=3 \sin (x) bei P(5π3,)P\left(\frac{5 \pi}{3}, \square\right), c) f(x)=x+2sin(x)f(x)=x+2 \sin (x) bei P(π4,)P\left(\frac{\pi}{4}, \square\right).

See Solution

Problem 29355

Bestimmen Sie die Tangentengleichungen für die Funktionen an den Punkten: a) f(x)=cos(x)f(x)=\cos (x) bei P(74π,)P\left(\frac{7}{4} \pi, \square\right) b) f(x)=3sin(x)f(x)=3 \sin (x) bei P(5π3,)P\left(\frac{5 \pi}{3}, \square\right) c) f(x)=x+2sin(x)f(x)=x+2 \sin (x) bei P(π4,)P\left(\frac{\pi}{4}, \square\right)

See Solution

Problem 29356

Verify if y=φ(x)=(1sin(x))1/2y=\varphi(x)=(1-\sin(x))^{-1/2} is a solution of 2y=y3cos(x)2y' = y^3 \cos(x). Calculate 2y2y' and y3cos(x)y^3 \cos(x).

See Solution

Problem 29357

x23+y23=4x^{\frac{2}{3}}+y^{\frac{2}{3}}=4 denklemi için x=8x=8'de ddxyx\frac{d}{dx}y^x'in değerini bulun.

See Solution

Problem 29358

Bestimme die Ableitung der Funktionen: a) f(x)=e0,1x+5f(x)=e^{0,1 x+5}, b) f(t)=3,5e4t9f(t)=3,5 \cdot e^{-4 t-9}, c) f(x)=1,5x1,5e23xf(x)=1,5 x-1,5 \cdot e^{\frac{2}{3} x}, d) f(x)=e(x+2)f(x)=e^{-(x+2)}.

See Solution

Problem 29359

Find the volumes of solids formed by revolving regions bounded by the given equations around specified lines.

See Solution

Problem 29360

Find the volume of the solid formed by revolving the area between these curves around the line y=4y=4: 17. y=x,y=3,x=0y=x, y=3, x=0; 18. y=12x3,y=4,x=0y=\frac{1}{2} x^{3}, y=4, x=0; 19. y=31+x,y=0,x=0,x=3y=\frac{3}{1+x}, y=0, x=0, x=3.

See Solution

Problem 29361

Find the volume of the solid formed by revolving the area between these curves around the line y=4y=4:
1. y=xy=x, y=3y=3, x=0x=0
2. y=12x3y=\frac{1}{2} x^{3}, y=4y=4, x=0x=0
3. y=31+xy=\frac{3}{1+x}, y=0y=0, x=0x=0, x=3x=3

See Solution

Problem 29362

Berechnen Sie das Integral 243dx\int_{-2}^{4} 3 \, dx und zeichnen Sie den Graphen der Funktion.

See Solution

Problem 29363

Bestimmen Sie die Nullstellen der Funktion f(x)=x34xf(x)=x^{3}-4x und die Tangente im Punkt WW.

See Solution

Problem 29364

How far does an object fall during the third second after being dropped? A. 4.9 m4.9 \mathrm{~m} B. 9.8 m9.8 \mathrm{~m} C. 15 m15 \mathrm{~m} D. 25 m25 \mathrm{~m}

See Solution

Problem 29365

Find the speed of a particle at t=2t=2 sec given its position function x(t)=5t22t4x(t)=5 t^{2}-2 t-4.

See Solution

Problem 29366

Find the limits as xx approaches infinity: 1) 2x32x-2x^3 - 2x, 2) 2x4+6x32x2x^4 + 6x^3 - 2x, 3) 9x56x3x-9x^5 - 6x^3 - x.

See Solution

Problem 29367

How far does an object fall during the third second after being released from a building? Use s=12gt2s = \frac{1}{2}gt^2.

See Solution

Problem 29368

Bestimmen Sie die Konzentration f(1)f(1), wann f(x)=500f(x)=500 und erklären Sie f(10)=0f'(10)=0, f(10)=1190f(10)=1190. Ordnen Sie Ableitungen zu.

See Solution

Problem 29369

Determine if the following limit statements are true or false:
1. limx(2x32x)=\lim _{x \rightarrow-\infty}(-2 x^{3}-2 x)=\infty
2. limx(2x4+6x32x)=\lim _{x \rightarrow \infty}(2 x^{4}+6 x^{3}-2 x)=\infty
3. limx(9x56x3x)=\lim _{x \rightarrow \infty}(-9 x^{5}-6 x^{3}-x)=-\infty

See Solution

Problem 29370

Gegeben ist die Funktion f(x)=312exf(x)=3-\frac{1}{2} \cdot e^{-x}.
a) Finde die Schnittpunkte von Kf\mathrm{K}_{f} mit den Achsen und die Asymptote. b) Beschreibe die Entstehung von Kf\mathrm{K}_{f} aus exe^{x} und zeige, dass ff monoton wächst. c) Erkläre, wie man den Flächeninhalt zwischen ff, y=3y=3, der yy-Achse und x=4x=4 berechnet. d) Bestimme die Koordinaten des Berührpunkts B der Tangente y=12x+52y=\frac{1}{2} x+\frac{5}{2}. e) Beurteile die Aussage über ganzrationale Funktionen vierten Grades mit drei Wendepunkten.

See Solution

Problem 29371

Find the limit of the function and determine if the statements are True or False:
1. limx(2x32x)=\lim _{x \rightarrow-\infty}\left(-2 x^{3}-2 x\right)=\infty
2. limx(2x4+6x32x)=\lim _{x \rightarrow \infty}\left(2 x^{4}+6 x^{3}-2 x\right)=\infty
3. limx(9x56x3x)=\lim _{x \rightarrow \infty}\left(-9 x^{5}-6 x^{3}-x\right)=-\infty

See Solution

Problem 29372

Berechne den Steigungswinkel und die Steigung in Prozent für die Punkte B1(10,h(10))B_{1}(10, h(10)), B2(30,h(30))B_{2}(30, h(30)), B3(50,h(50))B_{3}(50, h(50)) und B4(60,h(60))B_{4}(60, h(60)) der Funktion h(x)=0,00001x40,0006x3+0,1x2h(x)=-0,00001 \cdot x^{4}-0,0006 \cdot x^{3}+0,1 \cdot x^{2}.

See Solution

Problem 29373

Berechne die Fläche zwischen dem Graphen von ff, der Tangente in PP und der xx-Achse für f(x)=12x2f(x)=\frac{1}{2} x^{2} und P(34,5)P(3 \mid 4,5).

See Solution

Problem 29374

Find the limit: limxx22+2x\lim _{x \rightarrow-\infty} \frac{x^{2}}{2+2^{x}}

See Solution

Problem 29375

Soru 4. Aşağıdaki limitleri hesaplayın. (a) limxx(sin(5/x))\lim _{x \rightarrow \infty} x(\sin (5 / x)) (b) limx01sinxcotx\lim _{x \rightarrow 0} \frac{1}{\sin x}-\cot x

See Solution

Problem 29376

A spring stretches from 9.0cm9.0 \, \mathrm{cm} to 12.0cm12.0 \, \mathrm{cm}. Calculate the work done in this stretch.

See Solution

Problem 29377

Untersuchen Sie das Grenzverhalten von f:x7x+24f: x \rightarrow \frac{7}{x+2}-4 für x+x \rightarrow+\infty und xx \rightarrow-\infty.

See Solution

Problem 29378

Oblicz sumę szeregu n=0(1)n+122n\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^{2 n}}.

See Solution

Problem 29379

A patient takes 600 mg of aspirin.
a) Write the equation for aspirin amount after tt minutes. b) How many half-lives in 3 hours? c) Amount left after 5 hours?

See Solution

Problem 29380

Find limx2f(x)\lim _{x \rightarrow 2} f(x) where f(x)=lnxf(x)=\ln x for 0<x20<x \leq 2 and f(x)=x2ln2f(x)=x^{2} \ln 2 for 2<x42<x \leq 4.

See Solution

Problem 29381

Berechne die Steigung von f(x)=2x2+1f(x)=2 x^{2}+1 bei x0=3x_{0}=3 mit der h-Methode oder der (xx0)(x \rightarrow x_{0})-Methode.

See Solution

Problem 29382

Estimate the rate of change in shirts sold at 4 weeks for S(t)=x2+5x+2S(t)=-x^{2}+5x+2 using a centered interval.

See Solution

Problem 29383

Find the limit as xx approaches 2 for the expression x24x25x+6\frac{x^{2}-4}{x^{2}-5x+6}.

See Solution

Problem 29384

Find the tangent line equation to y=xtan(x)y=x \tan (x) at x=π4x=\frac{\pi}{4} with slope y(π4)=1+π2y^{\prime}\left(\frac{\pi}{4}\right)=1+\frac{\pi}{2}.

See Solution

Problem 29385

Given the table of values for f(x)f(x) at different xx, which limit conclusion is correct as xx approaches 3? A. limx3f(x)=0\lim _{x \rightarrow 3} f(x)=0 B. limx3f(x)=3\lim _{x \rightarrow 3} f(x)=3 C. limx3f(x)=10\lim _{x \rightarrow 3} f(x)=10 D. limx3f(x)\lim _{x \rightarrow 3} f(x) does not exist

See Solution

Problem 29386

Estimate the average rate of change of Marie's college fund A(t)=100(1.04)tA(t)=100(1.04)^{t} from age 17 to 18, rounded to the nearest tenth.

See Solution

Problem 29387

Find the tangent line equation at point (1,0)(1,0) for the curve x2siny+(2x+y)3=8x^{2} \sin y+(2 x+y)^{3}=8.

See Solution

Problem 29388

Find stationary points of y=3x416x3+18x2+6y=3 x^{4}-16 x^{3}+18 x^{2}+6 and values of cc for four real roots in 3x416x3+18x2+6=c3 x^{4}-16 x^{3}+18 x^{2}+6=c.

See Solution

Problem 29389

Find the velocity and acceleration of a train at t=5 st=5 \mathrm{~s} given s(t)=200(t+1)2s(t)=200(t+1)^{-2}. Is it speeding up or slowing down?

See Solution

Problem 29390

Estimate 314/531^{4 / 5} using a linear approximation.

See Solution

Problem 29391

Find the rate of change of depth D(t)=7sin(π6t7π6)+4D(t)=7 \sin \left(\frac{\pi}{6} t-\frac{7 \pi}{6}\right)+4 at 6 a.m. (in ft/hr).

See Solution

Problem 29392

Une boule est lâchée d'une hauteur de 553,2 m. Quelle est sa vitesse juste avant de toucher le sol?

See Solution

Problem 29393

Evaluate these integrals: a) sinθdθ\int \sin \theta d \theta, b) x+x+x3x2dx\int \frac{x+\sqrt{x}+\sqrt{x^{3}}}{x^{2}} d x, c) 01(x+1)2dx\int_{0}^{1}(x+1)^{2} d x.

See Solution

Problem 29394

Find the derivative of y=(6x7)95y=(6 x-7)^{95}, that is, calculate y=y^{\prime}=.

See Solution

Problem 29395

Find the velocity of the object at time t=π4t=\frac{\pi}{4} given S(t)=12+7costS(t)=12+7 \cos t.

See Solution

Problem 29396

A quantity starts at 2300 and grows at 45%45\% per minute. Find its value after 0.2 hours, rounded to two decimal places.

See Solution

Problem 29397

Arianys invested \61,000at 61,000 at 7 \frac{1}{8} \%continuousinterest.Yusufinvested$61,000at continuous interest. Yusuf invested \$ 61,000 at 7 \frac{5}{8} \%$ monthly. After 14 years, how much more does Yusuf have than Arianys?

See Solution

Problem 29398

Approximate 04x3dx\int_{0}^{4} x^{3} d x with a left Riemann sum for n=8n=8, then find the exact value using the Fundamental Theorem.

See Solution

Problem 29399

Find the derivative of ln(5x2+4)\ln(5x^{2}+4) with respect to xx.

See Solution

Problem 29400

For the function y=x3(x2+1)y=x^{3}(x^{2}+1), find: a) dydxx=1=m\left.\frac{d y}{d x}\right|_{x=-1}=m, b) the point at x=1x=-1, c) the tangent line equation at x=1x=-1.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord