Calculus

Problem 11101

Find the average value of f(x)=14x3f(x)=\frac{1}{\sqrt{4x-3}} from x=3x=3 to x=21x=21, rounded to four decimal places.

See Solution

Problem 11102

Find the inflection point of the polynomial f(x)f(x) where f(x)=3x+5f^{\prime \prime}(x)=3x+5. Options: x=53,x=35,x=35,x=53x=-\frac{5}{3}, x=\frac{3}{5}, x=-\frac{3}{5}, x=\frac{5}{3}.

See Solution

Problem 11103

Calculate the average value of f(x)=14x3f(x)=\frac{1}{\sqrt{4 x-3}} over the interval from x=3x=3 to x=21x=21.

See Solution

Problem 11104

Use a calculator to estimate the value of e1.1e^{1.1}.

See Solution

Problem 11105

Invest \$2700 at 3.9% APR compounded continuously.
a. Find the value after 5 years: \$2700e^{(5 \cdot 0.039)}.
b. Define function f(t)=2700e(0.039t)f(t) = 2700e^{(0.039t)}.
c. What is the annual percent change (APY)?

See Solution

Problem 11106

Bestimme die Ableitung von ff an x0=2x_{0}=2 mit dem Differenzenquotienten für kleine hh für die Funktionen: a) f(x)=x2f(x)=x^{2}, b) f(x)=x3f(x)=x^{3}, c) f(x)=2x23f(x)=2 x^{2}-3, d) f(x)=x4f(x)=x^{4}, e) f(x)=2xf(x)=\frac{2}{x}, f) f(x)=4xx2f(x)=4 x-x^{2}, g) f(x)=xf(x)=\sqrt{x}, h) f(x)=5f(x)=5.

See Solution

Problem 11107

Find xx such that T5(x)f(x)<0.001938|T_{5}(x) - f(x)| < 0.001938 for x1|x| \leq 1, where T5(x)=1x2/2+x4/4!T_{5}(x)=1-x^{2}/2+x^{4}/4!.

See Solution

Problem 11108

Find the first and second derivatives of f(x)=14x4+xf(x)=\frac{1}{4}x^4 + x.

See Solution

Problem 11109

Find all values of cc for which the function f(x)=cx+x2f(x)=\frac{c}{x}+x^{2} has a relative minimum but no relative maximum.

See Solution

Problem 11110

Calculate the integral: π/2πsin2x2sinxdx\int_{\pi / 2}^{\pi} \frac{\sin 2 x}{2 \sin x} d x.

See Solution

Problem 11111

Design a rectangular crate with a square base and volume 5632ft35632 \mathrm{ft}^{3}. Minimize material costs: top/sides at \$4/ft², bottom at \$7/ft². Find dimensions.

See Solution

Problem 11112

Find the differential of the function y=3+cos(θ)y=\sqrt{3+\cos (\theta)}. What is dyd y?

See Solution

Problem 11113

Find the differential of the function y=ln(sin(8θ))y=\ln (\sin (8 \theta)). What is dyd y?

See Solution

Problem 11114

Determine if f(x)f'(x) is positive (+) or negative (-) for x=13x=\frac{1}{3} and x>13x>\frac{1}{3} for f(x)=3x22x+1f(x)=3x^2-2x+1.

See Solution

Problem 11115

Find the differential of y=ln(sin(8θ))y=\ln (\sin (8 \theta)). What is dyd y?

See Solution

Problem 11116

Find the linear approximation L(x)L(x) for the following functions near given points:
1. f(x)=x+x4,a=0f(x)=x+x^{4}, a=0
2. f(x)=1x,a=2f(x)=\frac{1}{x}, a=2
3. f(x)=tanx,a=π4f(x)=\tan x, a=\frac{\pi}{4}
4. f(x)=sinx,a=π2f(x)=\sin x, a=\frac{\pi}{2}
5. f(x)=xsinx,a=2πf(x)=x \sin x, a=2 \pi
6. f(x)=sin2x,a=0f(x)=\sin ^{2} x, a=0

See Solution

Problem 11117

The function f(x)=x53f(x)=x^{5}-3 has a critical point at x=0x=0. Is it a local max, min, or no extrema?

See Solution

Problem 11118

Find the tangent line equation for f(x)=16+x2f(x)=\frac{1}{6+x^{2}} at x=3x=3 with slope 275-\frac{2}{75}.

See Solution

Problem 11119

Find the derivative f(x)f^{\prime}(x) of the constant function f(x)=6f(x)=-6. What is f(x)f^{\prime}(x)?

See Solution

Problem 11120

Find the derivative dydx\frac{d y}{d x} for the function y=x2y=x^{-2}. What is dydx=\frac{d y}{d x}=?

See Solution

Problem 11121

Find the derivative f(x)f^{\prime}(x) of the function f(x)=4x8f(x)=4 x^{8}.

See Solution

Problem 11122

Find the derivative f(x)f^{\prime}(x) of the function f(x)=7x6f(x)=-7 x^{6}.

See Solution

Problem 11123

Find the derivative dydx\frac{d y}{d x} for y=1x11y=\frac{1}{x^{11}}. What is dydx=\frac{d y}{d x}=\square?

See Solution

Problem 11124

Find the derivative h(t)h^{\prime}(t) for the function h(t)=7.5+7.4t+0.7t3h(t)=7.5+7.4 t+0.7 t^{3}.

See Solution

Problem 11125

Find the derivative G(w)G^{\prime}(w) for the function G(w)=67w6+4w3G(w)=\frac{6}{7 w^{6}}+4 \sqrt[3]{w}. What is G(w)=G^{\prime}(w)=\square?

See Solution

Problem 11126

Find the derivative yy^{\prime} of the function y=6x52x1y=6 x^{-5}-2 x^{-1}.

See Solution

Problem 11127

Finde die Tangentengleichung für f(x)=13x32x+3f(x)=\frac{1}{3} x^{3}-2 x+3 am Punkt (x0,f(x0))(x_0, f(x_0)).

See Solution

Problem 11128

Find the tangent line equation for f(x)=16ex+7xf(x)=16 e^{x}+7 x at x=0x=0. y=y=\square

See Solution

Problem 11129

Differentiate the function f(x)=104x+4exf(x)=10-4 x+4 e^{x}. Find f(x)=f^{\prime}(x)=\square.

See Solution

Problem 11130

Find the rate of learning after 10 hours using N(t)=4+7lntN(t)=4+7 \ln t. What is N(10)N'(10) in words/minute per hour?

See Solution

Problem 11131

Find the critical points of the function y=256xx2y=256 \sqrt{x}-x^{2}. Provide exact values for xx.

See Solution

Problem 11132

Bestimmen Sie die Tangenten- und Normalengleichung von ff an den Punkten B: a) f(x)=x2x;B(26)f(x)=x^{2}-x ; B(-2 \mid 6), b) f(x)=4x+2;B(43)f(x)=\frac{4}{x}+2 ; B(4 \mid 3).

See Solution

Problem 11133

Find the derivative f(x)f^{\prime}(x) of the function f(x)=5lnx+11x22f(x)=-5 \ln x + 11 x^{2} - 2.

See Solution

Problem 11134

Find the velocity of a particle at t=4t=4 seconds, given s(t)=9t2+29ts(t)=9 t^{2}+29 t.

See Solution

Problem 11135

Find the velocity of a particle at t=8t=8 seconds given s(t)=9t2+21ts(t)=9 t^{2}+21 t.

See Solution

Problem 11136

Find the derivative f(x)f^{\prime}(x) for the function f(x)=ex+2xlnxf(x)=e^{x}+2 x-\ln x.

See Solution

Problem 11137

Evaluate the integral 21(u721u5)du\int_{\sqrt{2}}^{1}\left(\frac{u^{7}}{2}-\frac{1}{u^{5}}\right) du.

See Solution

Problem 11138

Find the derivative f(x)f^{\prime}(x) of the function f(x)=(2x+5)(7x6)f(x)=(2 x+5)(7 x-6).

See Solution

Problem 11139

Check if the Mean Value Theorem applies to f(x)=1xf(x)=\frac{1}{x} on [1,3][1,3] and find cc (round to 3 decimal places).

See Solution

Problem 11140

Differentiate the function y=log7(xlog9(x))y=\log_{7}(x \log_{9}(x)) and find y=y'=\square.

See Solution

Problem 11141

Find the derivative of g(x)=sec1(9ex)g(x)=\sec^{-1}(9 e^{x}). What is g(x)g'(x)?

See Solution

Problem 11142

Find the derivative f(x)f^{\prime}(x) for the function f(x)=3x72x+3f(x)=\frac{3 x-7}{2 x+3}.

See Solution

Problem 11143

Find the yy-intercept of the tangent line to f(x)=(3x21)(x2+2)f(x)=(3x^2-1)(x^2+2) at x=1x=1.

See Solution

Problem 11144

Find the derivative f(x)f^{\prime}(x) of the function f(x)=2xexf(x)=2 x e^{x}.

See Solution

Problem 11145

Compute the following values using linear approximation within 0.01: (2.001)^{6}, \sin(0.02), \cos(0.03), (15.99)^{1/4}, \frac{1}{0.98}, \sin(3.14).

See Solution

Problem 11146

Find the slope of the tangent line to the curve y=4xy=\frac{4}{x} at the point (1,4)(1,4).

See Solution

Problem 11147

Differentiate the function h(x)=ex7+ln(x)h(x)=e^{x^{7}+\ln (x)} and find h(x)h^{\prime}(x).

See Solution

Problem 11148

Calculate 14(f(x)g(x))dx\int_{1}^{4} (f(x)-g(x)) dx for f(x)=x2+6x4f(x)=-x^2+6x-4 and g(x)=xg(x)=x.

See Solution

Problem 11149

Find the velocity of the object at t=3t=3 given its position s(t)=3t+t2s(t)=-3t+t^{2} in metres.

See Solution

Problem 11150

Find the missing expression in the equation: ddx(92x2)3=3(92x2)2?\frac{d}{d x}\left(9-2 x^{2}\right)^{3}=3\left(9-2 x^{2}\right)^{2} ?

See Solution

Problem 11151

Find the point where the tangent to y=(x2)2(x+3)y=(x-2)^{2}(x+3) is horizontal. Options: (1,18)(-1,18), (1,4)(1,4), (2,16)(-2,16), (2,0)(2,0).

See Solution

Problem 11152

Find the expression for ? to make the equation valid: ddxex7+6=ex7+6?\frac{\mathrm{d}}{\mathrm{dx}} e^{\mathrm{x}^{7}+6}=e^{\mathrm{x}^{7}+6} ?

See Solution

Problem 11153

Find the velocity of the object at time t=1t=1 for the position function s(t)=5t(t2)2s(t)=5 t(t-2)^{2}.

See Solution

Problem 11154

Find the derivative f(x)f^{\prime}(x) for the function f(x)=3x4lnxf(x)=3 x^{4} \ln x.

See Solution

Problem 11155

Find the instantaneous pulse rate change for a person xx inches tall, given y=590x1/2y=590 x^{-1/2} for heights 35 and 65 inches.

See Solution

Problem 11156

Find the learning rate for y=40xy=40\sqrt{x} at x=1x=1 hour and x=16x=16 hours. What is the rate at 1 hour?

See Solution

Problem 11157

Find the slope of the tangent to y=1xy=\sqrt{1-x} at the point (8,3)(-8,3).

See Solution

Problem 11158

A couple invested a \$134,000 inheritance at 7.7\% interest for 14 years. What will be their half-year payments for 20 years?

See Solution

Problem 11159

Find the learning rate at 1 hour and 16 hours for y=30x,0x16y=30 \sqrt{x}, 0 \leq x \leq 16. Rate at 1 hour is \square.

See Solution

Problem 11160

Find the gradient of g(x)=14tanx3cosxx3g(x)=\frac{1}{4} \tan x-3 \cos x-x^{3} at x=π6x=\frac{\pi}{6}.

See Solution

Problem 11161

Find the learning rate using y=30xy=30 \sqrt{x} at 1 hour and 9 hours. What is the rate at 1 hour?

See Solution

Problem 11162

Finde die unbekannte Größe, sodass die folgenden Integrale gleich null sind:
a) 12(x26)dx=0\int_{-1}^{2}(x^{2}-6) dx=0, b) 0b(x28x)dx=0\int_{0}^{b}(x^{2}-8x) dx=0, c) (13x43x2)dx=0\int(\frac{1}{3} x^{4}-3 x^{2}) dx=0.

See Solution

Problem 11163

Find the learning rate at 1 hour and 16 hours given y=50x,0x16y=50 \sqrt{x}, 0 \leq x \leq 16. Rate at 1 hour: \square.

See Solution

Problem 11164

Find xx in [0,2π)[0, 2\pi) such that the derivative h(x)=0h'(x)=0 for h(x)=sinx+cosxh(x)=\sin x+\cos x.

See Solution

Problem 11165

A radioactive sample halves in 7 years. How long to decay to 56\frac{5}{6} of its original amount? (3 decimal places)

See Solution

Problem 11166

Find the learning rate for y=50xy = 50 \sqrt{x} at x=1x = 1 and x=4x = 4. Answer: \square items per hour.

See Solution

Problem 11167

A substance decays to 13\frac{1}{3} in 10 hours. What is its half-life? Round to 3 decimal places.

See Solution

Problem 11168

Find the instantaneous rate of change of pulse rate y=598x1/2y=598 x^{-1/2} for heights 31 and 75 inches. Round to the nearest hundredth.

See Solution

Problem 11169

Find the second derivative of the function f(x)=7x34x2+2xf(x)=-7 x^{3}-4 x^{2}+2 x.

See Solution

Problem 11170

Find the instantaneous rate of change of pulse rate y=598x1/2y=598 x^{-1/2} for heights 31 inches and 75 inches.

See Solution

Problem 11171

Find the first time t>0t>0 when the acceleration a(t)=0a(t)=0 for the particle with velocity v(t)=et2tsintv(t)=e^{t^{2}-\sqrt{t}}-\sin t.

See Solution

Problem 11172

Find (f1)(1)\left(f^{-1}\right)^{\prime}(1) for the function f(x)=3x1x+3f(x)=\frac{3 x-1}{x+3}.

See Solution

Problem 11173

Find the value of aa such that the tangent line to f(x)=ln(x2+1)f(x)=\ln(x^{2}+1) at x=2x=2 is parallel to g(x)=x5+x3g(x)=x^{5}+x^{3} at x=ax=a.

See Solution

Problem 11174

Find (f1)(6)\left(f^{-1}\right)^{\prime}(6) using the values of f(x)f(x) and f(x)f^{\prime}(x) given in the table.

See Solution

Problem 11175

Find P(t)P^{\prime}(t) when P(t)P(t) satisfies y=3yy^{\prime}=3y and P(0)=600P(0)=600, given P(t)=1000P(t)=1000.

See Solution

Problem 11176

Find (f1)(6)\left(f^{-1}\right)^{\prime}(6) using (f1)(x)=1f(f1(x))\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}. Also, write the tangent line equation for y=g1(x)y=g^{-1}(x) at x=2x=2.

See Solution

Problem 11177

Find the elasticity of demand for D(p)=202p2D(p) = 202 - p^{2} at p=12p = 12 and classify it as elastic, inelastic, or unit elasticity.

See Solution

Problem 11178

Find the integral of the function: (2x34x)dx\int\left(2 x^{3}-4 x\right) d x.

See Solution

Problem 11179

Find the elasticity of demand for D(p)=202p2D(p)=202-p^{2} at p=12p=12 and classify it as elastic, inelastic, or unit elastic.

See Solution

Problem 11180

Find the production level xx that minimizes the average cost given c(x)=x322x2+20,000xc(x)=x^{3}-22x^{2}+20,000x.

See Solution

Problem 11181

Find the production level xx that minimizes the average cost given c(x)=x316x2+10,000xc(x)=x^{3}-16 x^{2}+10,000 x. Options: 7, 8, 9, 10 items.

See Solution

Problem 11182

Calculate the integral from 0 to 3 of the function 13x223x+43\frac{1}{3} x^{2}-\frac{2}{3} x+\frac{4}{3}.

See Solution

Problem 11183

Evaluate the integral from 0 to 1: 01(2x2)2dx\int_{0}^{1}(2 x-2)^{2} d x.

See Solution

Problem 11184

Find h(1)h'(-1) for h(x)=f(x)+3g(x)h(x)=f(x)+3g(x), where f(x)=2g(x)f'(x)=2g'(x) and limx1f(x)f(1)x+1=6\lim_{x\to-1}\frac{f(x)f(-1)}{x+1}=-6.

See Solution

Problem 11185

Find the elasticity of demand E=5p2q+5pE=\frac{5 p}{2 q+5 p} for q2+5pq=75q^2 + 5pq = 75 and check if demand is elastic at p=2p=2.

See Solution

Problem 11186

Find the production level xx that minimizes the average cost given c(x)=x322x2+20,000xc(x)=x^{3}-22x^{2}+20,000x. Options: 10, 11, 12, 13 items.

See Solution

Problem 11187

An airline's ticket price pp affects demand q=3240.01p2q=324-0.01 p^{2}. Find elasticity E(p)E(p) and analyze revenue behavior.

See Solution

Problem 11188

An airline's ticket price pp affects demand q=4320.03p2q=432-0.03 p^{2}. Find elasticity E(p)E(p) and revenue behavior for pp values.

See Solution

Problem 11189

Find the production level xx that minimizes the average cost given c(x)=x322x2+10,000xc(x)=x^{3}-22 x^{2}+10,000 x. Options: 10, 11, 12, 13 items.

See Solution

Problem 11190

Find the production level xx that minimizes the average cost given c(x)=x318x2+30,000xc(x)=x^{3}-18x^{2}+30,000x. Options: 8, 9, 10, 11 items.

See Solution

Problem 11191

Check if the functions C1(t)=7.6tt2+0.2C_{1}(t)=\frac{7.6 t}{t^{2}+0.2} and C2(t)=7.2tt2+0.15C_{2}(t)=\frac{7.2 t}{t^{2}+0.15} are increasing or decreasing.

See Solution

Problem 11192

Find the first and second derivatives of the function f(x)=e11xf(x)=e^{11 x}. a. f(x)=f^{\prime}(x)= b. f(x)=f^{\prime \prime}(x)=

See Solution

Problem 11193

Find g(3)g^{\prime}(3) if g(x)=4x23x7g^{\prime}(x)=-4x^{2}-3x-7.

See Solution

Problem 11194

Estimate Δf=f(7.01)f(7)\Delta f=f(7.01)-f(7) for f(x)=x4f(x)=x^{4} using Linear Approximation. Round to two decimal places.

See Solution

Problem 11195

Find constants K,m,K, m, and nn for the integral x216x2dx\int x^{2} \sqrt{16 - x^{2}} dx using x=4sin(u)x = 4 \sin(u).

See Solution

Problem 11196

Find the indefinite integral: 6x3+4x245x33x29dx\int \frac{6 x^{3}+4 x^{2}-45 x-33}{x^{2}-9} d x and decompose it as ax+b+cx3+dx+3a x+b+\frac{c}{x-3}+\frac{d}{x+3}.

See Solution

Problem 11197

Find the limit using I'Hospital's Rule if needed: limx0xtan1(9x)\lim _{x \rightarrow 0} \frac{x}{\tan ^{-1}(9 x)}

See Solution

Problem 11198

Bestimme, wann die Bevölkerung von 60 Millionen auf 120 Millionen wächst und welche Sättigungsgrenze LL erreicht wird. Gegeben ist N(t)=aebtN'(t) = a e^{bt}.

See Solution

Problem 11199

Find the position of a particle at t=28st=28 \, \text{s} given x0=19mx_{0}=19 \, \text{m}, v(0)=20m/sv(0)=20 \, \text{m/s}, v(28)=5m/sv(28)=5 \, \text{m/s}.

See Solution

Problem 11200

Find the xx-values of relative extrema for f(x)=x472x2+7f(x)=x^{4}-72 x^{2}+7 and their corresponding values. Derivative: f(x)=f^{\prime}(x)=\square.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord