Calculus

Problem 12301

Find the slope of the secant line for g(x)=x2g(x)=-x^{2} from x=4x=-4 to x=4+hx=-4+h, where h0h \neq 0.

See Solution

Problem 12302

Calculate the slope of the secant line for f(x)=x2+5xf(x)=-x^{2}+5x from x=4x=4 to x=4+hx=4+h, where h0h \neq 0.

See Solution

Problem 12303

Finde die allgemeine Stammfunktion von f(x)=x15f(x)=x^{15}. Bestimme F(x)=F(x)=\square.

See Solution

Problem 12304

Calculate the average rate of change of g(x)=5x212xg(x)=5 x^{2}-12 x from x=0x=0 to x=hx=h (where h0h \neq 0).

See Solution

Problem 12305

Find the derivative dydx\frac{d y}{d x} for the function y=2x462x2y=2 x^{4} \sqrt{6-2 x^{2}}.

See Solution

Problem 12306

Finde die Stammfunktion von f(x)=x10f(x)=x^{10}. Bestimme F(x)=F(x)=\square.

See Solution

Problem 12307

Zeichnen Sie den Graphen einer Funktion, bei der f(a)=0f'(a) = 0, f(a)=0f''(a) = 0 und f0f' \geq 0 im Intervall gilt.

See Solution

Problem 12308

Bestimme die Funktion ff, sodass die Stammfunktion F(x)=19x9+2F(x)=\frac{1}{9} x^{9}+2 gilt.
f(x)= f(x)=\square

See Solution

Problem 12309

Calculate the average rate of change of f(x)=x23x20f(x)=x^{2}-3x-20 from x=6x=6 to x=6+hx=6+h, where h0h \neq 0.

See Solution

Problem 12310

Bestimme die allgemeine Stammfunktion von f(x)=5x8f(x)=5 x^{8}. Welche der folgenden ist korrekt? F(x)=40x9+cF(x)=40 x^{9}+c, F(x)=59x9+cF(x)=\frac{5}{9} x^{9}+c, F(x)=58x7+cF(x)=\frac{5}{8} x^{7}+c, F(x)=40x7+cF(x)=40 x^{7}+c.

See Solution

Problem 12311

Find the derivative of yy where y=ln(20x)20xy=\frac{\ln (20 x)}{20 x}.

See Solution

Problem 12312

Finde die allgemeine Stammfunktion von f(x)=9x3f(x)=9 x^{3}. Wähle aus: F(x)=27x2+cF(x)=27 x^{2}+c, F(x)=94x4+cF(x)=\frac{9}{4} x^{4}+c, F(x)=27x4+cF(x)=27 x^{4}+c, F(x)=3x2+cF(x)=3 x^{2}+c.

See Solution

Problem 12313

Find f(a)f(a), f(a+h)f(a+h), and the difference quotient f(a+h)f(a)h\frac{f(a+h)-f(a)}{h} for f(x)=5x+9f(x) = \frac{5}{x+9}.

See Solution

Problem 12314

Find the slope of the secant line for k(x)=2x2+9x14k(x)=2x^2+9x-14 from x=4x=-4 to x=4+hx=-4+h, with h0h \neq 0.

See Solution

Problem 12315

Find the derivative of yy where y=ln(2lnx)y=\ln (2 \ln x).

See Solution

Problem 12316

Evaluate the expression: 0π23cos(t)π23π23cos(t)+3π25π23cos(t)5π23π3cos(t)\int_{0}^{\frac{\pi}{2}} 3 \cos (t) - \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} 3 \cos (t) + \int_{\frac{3 \pi}{2}}^{\frac{5 \pi}{2}} 3 \cos (t) - \int_{\frac{5 \pi}{2}}^{3 \pi} 3 \cos (t).

See Solution

Problem 12317

Bestimme die Funktion f(x)f(x), wenn F(x)=7x+cF(x)=7x+c und F(x)=f(x)F'(x)=f(x). Was ist f(x)=x9f(x)=\square \cdot x^{9}?

See Solution

Problem 12318

Find dydt\frac{dy}{dt} for y=ln(2te2t)y=\ln(2t e^{2t}).

See Solution

Problem 12319

Find the derivative of yy with respect to θ\theta for y=log56θy=\log _{5} 6 \theta.

See Solution

Problem 12320

Evaluate the integral t5et3dt\int t^{5} e^{-t^{3}} d t.

See Solution

Problem 12321

Find the derivative of yy with respect to xx for y=log2e7xy=\log _{2} e^{7 x}.

See Solution

Problem 12322

Berechne die 1. und 2. Ableitung von f(x)=2x1.52x+3xf(x)=2 x^{1.5}-\frac{2}{x}+3 \sqrt{x}.

See Solution

Problem 12323

Find the second derivative d2ydx2\frac{d^{2} y}{d x^{2}} for the function y=(x31)5y=(x^{3}-1)^{5}.

See Solution

Problem 12324

Bestimme den Parameter aa für die Funktion f(x)=x3+6x23ax+1f(x)=x^{3}+6 x^{2}-3 a x+1, sodass ein Sattelpunkt existiert.

See Solution

Problem 12325

Find the average rate of change of f(x)=x2x8f(x)=x^{2}-x-8 on the interval 1x5-1 \leq x \leq 5.

See Solution

Problem 12326

Find the average rate of change of g(x)=x210x+18g(x)=x^{2}-10 x+18 from x=1x=1 to x=11x=11.

See Solution

Problem 12327

Find the average rate of change of g(x)=x29x+24g(x)=-x^{2}-9 x+24 from x=9x=-9 to x=2x=-2.

See Solution

Problem 12328

Calculate the integral from -1 to 1 of the function exexe^{x} - e^{-x}.

See Solution

Problem 12329

Find the slope of the curve 7y8+9x5=3y+13x7 y^{8}+9 x^{5}=3 y+13 x at the point (1,1)(1,1).

See Solution

Problem 12330

Find the volume increase rate of a cone with height 12 cm\frac{1}{2} \mathrm{~cm} and radius 6 cm6 \mathrm{~cm}, both growing at 12\frac{1}{2} cm/s.

See Solution

Problem 12331

Find the net change and average rate of change for f(t)=4t2f(t)=4t^{2} at t=5t=5 and t=5+ht=5+h.

See Solution

Problem 12332

Determine the absolute maximum and minimum of f(x)=1+cos2xf(x)=1+\cos ^{2} x on the interval [π4,π]\left[\frac{\pi}{4}, \pi\right].

See Solution

Problem 12333

Find the absolute maximum and minimum of f(x)=x2tan1xf(x)=x-2 \tan^{-1} x on the interval [0,4][0,4].

See Solution

Problem 12334

Find the slope mm and equation y=mx+by=m x+b of the tangent line to f(x)=9xf(x)=\frac{9}{x} at (2,92)(-2,-\frac{9}{2}).

See Solution

Problem 12335

Find the slope mm of the tangent line to f(x)=3x25x+2f(x)=3x^2-5x+2 at (2,4)(2,4) and the equation y=mx+by=mx+b with b=b=.

See Solution

Problem 12336

Find the drug concentration C(12)C(12) using C(t)=0.07(1e0.2t)C(t)=0.07(1-e^{-0.2 t}). Round to three decimal places.

See Solution

Problem 12337

Given the function f(x)=x+5f(x)=\sqrt{x+5}, find: a) f(x+h)f(x+h), b) f(x+h)f(x)f(x+h)-f(x), c) f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}, d) f(x)f^{\prime}(x).

See Solution

Problem 12338

Latanya invested \1,800at1,800 at 3.5\%continuousinterest.Ethaninvested$1,800at continuous interest. Ethan invested \$1,800 at 3.75\%$ monthly. How much will Latanya have when Ethan's money doubles?

See Solution

Problem 12339

Given f(x)=x+5f(x)=\sqrt{x+5}, find: a) f(x+h)f(x+h), b) f(x+h)f(x)f(x+h)-f(x), c) f(x+h)f(x)h\frac{f(x+h)-f(x)}{h}, d) f(x)f^{\prime}(x).

See Solution

Problem 12340

Latanya invested \1,800at1,800 at 3.5\%continuousinterest.Ethaninvested$1,800at continuous interest. Ethan invested \$1,800 at 3.75\%$ monthly. When will Latanya's amount equal Ethan's doubled value?

See Solution

Problem 12341

Apply the Mean Value Theorem to f(x)=x33x+2f(x)=x^{3}-3 x+2 over the interval [2,2][-2,2].

See Solution

Problem 12342

Find the derivative f(x)f^{\prime}(x) of f(x)=2x3+1f(x)=2 x^{3}+1 using the limit definition, then find the tangent line at x=1x=-1.

See Solution

Problem 12343

Find q(x)q^{\prime}(x) for q(x)=log8(6x3+3x+1)q(x)=\log_{8}(6x^{3}+3x+1).

See Solution

Problem 12344

Find the derivative f(x)f^{\prime}(x) of the function f(x)=(3x5+5)3f(x)=(3 x^{5}+5)^{3}.

See Solution

Problem 12345

Determine the nature of the critical point at x=1x=1 for the function with f(x)=2x1f^{\prime \prime}(x)=2x-1.

See Solution

Problem 12346

Find the derivative yy^{\prime} of the equation y=7(x2+1)29y=7 \sqrt[9]{(x^{2}+1)^{2}}.

See Solution

Problem 12347

If f(x)f(x) has a local minimum at x=cx=c with f(x)<0f'(x)<0 for x<cx<c and f(x)>0f'(x)>0 for x>cx>c, then x=cx=c is a critical point.

See Solution

Problem 12348

Determine where the function f(x)=x443x31f(x)=\frac{x^{4}}{4}-3 x^{3}-1 is concave down (select all applicable intervals).

See Solution

Problem 12349

Find the derivative yy^{\prime} of the equation y=7(x2+1)45y=7 \sqrt[5]{(x^{2}+1)^{4}}.

See Solution

Problem 12350

Calculate the sum of the series: n=03n+1(2)n\sum_{n=0}^{\infty} \frac{3^{n+1}}{(-2)^{n}}.

See Solution

Problem 12351

Find the limit: limn(n+1)(n2)(n+3000)2n3+1\lim _{n \rightarrow \infty} \frac{(n+1)(n-2)(n+3000)}{2 n^{3}+1}.

See Solution

Problem 12352

Find the limit: limn1n(n+1n)\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}(\sqrt{n+1}-\sqrt{n})}

See Solution

Problem 12353

Find the limit: limx0(1+2x)1/x\lim _{x \rightarrow 0}(1+2 x)^{1 / x}.

See Solution

Problem 12354

Find the sum of the series: n=1622n13n\sum_{n=1}^{\infty} \frac{6 \cdot 2^{2 n-1}}{3^{n}}.

See Solution

Problem 12355

Find the derivative yy^{\prime} of the equation y=5(x2+1)27y=5 \sqrt[7]{(x^{2}+1)^{2}}.

See Solution

Problem 12356

Find the derivative yy^{\prime} of the equation y=7(x2+1)34y=7 \sqrt[4]{(x^{2}+1)^{3}}.

See Solution

Problem 12357

Estimate critical points of g(x)g(x) for 0<x<100 < x < 10 using g(x)g^{\prime}(x) values. Classify max/min points.

See Solution

Problem 12358

Find the derivative of y=34(x21)2/3y=\frac{3}{4}(x^{2}-1)^{2/3}.

See Solution

Problem 12359

A cannon fires a projectile with horizontal velocity 866m/s866 \, \text{m/s} and vertical velocity 500m/s500 \, \text{m/s}. Find the max height. Options: A. 2.50×103m2.50 \times 10^{3} \, \text{m} B. 1.28×104m1.28 \times 10^{4} \, \text{m} C. 1.54×104m1.54 \times 10^{4} \, \text{m} D. 4.42×104m4.42 \times 10^{4} \, \text{m}.

See Solution

Problem 12360

Find the derivative of f(x)=x(x21)1/3f(x) = x(x^{2}-1)^{-1/3}.

See Solution

Problem 12361

Find the limit: limn(1+2++nn+2n2)\lim _{n \rightarrow \infty}\left(\frac{1+2+\cdots+n}{n+2}-\frac{n}{2}\right).

See Solution

Problem 12362

Find xx values for which the series n=1(5)nxn\sum_{n=1}^{\infty}(-5)^{n} x^{n} converges and its sum.

See Solution

Problem 12363

Estimate the critical points of f(x)f(x) and g(x)g(x) using the given tables. Classify them as maxima, minima, or none.

See Solution

Problem 12364

Find the derivative yy^{\prime} of the equation y=7(x2+1)56y=7 \sqrt[6]{(x^{2}+1)^{5}}.

See Solution

Problem 12365

Find the derivative yy^{\prime} of the function y=x24x1y=x^{2} \sqrt{4 x-1}. Answer: y=\mathbf{y}^{\prime}=\square

See Solution

Problem 12366

Find the limit: limn1n(n+1n)\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}(\sqrt{n+1}-\sqrt{n})}

See Solution

Problem 12367

Given ff is differentiable, f(1)=2f(-1)=2, and f(x)1f^{\prime}(x) \geq 1, what can we conclude about f(8)f(8)?

See Solution

Problem 12368

Find the derivative yy^{\prime} for the function y=(x+8x+6)6y=\left(\frac{x+8}{x+6}\right)^{6}.

See Solution

Problem 12369

If ff is differentiable, f(1)=2f(-1)=2, and f(x)1f^{\prime}(x) \geq 1, what can we conclude about f(8)f(8)?

See Solution

Problem 12370

Estimate the critical points of g(x)g(x) for 0<x<100 < x < 10 using g(x)g'(x) values. Identify maxima, minima, and non-extrema.

See Solution

Problem 12371

Estimate the critical points of g(x)g(x) for 0<x<100<x<10 using g(x)g'(x) values and classify them as max/min or none.

See Solution

Problem 12372

Given f(1)=2f(-1)=2 and f(x)1f'(x) \geq 1, use the Mean Value Theorem to determine bounds for f(8)f(8).

See Solution

Problem 12373

Given ff differentiable, f(4)=2f(-4)=2, and f(x)1f^{\prime}(x) \geq 1, use the Mean Value Theorem to analyze f(8)f(8).

See Solution

Problem 12374

Find the tangent line equation for f(x)=x2+33f(x)=\sqrt{x^{2}+33} at x=4x=4. y=\mathbf{y}=\square (Use xx as the variable.)

See Solution

Problem 12375

Determine the values of pp for which the series n=1lnnnp\sum_{n=1}^{\infty} \frac{\ln n}{n^{p}} converges.

See Solution

Problem 12376

Find the dimensions of a square-based rectangular solid with max volume and surface area of 150 in². Height = xx.

See Solution

Problem 12377

Find the dimensions of the largest rectangle inscribed in a semicircle of radius rr.

See Solution

Problem 12378

A cone's radius and height increase at 12\frac{1}{2} cm/s. Find the volume's rate of change when height is 12\frac{1}{2} cm and radius is 66 cm.
Options: (a) π2\frac{\pi}{2} (b) 4π4 \pi (c) 7π7 \pi (d) 14π14 \pi (e) 21π21 \pi

See Solution

Problem 12379

Differentiate the function: y=(8x27)(4x27x+9)y=(8 x^{2}-7)(4 x^{2}-7 x+9). Find dydx\frac{d y}{d x}.

See Solution

Problem 12380

Find the dimensions of a page with 1717 sq in of print and 11 inch margins that minimizes paper usage using calculus.

See Solution

Problem 12381

Check if the series n=11nn\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}} converges or diverges.

See Solution

Problem 12382

Find the linear approximation L(x)L(x) of the function ff at x=3x=3 given f(3)=2f(3)=2 and f(3)=13f'(3)=-13. Choose from options.

See Solution

Problem 12383

Find the derivative of s(t)=(3t5t)(t32t+1)s(t)=(3t^{5}-t)(t^{3}-2t+1).

See Solution

Problem 12384

Evaluate the series: n=11(3n1)4\sum_{n=1}^{\infty} \frac{1}{(3 n-1)^{4}}

See Solution

Problem 12385

Find the rate of change of facts remembered at t=1t=1 hour and t=10t=10 hours for f(t)=87t99t87f(t)=\frac{87 t}{99 t-87}.

See Solution

Problem 12386

Find f(2)f^{\prime \prime}(2) from the Taylor polynomial T4(x)=1+4(x2)5(x2)2+18(x2)3(x2)4T_{4}(x)=1+4(x-2)-5(x-2)^{2}+18(x-2)^{3}-(x-2)^{4}. Choices: (a) -10, (b) -1, (c) -5, (d) 18, (e) 4.

See Solution

Problem 12387

Determine where the function ff is concave down given its second derivative f(x)=30(x2+3)(x3)3(x+3)3f^{\prime \prime}(x)=\frac{30\left(x^{2}+3\right)}{(x-3)^{3}(x+3)^{3}}.

See Solution

Problem 12388

A school has 160 m of fencing for a rectangular playground.
(a) Find the area function A(x)A(x) in terms of side length xx: A(x)= A(x)=\square
(b) What side length xx maximizes the area? Side length x:x: \square m
(c) What is the maximum area? Maximum area: \square m

See Solution

Problem 12389

Approximate 24.6\sqrt{24.6} using differentials and compare with a calculator. Round to four decimal places.

See Solution

Problem 12390

Find the third derivative of the function y=13x5+14x223y=-\frac{1}{3} x^{5}+\frac{1}{4} x^{-2}-\frac{2}{3}.

See Solution

Problem 12391

Find dydx\frac{d y}{d x} using implicit differentiation for the equation: 7xy+y2=2x+y7 x y + y^{2} = 2 x + y.

See Solution

Problem 12392

Find the derivative of f(x)=13x312x26x1f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-6 x-1.

See Solution

Problem 12393

Find the differential dyd y for the function y=x+14x1y=\frac{x+1}{4 x-1}. Use " dxd x " for dxd x.

See Solution

Problem 12394

Find the absolute extrema and their xx values for f(x)=13x312x26x1f(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-6 x-1 on [3,4][-3,4].

See Solution

Problem 12395

Find the third derivative d3ydx3\frac{d^{3} y}{d x^{3}} for the function y=14x+16+112x2y=\frac{1}{4} x+\frac{1}{6}+\frac{1}{12} x^{-2}.

See Solution

Problem 12396

Find the derivative of the function f(x)=3x542f(x)=-\frac{3 \sqrt[4]{x^{5}}}{2} in radical form, avoiding negative exponents.

See Solution

Problem 12397

Find the differential dyd y for the function y=8x(sin(x))2y=-8 x-(\sin (x))^{2}. What is dyd y?

See Solution

Problem 12398

Find the differential dyd y for the function y=x5x2y = x \sqrt{5 - x^{2}}. What is dyd y?

See Solution

Problem 12399

Find the slope of the curve 6y9+5x9=7y+4x6 y^{9}+5 x^{9}=7 y+4 x at the point (1,1)(1,1).

See Solution

Problem 12400

Find the derivative of the function y=3x23y=\frac{3}{\sqrt[3]{x^{2}}}, expressed in radical form and simplified.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord