Calculus

Problem 15401

Find the derivative of f(x)=e[x33]f(x)=e^{\left[\frac{x^{3}}{3}\right]}, so f(x)=f'(x)=\square.

See Solution

Problem 15402

Find the derivative of f(x)=ln(x2+1)5f(x)=\ln \left(x^{2}+1\right)^{5}. What is f(x)=?f^{\prime}(x)=?

See Solution

Problem 15403

Find the derivative of the function h(x)=cos(6x35+4x2)h(x)=\cos \left(\frac{6 x^{3}}{5+4 x^{2}}\right), denoted as h(x)h^{\prime}(x).

See Solution

Problem 15404

Bestätigen Sie die Nullstellen, Extrem- und Wendepunkte der Funktionen: a) f(x)=x33x2x+3f(x) = x^{3}-3 x^{2}-x+3 b) f(x)=12x43x2+4f(x) = \frac{1}{2} x^{4}-3 x^{2}+4 Geben Sie Monotonie- und Krümmungsintervalle an.

See Solution

Problem 15405

Find the derivative of f(x)=ln(x)f(x)=\ln (\sqrt{x}). What is f(x)f^{\prime}(x)?

See Solution

Problem 15406

Find the derivative of the function y=(43x4x23)5y=\left(\frac{4-3 x}{4 x^{2}-3}\right)^{5} with respect to xx.

See Solution

Problem 15407

Find the derivative of f(x)=exx5f(x)=\frac{e^{x}}{x^{5}}. What is f(x)=f^{\prime}(x)=\square?

See Solution

Problem 15408

Check if the Mean Value Theorem applies to f(x)=x5f(x)=|x-5| on [5,11][-5,11] and find the guaranteed point(s).

See Solution

Problem 15409

Find the derivative of f(x)=ln(x2)f(x)=\ln(x^{2}). What is f(x)f^{\prime \prime}(x)?

See Solution

Problem 15410

Find the derivative of f(x)=x6ln(x)f(x)=x^{6} \ln (x).

See Solution

Problem 15411

Find the absolute max and min of p(x)=x21p(x)=x^{2}-1 on the interval [5,3][-5,3].

See Solution

Problem 15412

Gegeben ist die Funktion f(x)=16x3+2xf(x) = -\frac{1}{6} x^{3}+2 x. Analysiere Nullstellen, Symmetrie, Extrem- und Wendepunkte.

See Solution

Problem 15413

Differentiate y=xx5+9(x5)2/3y=\frac{x \sqrt{x^{5}+9}}{(x-5)^{2 / 3}} using logarithmic differentiation. Show your work.

See Solution

Problem 15414

Find the derivative of y=sin3(x)y=\sin ^{3}(x), i.e., calculate dydx\frac{d y}{d x}.

See Solution

Problem 15415

Differentiate y=xx3+9(x5)2/3y=\frac{x \sqrt{x^{3}+9}}{(x-5)^{2 / 3}} using logarithmic differentiation. Show your work.

See Solution

Problem 15416

Find the derivative of y=ln(9x35x2)y=\ln(-9x^{3}-5x^{2}).

See Solution

Problem 15417

Find the derivative of the function f(x)=csc(4x)f(x)=-\csc(4x).

See Solution

Problem 15418

Find the derivatives for the function f(x)=ln(ex5x)f(x)=\ln(e^{x}-5x). Calculate f(x)f^{\prime}(x) and f(0)f^{\prime}(0).

See Solution

Problem 15419

Find the derivative of the function y=log6(7x5)y=\log _{6}(7 x^{5}).

See Solution

Problem 15420

Find the derivative of the function f(x)=2cos(4x)f(x)=2 \cos (4 x). What is f(x)f^{\prime}(x)?

See Solution

Problem 15421

Find the derivative of the function y=3sec(4x)y=-3 \sec (4 x), which is dydx\frac{d y}{d x}.

See Solution

Problem 15422

To minimize an objective function with one local maximum on a closed interval, where should the student look?
A. Find where the first derivative is 0. B. Find where the second derivative is 0. C. Find where the function equals 0. D. Check the endpoints of the interval.

See Solution

Problem 15423

Find the derivative of the function y=59x6+8x5y=5^{-9 x^{6}+8 x^{5}}.

See Solution

Problem 15424

Find the derivative of y=e8x56x4y=e^{-8 x^{5}-6 x^{4}}.

See Solution

Problem 15425

For the function f(x)=x3ln(x)x3f(x)=x^{3} \ln (x)-x^{3}, find: (a) f(x)f^{\prime}(x) and (b) f(e)f^{\prime}(e) (round to five decimals).

See Solution

Problem 15426

Find h(4)h^{\prime}(4) if h(x)=f(g(x))h(x)=f(g(x)) using the values from the chart.

See Solution

Problem 15427

Find the limit: limn(2n3+n2+12n3+n21)3n+2\lim _{n \rightarrow \infty}\left(\frac{2 n^{3}+n^{2}+1}{2 n^{3}+n^{2}-1}\right)^{3 n+2}.

See Solution

Problem 15428

Find all xx-values where the function f(x)=1x1x(t510t4+25t3)dtf(x)=\int_{-1}^{x} \frac{1}{x}(t^{5}-10 t^{4}+25 t^{3}) dt has a point of inflection.

See Solution

Problem 15429

Find the population N(9)N(9) in 2031 given N(0)=5000N(0)=5000 and dNdt=400+600t\frac{d N}{d t}=400+600\sqrt{t} for 0t90 \leq t \leq 9.

See Solution

Problem 15430

a. With 400 m400 \mathrm{~m} of fencing for three sides, find dimensions that maximize the area of a pen against a barn. b. For four adjacent pens of area 100 m2100 \mathrm{~m}^{2} each, determine dimensions that minimize fencing used.

See Solution

Problem 15431

Find the limit: limn(2u3+u2+12u3+u21)3u+2\lim _{n \rightarrow \infty}\left(\frac{2 u^{3}+u^{2}+1}{2 u^{3}+u^{2}-1}\right)^{3 u+2}.

See Solution

Problem 15432

A satellite orbits the Earth 40 times a year. Find its angular velocity in radians per week, rounded to 2 decimal places.

See Solution

Problem 15433

Find the time in hours for a bacteria population to double with a growth rate of 2.5%2.5\% per hour. Round to the nearest hundredth.

See Solution

Problem 15434

Find the half-life of a substance with a decay rate of 8.9%8.9\% per day using the continuous exponential decay model.

See Solution

Problem 15435

How many years will \$ 2100 invested at 4.75% interest, compounded continuously, take to double? Round to the nearest hundredth.

See Solution

Problem 15436

Encuentra la tasa de crecimiento horario de una población de bacterias que pasa de 1200 a 1607 en 6 horas, en %.

See Solution

Problem 15437

Find the tangent line equation for g(x)=f(3x+3)g(x)=f(3x+3) at x=1x=1, given f(1)=4,f(1)=5f(1)=4, f'(1)=5.

See Solution

Problem 15438

Find h(5)h^{\prime}(5) for h(x)=f(g(x))h(x)=f(g(x)) using the given values in the chart.

See Solution

Problem 15439

Find the value of the integral 05g(x)1+(g(x))2dx\int_{0}^{5} \frac{g^{\prime}(x)}{1+(g(x))^{2}} d x given g(0)=0g(0)=0 and g(5)=1g(5)=1.

See Solution

Problem 15440

Find the half-life of a substance decaying at 5.4%5.4\% per day using the continuous exponential decay model.

See Solution

Problem 15441

Find the derivative dydx\frac{d y}{d x} for the equation: 3x3y23x2y=63 x^{3} y^{2}-3 x^{2} y=6.

See Solution

Problem 15442

Calculate the future value of a \7,000investmentat9%interestcompoundedcontinuouslyfor6years.$7,000 investment at 9\% interest compounded continuously for 6 years. \$\square

See Solution

Problem 15443

Find the hourly growth rate of a bacteria population that grows from 1600 to 1881 in 4 hours. Express as a percentage.

See Solution

Problem 15444

Find dydx\frac{d y}{d x} in terms of xx and yy for the equation x32y3+4y2+5y=0-x^{3}-2 y^{3}+4 y^{2}+5 y=0.

See Solution

Problem 15445

Find the tangent line equation for f(x)=16ex3+1f(x)=-\frac{1}{6} e^{-\frac{x}{3}}+1 at slope 16\frac{1}{6}.

See Solution

Problem 15446

Find the limit as xx approaches 0 of x0t2+9dtx\frac{\int_{x}^{0} \sqrt{t^{2}+9} \, dt}{x}.

See Solution

Problem 15447

Find dydx\frac{d y}{d x} in terms of xx and yy for the equation x2y+y=x3+2-x^{2} y+y=x^{3}+2.

See Solution

Problem 15448

Find F(2)F'(2) for F(x)=5xx2f(t)dtF(x)=\int_{5x}^{x^2} f(t) dt using f(2)=2f(2)=2, f(4)=1f(4)=-1, f(6)=6f(6)=6, f(8)=1f(8)=-1.

See Solution

Problem 15449

Bestimmen Sie die Wendepunkte der Funktion f(x)f(x) mit der ersten Ableitung f(x)=ebx(1bxb2)f^{\prime}(x)=e^{-b x} \cdot(1-b x-b^{2}).

See Solution

Problem 15450

Find the tangent lines to the curve 4x3=5xy+24 x^{3}=-5 x y+2 at x=2x=2.

See Solution

Problem 15451

Find the tangent line equations for the curve 4xy=5y+2x44xy=5y+2x^4 at the point where x=1x=1.

See Solution

Problem 15452

Find the zeros, extrema, and inflection points of f+(x)=1x2e2txf_{+}(x)=\frac{1}{x^{2}} e^{\frac{2 t}{x}}.

See Solution

Problem 15453

Calculez les dérivées des fonctions suivantes : 1. f(x)=ex+ln(x3+1)f(x)=\mathrm{e}^{-\sqrt{x}}+\ln(x^{3}+1) 2. f(x)=log2(1x2)log2(1+x)f(x)=\log_{2}(1-x^{2})-\log_{2}(1+x) 3. f(x)=tan(1x+1)f(x)=\tan\left(\frac{1}{x+1}\right) 4. f(x)=arccosx+arcsin(2x)f(x)=\arccos x+\arcsin(2x) 5. f(x)=πx3+2x7f(x)=\pi^{x^{3}+2x-7}.

See Solution

Problem 15454

Find the tangent lines to the curve given by xy=42x-x y=4-2 x at the point where x=4x=4.

See Solution

Problem 15455

Find the value of f(25)f^{\prime}\left(\frac{2}{5}\right) if f(x)=sin1(x)f(x)=\sin^{-1}(x).

See Solution

Problem 15456

Find the value of g(6)g^{\prime}(6) if g(x)=f1(x)g(x)=f^{-1}(x) and f(2)=6f(2)=6, f(2)=10f^{\prime}(2)=-10.

See Solution

Problem 15457

Find g(4)g^{\prime}(-4) for g(x)=f1(x)g(x)=f^{-1}(x) where f(x)=x3+3x26xf(x)=-x^{3}+3x^{2}-6x and (1,4)(1,-4) is on ff.

See Solution

Problem 15458

Find the third derivative f(x)f^{\prime \prime \prime}(x) of the function f(x)=162x43x1+34x4f(x)=\frac{1}{6}-2 x-\frac{4}{3} x^{-1}+\frac{3}{4} x^{4}.

See Solution

Problem 15459

Find the Maclaurin series for f(x)=111+xf(x)=\frac{11}{1+x}.

See Solution

Problem 15460

Find the Taylor series for f(x)=7x2f(x)=\frac{7}{x^{2}} at x=1x=1.

See Solution

Problem 15461

Find the limit using I'Hopital's Rule: limx0+0xtcostdtx2=\lim _{x \rightarrow 0^{+}} \frac{\int_{0}^{x} \sqrt{t} \cos t \, dt}{x^{2}}=\square

See Solution

Problem 15462

Find the second derivative of the function y=52x3+12x213x6+124xy=-\frac{5}{2} x^{3}+\frac{1}{2} x^{2}-\frac{1}{3} x^{6}+\frac{1}{24} x.

See Solution

Problem 15463

Find the Maclaurin series for these functions: 1. f(x)=111+xf(x)=\frac{11}{1+x} 2. f(x)=6cos(x)f(x)=6 \cos (-x)

See Solution

Problem 15464

Find the third derivative of the function y=52x3+16x413x2y=\frac{5}{2} x^{3}+\frac{1}{6} x^{4}-\frac{1}{3} x^{-2}.

See Solution

Problem 15465

Find the third derivative f(x)f^{\prime \prime \prime}(x) of the function f(x)=112x314x416x+2x3f(x)=\frac{1}{12} x^{-3}-\frac{1}{4} x^{4}-\frac{1}{6} x+2 x^{3}.

See Solution

Problem 15466

Calculate the sum of the series: j=15100j\sum_{j=1}^{\infty} \frac{5}{100^{j}}.

See Solution

Problem 15467

Find the third derivative d3ydx3\frac{d^{3} y}{d x^{3}} for the function y=16x4+1613x5+112x6y=\frac{1}{6} x^{4}+\frac{1}{6}-\frac{1}{3} x^{5}+\frac{1}{12} x^{6}.

See Solution

Problem 15468

A. Find dimensions for a pen with 400 m400 \mathrm{~m} of fencing to maximize area. B. Determine dimensions for four pens of area 100 m2100 \mathrm{~m}^{2} each to minimize fencing used.

See Solution

Problem 15469

Find the limit: limnnn2+1\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}.

See Solution

Problem 15470

Find the derivative of gt(x)=txex+0.1tg_{t}(x)=\sqrt{t \cdot x \cdot e^{-x}+0.1 \cdot t}.

See Solution

Problem 15471

Is the series n=1(1)n(17n)n2\sum_{n=1}^{\infty}(-1)^{n}\left(1-\frac{7}{n}\right)^{n^{2}} convergent or divergent?

See Solution

Problem 15472

Caffeine's half-life is 1.5 hours. If tea has 40 mg40 \text{ mg}, how long (t)(t) until only 1 mg1 \text{ mg} remains?

See Solution

Problem 15473

Find F(x)F(x), the antiderivative of f(x)=xx4f(x)=\sqrt{x}-x^{4}. Simplify F(x)F(x).

See Solution

Problem 15474

Find the slope of the tangent line to f(x)=x24f(x)=\frac{x^{2}}{4} at x=3x=3. Reflect it to find g(x)g(x) and g(_)=g^{\prime}\left(\_\right)=.

See Solution

Problem 15475

Evaluate the limit: limn1n31+2n3\lim _{n \rightarrow \infty} \frac{1-n^{3}}{1+2 n^{3}}

See Solution

Problem 15476

Construct the arc length integral for the parametric equations x=costx=\cos t and y=cos3ty=\cos 3t for 0tπ0 \leq t \leq \pi.

See Solution

Problem 15477

Find the differential of the function y=tan(5t)y=\tan (\sqrt{5 t}).

See Solution

Problem 15478

How does linear approximation help estimate ff near a point where ff and ff' are easy to evaluate? Select the correct option.

See Solution

Problem 15479

Calculate the integral: (43x2+72x)dx\int \left( \frac{4}{3 x^{2}}+\frac{7}{2 x} \right) d x

See Solution

Problem 15480

Determine the convergence of these series: a. n=1n8(8)n\sum_{n=1}^{\infty} \frac{n^{8}}{(-8)^{n}} b. n=1(1)nn2(n+3)!n!83n\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}(n+3) !}{n ! 8^{3 n}}

See Solution

Problem 15481

Estimate f(5.85)f(5.85) using linear approximation with f(6)=2f(6)=2 and f(6)=4f^{\prime}(6)=4.

See Solution

Problem 15482

Find the limit: limn(n+1)2n(n+2)\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n(n+2)}.

See Solution

Problem 15483

Find the tangent line equation for the curve y=15x32x25y=\frac{1}{\sqrt[5]{5 x^{3}-2 x^{2}}} at x=2x=2.

See Solution

Problem 15484

Find the line equation for the linear approximation of f(x)=xx+1f(x)=\frac{x}{x+1} at a=1a=1 and estimate f(1.3)f(1.3). Compute percent error: 100 |approximation - exact  exact 100 \cdot \frac{\text { |approximation - exact } \mid}{\mid \text { exact } \mid}.

See Solution

Problem 15485

Find and simplify the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=5x23f(x)=-5 x^{2}-3. Show your work.

See Solution

Problem 15486

Estimate e0.01e^{0.01} using a linear approximation for a small error. Find e0.01e^{0.01} \approx \square.

See Solution

Problem 15487

Estimate the gradient dP/dr|d P / d r| using Jeans mass, number density, and compare with dP/dr=GMρ/r2|d P / d r|=\mathrm{GM} \rho / \mathrm{r}^{2}.

See Solution

Problem 15488

Find dy for y=sin(15x2)y=\sin(15x^2). What is dydy in terms of dxdx?

See Solution

Problem 15489

A bank offers 5% interest compounded continuously. Find when a deposit will (a) quadruple (b) increase by 60%.

See Solution

Problem 15490

Find f(1)f^{\prime}(1) if f(x)=g(2x+1)f(x)=g(2x+1) and the slope of g(x)g(x) at x=1x=-1 is -2.

See Solution

Problem 15491

Find f(1)f^{\prime}(1) given 72+8f(x)+7x2(f(x))3=072 + 8 f(x) + 7 x^{2} (f(x))^{3} = 0 and f(1)=2f(1) = -2.

See Solution

Problem 15492

Approximate the volume change of a sphere as its radius goes from r=20ftr=20 \mathrm{ft} to r=20.1ftr=20.1 \mathrm{ft}. Use V(r)=43πr3V(r)=\frac{4}{3} \pi r^{3}. Find ΔVft3\Delta V \approx \square \mathrm{ft}^{3} (round to the nearest hundredth).

See Solution

Problem 15493

Find the derivative f(4)f^{\prime}(4) for the function f(x)=x2lnxf(x)=\sqrt{x}-2 \ln x.

See Solution

Problem 15494

Find the average velocity of the particle defined by s(t)=t334t2+3s(t)=\frac{t^{3}}{3}-4 t^{2}+3 on [0,3][0,3] seconds.

See Solution

Problem 15495

Show that the derivative operator ddt\frac{d}{d t} is a linear mapping from P3\mathcal{P}_{3} to P2\mathcal{P}_{2}.

See Solution

Problem 15496

Find the limit as nn approaches infinity for the expression 6n+93n2\frac{6 n+9}{3 n-2}.

See Solution

Problem 15497

Find the derivative f(π)f^{\prime}(\pi) for the function f(x)=2cosx+exf(x)=2 \cos x+e^{x}.

See Solution

Problem 15498

Find the initial velocity and the velocity after 5 seconds for v(t)=52(1e0.16t)v(t)=52(1-e^{-0.16 t}). Round to the nearest whole number.

See Solution

Problem 15499

Find the derivative of h(x)=4xlnxh(x)=4 \sqrt{x} \ln x.

See Solution

Problem 15500

A circle's circumference CC is increasing at 2 cm/s2 \mathrm{~cm/s}. Find the area's increase rate when r=6 cmr=6 \mathrm{~cm}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord