Calculus

Problem 15201

Bestimme die erste Ableitung von g(x)=(x2+1)323g(x)=\frac{\left(x^{2}+1\right)^{\frac{3}{2}}}{3}.

See Solution

Problem 15202

Find the derivative of f(x)=2x2xf(x)=2 \sqrt{x}-2 x.

See Solution

Problem 15203

Find the derivative of f(x)=5x3x35f(x)=\frac{5}{x^{3}}-\frac{x^{3}}{5}.

See Solution

Problem 15204

Bestimme die erste Ableitung der Funktionen: f(x)=13x3+x4f(x)=-\frac{1}{3} x^{3}+x-4, f(x)=1x3+xf(x)=\frac{1}{x^{3}}+\sqrt{x}, f(x)=(3x+1)2f(x)=(3 x+1)^{2}, f(x)=(3x21)5f(x)=(3 x^{2}-1)^{5}.

See Solution

Problem 15205

Bestimme die Nullstellen der Funktion f(x)=2x3+6x2f(x)=2x^{3}+6x^{2} und die Wendetangente am Punkt W(1f(1))W(-1 \mid f(-1)).

See Solution

Problem 15206

Gegeben ist f(x)=2x3+6x2f(x)=2 x^{3}+6 x^{2}. Finde Nullstellen, Hoch- und Tiefpunkte, Wendetangente tt und Schnittwinkel mit der X-Achse. Zeichne ff im Intervall I=[3;1]I=[-3; 1].

See Solution

Problem 15207

Find the derivative of f(x)=(x+4)2f(x)=(x+4)^{2}.

See Solution

Problem 15208

Find the instantaneous temperature change for a particle moving along rˉ(t)=t3,t2,t\bar{r}(t)=\langle t^{3}, t^{2}, t \rangle in a cube with Θ(x,y,z)=1000xyzexeyez\Theta(x, y, z)=1000 x y z e^{-x} e^{-y} e^{-z}. What is it at rˉ(0.7)\bar{r}(0.7)?

See Solution

Problem 15209

Find the limit: L=limx0sin1xtan1xx3L = \lim _{x \rightarrow 0} \frac{\sin ^{-1} x - \tan ^{-1} x}{x^{3}}.

See Solution

Problem 15210

Untersuche die Funktion f(x)=49x2+83xf(x)=-\frac{4}{9} x^{2}+\frac{8}{3} x im Intervall [0;6][0 ; 6]: Nullstellen, Scheitelpunkt, mittlere und lokale Steigung.

See Solution

Problem 15211

Bestimmen Sie, wo die Tangente an f(x)=xf(x)=\sqrt{x} bei P(42)P(4|2) die x-Achse schneidet, um die Aufschüttung zu starten.

See Solution

Problem 15212

Find the derivative of f(x)=e4xsinxxcos2xf(x) = \frac{e^{4 x} \sin x}{x \cos 2 x}.

See Solution

Problem 15213

Ein Heliumballon steigt mit der Geschwindigkeit v(t)=10t2+2t+1v(t)=\frac{10}{t^{2}+2 t+1}. Beantworte: a) Anfangsgeschwindigkeit, b) immer aufwärts? c) Maximalhöhe? d) Zeit und Geschwindigkeit bei Halbhöhe?

See Solution

Problem 15214

Approximate 031+x2dx\int_{0}^{3} \sqrt{1+x^{2}} dx using a midpoint Riemann sum with intervals [0,1],[1,2],[2,3][0,1],[1,2],[2,3].

See Solution

Problem 15215

Find the area in the first quadrant between f(x)=4xx3f(x)=4x-x^3 and the xx-axis. Choices: (A) 114\frac{11}{4} (B) 72\frac{7}{2} (C) 4 (D) 112\frac{11}{2}.

See Solution

Problem 15216

Find the average value of the function h(x)=x29x+26h(x)=-x^{2}-9x+26 over the interval 10x2-10 \leq x \leq -2.

See Solution

Problem 15217

Find the limit as nn \to \infty for the series an=k=1n(2k1)2n3a_{n}=\sum_{k=1}^{n} \frac{(2k-1)^{2}}{n^{3}}.

See Solution

Problem 15218

Determine the remainder term RNR_{N} in the Taylor series for f(x)=x2f(x)=x^{2} centered at a=1a=-1 over [1,5][-1,5].

See Solution

Problem 15219

Simplify the expression: ddx4x3dpp2\frac{d}{d x} \int_{4}^{x^{3}} \frac{d p}{p^{2}}

See Solution

Problem 15220

Differentiate 9x28y3=1459 x^{2}-8 y^{3}=145 to find dydx\frac{d y}{d x} and the slope at the point (3, -2).

See Solution

Problem 15221

Simplify the expression: ddx4x3dpp2\frac{d}{d x} \int_{4}^{x^{3}} \frac{d p}{p^{2}}.

See Solution

Problem 15222

Simplify the expression: ddxx1t3+4dt=\frac{d}{d x} \int_{x}^{1} \sqrt{t^{3}+4} d t = \square

See Solution

Problem 15223

Differentiate to find dydx\frac{d y}{d x} for the equation y7=x9y^{7}=x^{9}.

See Solution

Problem 15224

Find the limit: limx4412+xx4\lim _{x \rightarrow 4} \frac{4-\sqrt{12+x}}{x-4}.

See Solution

Problem 15225

Find ΔC\Delta C and C(x)C'(x) for the cost function C(x)=0.01x2+0.4x+30C(x)=0.01 x^{2}+0.4 x+30 at x=90x=90 and Δx=1\Delta x=1.

See Solution

Problem 15226

Evaluate the integral: 0π/46sec2xdx=\int_{0}^{\pi / 4} 6 \sec ^{2} x \, dx = \square (Type an exact answer.)

See Solution

Problem 15227

Evaluate the integral from 1 to 27: 127x231x3dx=\int_{1}^{27} \frac{\sqrt[3]{x^{2}}-1}{\sqrt[3]{x}} d x=\square (Simplify your answer.)

See Solution

Problem 15228

Evaluate the integral from 1 to 27: 127x231x3dx=(\int_{1}^{27} \frac{\sqrt[3]{x^{2}}-1}{\sqrt[3]{x}} d x=\square( Simplify your answer.)

See Solution

Problem 15229

Alice the Amoeba travels with s=t36t2+9t+1s=t^{3}-6 t^{2}+9 t+1. Answer these: a) Velocity at 3s? b) Velocity when a=0a=0? c) When at rest? d) When moving backwards? e) Diagram for 6s with distances.

See Solution

Problem 15230

Does the limit of f(x)f(x) as xx approaches 4 exist given the values near 4?

See Solution

Problem 15231

Alice the Amoeba's motion is described by s=t36t2+9t+1s=t^{3}-6t^{2}+9t+1 for t0t \geq 0.
a) Find her velocity at t=3t=3. b) When is her acceleration 0 m/s20 \mathrm{~m/s}^{2}? c) When is she at rest? d) When is she moving backwards? e) Sketch her distance for the first 6 seconds and note the distance at each second.

See Solution

Problem 15232

Find if the limit of f(x)f(x) as xx approaches 4 exists, given values near x=4x=4.

See Solution

Problem 15233

Find the rate of change of volume V=43πr3V=\frac{4}{3} \pi r^{3} when r=5.9 cmr=5.9 \mathrm{~cm} and drdt=0.9 cm/week\frac{dr}{dt}=0.9 \mathrm{~cm/week}.

See Solution

Problem 15234

Evaluate the integral using the Fundamental Theorem of Calculus: 0π/63sinxdx=\int_{0}^{\pi / 6} 3 \sin x \, dx = \square (Exact answer with radicals.)

See Solution

Problem 15235

Berechne den Flächeninhalt zwischen der Funktion f(x)=(x1)(x+2)(x3)f(x)=(x-1)(x+2)(x-3) und der x\mathrm{x}-Achse im Intervall I=[1;3]I=[-1 ; 3].

See Solution

Problem 15236

Given the function f:R2Rf: \mathbb{R}^{2} \rightarrow \mathbb{R} with f(x,y)7<2x2+y2|f(x, y)-7|<2 \sqrt{x^{2}+y^{2}}, is lim(x,y)(0,0)f(x,y)=7\lim_{(x, y) \rightarrow(0,0)} f(x, y)=7 true?

See Solution

Problem 15237

Check which functions are differentiable at (0,0)(0,0):
1. f(x,y)=x2y2+3xy+1x3yyxf(x, y)=\frac{x^{2} y^{2}+3 x y+1}{x^{3} y-y x}
2. f(x,y)=cos(x+y)sin(xy)f(x, y)=\frac{\cos (x+y)}{\sin (x-y)}
3. f(x,y)=x2+y22x+3y1f(x, y)=\frac{\sqrt{x^{2}+y^{2}}}{2 x+3 y-1}
4. f(x,y)=ln(x2+y2+1)ex+yf(x, y)=\frac{\ln \left(x^{2}+y^{2}+1\right)}{e^{x+y}}

See Solution

Problem 15238

Find the tangent line equation for the function f(x)=x2+7f(x)=x^{2}+7 at the point where x=9x=9.

See Solution

Problem 15239

Find the tangent line equation for f(x)=7x2+10x1f(x)=7 x^{2}+10 x-1 at x=7x=-7.

See Solution

Problem 15240

Given h(t)=f(x(t),y(t))h(t)=f(x(t), y(t)), check if dhdt=0\frac{dh}{dt} = 0 at t=0t=0 given certain conditions on ff, x(t)x(t), and y(t)y(t).

See Solution

Problem 15241

Find the tangent line equation for the function f(x)=4x2+6x2f(x)=4 x^{2}+6 x-2 at the point where x=6x=6.

See Solution

Problem 15242

Find the derivative of the function f(x)=5x2f(x)=5 x^{2} using the limit definition, without simplifying your answer.

See Solution

Problem 15243

Find the tangent line equation for the function f(x)=10x2+4x7f(x)=-10 x^{2}+4 x-7 at the point where x=2x=-2.

See Solution

Problem 15244

Find the first four nonzero terms of the Taylor series for 11x2\frac{1}{\sqrt{1-x^{2}}} at x=0x=0.

See Solution

Problem 15245

Analysiere den Testflug eines Modellhelikopters mit der Funktion h(t)=t24th(t)=-t^{2}-4t für 0t30 \leq t \leq 3.
a) Finde den Zeitpunkt, an dem der Helikopter am schnellsten steigt. b) Beschreibe den Zustand, in dem die Höhe konstant bleibt. c) Mache weitere mathematische Aussagen über den Flugverlauf.

See Solution

Problem 15246

Bestimme den Wert von a, sodass 12(3ax2+6x)dx=2\int_{1}^{2}(3 a x^{2}+6 x) d x=2 und 2a(2x+5)dx=0\int_{2}^{a}(2 x+5) d x=0.

See Solution

Problem 15247

Evaluate the integral from 1 to 32 of x9/5x^{-9/5}. What is 132x9/5dx\int_{1}^{32} x^{-9/5} d x? Simplify your answer.

See Solution

Problem 15248

Evaluate q(x)=x+11q(x)=\sqrt{x+11} at x=3x=-3 and x=0x=0, then find the average rate of change between these points.

See Solution

Problem 15249

Find the 1st and 2nd derivatives of f(x)=34x492x2+3x+4f(x)=\frac{3}{4} x^{4}-\frac{9}{2} x^{2}+3 x+4.

See Solution

Problem 15250

Bestimmen Sie die Häufungspunkte der Folge an=(1)nn2(3n+3)2a_{n}=\frac{(-1)^{n} \cdot n^{2}}{(3 \cdot n+3)^{2}}. Anzahl und größter Punkt?

See Solution

Problem 15251

Evaluate the integral from 1/2 to 2: 1/22(33x2)dx\int_{1 / 2}^{2}\left(3-\frac{3}{x^{2}}\right) d x.

See Solution

Problem 15252

Gegeben ist die Funktion f(x)=ex(x23)f(x)=e^{-x}(x^{2}-3). Bestimmen Sie Definitionsbereich, Grenzverhalten, Ableitung, Nullstellen, Wendepunkte und Tangente.

See Solution

Problem 15253

Evaluate the integral from 1/2 to 2 of 33x23 - \frac{3}{x^2} using the Fundamental Theorem of Calculus.

See Solution

Problem 15254

Find the function ff where f(x)=x2+7f'(x) = x^2 + 7 and $f(0) = 3.

See Solution

Problem 15255

Find the derivative of y=(x2+3)2y=(x^{2}+3)^{2}.

See Solution

Problem 15256

Find the limit: limx0cotx(1sinx1x)\lim _{x \rightarrow 0} \cot x\left(\frac{1}{\sin x}-\frac{1}{x}\right).

See Solution

Problem 15257

Find the derivative, integral, or specific value of the function fk(x)=(3x2x2)ekxf_{k}(x)=\left(3 x-2 x^{2}\right) \cdot e^{-k x}.

See Solution

Problem 15258

Find the derivative of ga(t)=(3t+2)eat2g_{a}(t)=(3t+2) \cdot e^{at^{2}}.

See Solution

Problem 15259

A bodybuilder lifts an 80 kg80 \mathrm{~kg} barbell to a height. It drops and reaches 4.5 m/s4.5 \mathrm{~m/s}. Find the height.

See Solution

Problem 15260

Find the consumers' surplus when the price is set at 400 for the demand function p(x)=1200(110000)x3p(x)=1200-\left(\frac{1}{10000}\right) x^{3}.

See Solution

Problem 15261

Find the x\mathrm{x}-coordinate of the inflection point for the graph of y=x(x2)(x+2)y=-x(x-2)(x+2).

See Solution

Problem 15262

Calculate the Gini coefficient for the Lorenz curve f(x)=1100(40x4+24x3+24x2+12x)f(x)=\frac{1}{100}(40 x^{4}+24 x^{3}+24 x^{2}+12 x).

See Solution

Problem 15263

Calculate the Gini coefficient for the Lorenz curve f(x)=1100(40x4+24x3+24x2+12x)f(x)=\frac{1}{100}(40 x^{4}+24 x^{3}+24 x^{2}+12 x).

See Solution

Problem 15264

Find consumers' surplus when price is \400fordemandfunction400 for demand function p(x)=1200-\left(\frac{1}{10000}\right) x^{3}.Answer:. Answer: 199900199900$

See Solution

Problem 15265

Find the consumer surplus when the price is set at 400 for the demand function p(x)=1200(110000)x3p(x)=1200-\left(\frac{1}{10000}\right) x^{3}.

See Solution

Problem 15266

1. Trouvez les dérivées des fonctions suivantes : a) f(x)=xarcsinxf(x)=\sqrt{x} \arcsin x, b) g(x)=arcsin(x73x)g(x)=\arcsin \left(x^{7}-3 x\right), c) y=arcsin(x4)y=\sqrt{\arcsin \left(x^{4}\right)}.

See Solution

Problem 15267

Evaluate the integral 1/33(44x2)dx\int_{1 / 3}^{3}\left(4-\frac{4}{x^{2}}\right) d x and sketch the area under the curve.

See Solution

Problem 15268

Find the linearization L(x)L(x) of the function f(x)=x+4f(x)=\sqrt{x+4} at the point x=1x=1.

See Solution

Problem 15269

Find the derivative of fa(x)=x(xa)2f_{a}(x)=x(x-a)^{2}.

See Solution

Problem 15270

A satellite orbits Earth at 196 km196 \mathrm{~km}. Find its orbital radius, speed, and period (in seconds and hours). Given: G=6.674×1011 Nm2/kg2;MEarth =5.974×1024 kg;REarth =6.378×106 m\mathrm{G}=6.674 \times 10^{-11} \mathrm{~N} \cdot \mathrm{m}^{2} / \mathrm{kg}^{2} ; M_{\text {Earth }}=5.974 \times 10^{24} \mathrm{~kg} ; R_{\text {Earth }}=6.378 \times 10^{6} \mathrm{~m}.

See Solution

Problem 15271

Approximate 52\sqrt{52} using the linearization of the square root function at a=49a=49.

See Solution

Problem 15272

Differentiate implicitly the equation xyyx=1\frac{x}{y} - \frac{y}{x} = 1.

See Solution

Problem 15273

Simplify the limit as xx approaches -\infty: limxx312x6\lim _{x \rightarrow-\infty} \frac{x^{3}}{12 x^{6}}

See Solution

Problem 15274

A motorcycle daredevil starts at 43 m/s43 \mathrm{~m/s} and peaks at 36 m/s36 \mathrm{~m/s}. Find the height using energy concepts.

See Solution

Problem 15275

Finde die Tangentengleichung am Wendepunkt für die Funktionen: a) f(x)=16x334x2+2f(x)=\frac{1}{6} x^{3}-\frac{3}{4} x^{2}+2, b) g(x)=9x(16x1)2g(x)=9 x \cdot\left(\frac{1}{6} x-1\right)^{2}, c) h(t)=(t2t)(2t1)h(t)=\left(t^{2}-t\right) \cdot(2 t-1).

See Solution

Problem 15276

Bestimme die Steigung kk der Funktion f(x)=237xf(x)=\frac{2}{3}-7 x mit dem Differenzialquotienten.

See Solution

Problem 15277

Find the derivative of the function f(x)=5excosxf(x)=5 e^{x \cos x}. What is f(x)f^{\prime}(x)?

See Solution

Problem 15278

Find the derivative f(3)f^{\prime}(3) for the function f(x)=3x2+4f(x)=\sqrt{3 x^{2}+4}.

See Solution

Problem 15279

What happens to demand d(p)=30+460e3.77d(p)=30+460 e^{-3.77} as price pp increases? It approaches 25 items/month.

See Solution

Problem 15280

Find the limit: limxπ/4cos(x)sin(x)tan(x)1\lim _{x \rightarrow \pi / 4} \frac{\cos (x)-\sin (x)}{\tan (x)-1}. Use l'Hospital's Rule if needed.

See Solution

Problem 15281

Find the derivative dydx\frac{d y}{d x} for y=91sin3(ln(x))y=-9 \frac{1}{\sin ^{3}(\ln (x))}.

See Solution

Problem 15282

Find the critical point cc larger than zero for y=x7/24x2y=x^{7/2}-4x^{2}, and determine intervals of increase/decrease.

See Solution

Problem 15283

Use the First Derivative Test to find if f(x)=x2f(x)=x^{2} has a local min or max at x=0x=0.

See Solution

Problem 15284

Check if f(x)=x4f(x)=x^{4} is concave up for x>0x>0 and x<0x<0. Is x=0x=0 an inflection point? Explain. [2pts]

See Solution

Problem 15285

As price pp increases, what happens to demand d(p)=30+460e0.27pd(p)=30+460 e^{-0.27 p}? Choose the correct limit.

See Solution

Problem 15286

Berechnen Sie die Integrale: 03(x22)dx\int_{0}^{3}(x^{2}-2) dx und 20(2x3+3x24)dx\int_{-2}^{0}(-2 x^{3}+3 x^{2}-4) dx.

See Solution

Problem 15287

1. Trouvez l'élasticité de la demande EE pour la fonction p(q)=0,25q+60p(q)=-0,25 q+60 à p=20$,p=20\$, 30\,et, et 40\$.

See Solution

Problem 15288

Berechnen Sie die Integrale a), d), g), und h) mithilfe einer Stammfunktion.

See Solution

Problem 15289

Calculate the integral 20(13x312x2+1)dx\int_{-2}^{0}\left(\frac{1}{3} x^{3}-\frac{1}{2} x^{2}+1\right) d x.

See Solution

Problem 15290

Berechnen Sie die Flächeninhalte der von den Funktionen f(x)=4x2f(x)=4-x^{2}, f(x)=x2+6x+7f(x)=-x^{2}+6x+7, f(x)=x(x1)(3x)f(x)=x(x-1)(3-x) und f(x)=(x1)(x2)(x3)f(x)=(x-1)(x-2)(x-3) mit der xx-Achse eingeschlossenen Flächen.

See Solution

Problem 15291

Find the general antiderivative of f(x)=26+x6f(x)=\sqrt[6]{2}+\sqrt[6]{x} and verify by differentiation. Use CC for the constant.

See Solution

Problem 15292

What is the definition of absolute extreme values for a function at point cc in interval [a,b][a, b]? Choose the correct option.

See Solution

Problem 15293

Find y(4)y(4) given dydx=3x1/26x1/2\frac{d y}{d x}=3 x^{1/2}-6 x^{-1/2} and y(1)=12y(1)=-12.

See Solution

Problem 15294

What conditions ensure a function has an absolute max and min on an interval? A. Continuous on [a,b][a, b]. B. Continuous on a subinterval. C. Critical point in [a,b][a, b]. D. Continuous on (a,b)(a, b).

See Solution

Problem 15295

Find the general anti-derivative of h(x)=ex+x3h(x)=e^{x}+x^{3}, using CC as the constant. What is H(x)=?H(x)=?

See Solution

Problem 15296

Find the price-supply equation if the marginal price for xx bottles is p(x)=70(x+4)2p^{\prime}(x)=\frac{70}{(x+4)^{2}} and p(3)=12p(3)=12.

See Solution

Problem 15297

Find gxg_{x} for g(x,y)=5x5y43x3+x5y1y4+3g(x, y)=-\frac{5}{x^{5} y^{4}}-\frac{3}{x^{3}}+x 5^{y}-\frac{1}{y^{4}}+3. Options: a) b) c) d)

See Solution

Problem 15298

How to find absolute max/min of a continuous function on [a,b][a, b]?
A. Endpoints only. B. Critical points only. C. Endpoints & critical points. D. Open interval (a,b)(a, b).

See Solution

Problem 15299

Find the second order partial derivative 2fxy\frac{\partial^{2} f}{\partial x \partial y} for f=9x4+9y3f=\sqrt{9 x^{4}+9 y^{3}}.

See Solution

Problem 15300

Find the derivative of f(x)=e2xsin3xf(x) = e^{2x} \sin 3x.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord