Calculus

Problem 2101

Find xx in [0,2π][0, 2\pi] where the tangent to f(x)=5sin(x)+5cos(x)f(x)=5 \sin (x)+5 \cos (x) is horizontal.

See Solution

Problem 2102

Find f(π)+f(π2)f^{\prime}(-\pi) + f^{\prime}\left(\frac{\pi}{2}\right) for the piecewise function f(x)={4sin(x), if x010cos(x), if x>0f(x)=\left\{\begin{array}{l}4 \sin (x), \text { if } x \leq 0 \\ 10 \cos (x), \text { if } x>0\end{array}\right.

See Solution

Problem 2103

Find f(π4)+f(3π4)f^{\prime}\left(\frac{\pi}{4}\right)+f^{\prime}\left(\frac{3 \pi}{4}\right) for the piecewise function f(x)={8tan(x), if 0x<π22cot(x), if π2x<πf(x)=\left\{\begin{array}{l}8 \tan (x), \text { if } 0 \leq x<\frac{\pi}{2} \\ 2 \cot (x), \text { if } \frac{\pi}{2} \leq x<\pi\end{array}\right.

See Solution

Problem 2104

Find dydx\frac{d y}{d x} for y=3x3+10xy=3 x^{3}+10 \sqrt{x} at x=1x=1. Choices: 4, 14, 19, 8, 29, None.

See Solution

Problem 2105

Find d2ydt2\frac{d^{2} y}{d t^{2}} for y=3t3+4ty=3 t^{3}+\frac{4}{t} at t=1t=-1. What is the result?

See Solution

Problem 2106

Find f(1)f'(1) for f(x)=Ax4Bx2+Cf(x)=A x^{4}-B x^{2}+C given f(1)=0f''(1)=0 and f(3)=18f'''(-3)=18. Choices: 0, 6, 3, 2, 14\frac{1}{4}, None.

See Solution

Problem 2107

Find f(1)f'(1) for f(x)=Ax4Bx2+Cf(x)=A x^{4}-B x^{2}+C given f(1)=0f''(1)=0 and f(3)=18f'''(-3)=18. Options: -6, 6, 3, 2, 14\frac{1}{4}, None.

See Solution

Problem 2108

Find the slope of the tangent line to f(x)=x4+5x3x2+8f(x)=x^{4}+5 x^{3}-x^{2}+8 at x=1x=1.

See Solution

Problem 2109

Find the normal line equation for the function f(x)=x3+3x2+2f(x)=x^{3}+3x^{2}+2 at the point (1,4)(-1,4).

See Solution

Problem 2110

Find points where the tangent line of f(x)=13x352x2x+1f(x)=\frac{1}{3} x^{3}-\frac{5}{2} x^{2}-x+1 has slope -5.

See Solution

Problem 2111

Find the values of xx in [0,2π][0, 2\pi] where the tangent line to f(x)=43sin(x)+4cos(x)f(x)=4\sqrt{3}\sin(x)+4\cos(x) is horizontal.

See Solution

Problem 2112

Find f(2π)+f(3π2)f^{\prime}(-2 \pi)+f^{\prime}\left(\frac{3 \pi}{2}\right) for the piecewise function f(x)={2sin(x), if x03cos(x), if x>0f(x)=\left\{\begin{array}{l}2 \sin (x), \text { if } x \leq 0 \\ 3 \cos (x), \text { if } x>0\end{array}\right.

See Solution

Problem 2113

Find f(π4)+f(3π4)f^{\prime}\left(\frac{\pi}{4}\right)+f^{\prime}\left(\frac{3 \pi}{4}\right) for the piecewise function: f(x)={4tan(x)0x<π28cot(x)π2x<πf(x)=\begin{cases}4 \tan (x) & 0 \leq x<\frac{\pi}{2} \\ 8 \cot (x) & \frac{\pi}{2} \leq x<\pi\end{cases}

See Solution

Problem 2114

Find dydx\frac{d y}{d x} for y=4x2+2xy=4 x^{2}+2 \sqrt{x} at x=1x=1. What is the value?

See Solution

Problem 2115

Evaluate d2ydt2\frac{d^{2} y}{d t^{2}} for y=4t3+2ty=4 t^{3}+\frac{2}{t} at t=1t=-1. Options: 26-26, 20-20, 20, 28-28, 8, None.

See Solution

Problem 2116

Find the value of BB for the function f(x)=Ax3+Bx2+Cf(x)=A x^{3}+B x^{2}+C given a horizontal tangent at (2,f(2))(-2, f(-2)) and a normal slope of 115\frac{-1}{15} at (1,f(1))(1, f(1)). Options: 00, 154\frac{15}{4}, 254\frac{25}{4}, 52\frac{5}{2}, 152\frac{15}{2}, None of the above.

See Solution

Problem 2117

Find f(1)f'(1) for f(x)=Ax4Bx2+Cf(x)=A x^{4}-B x^{2}+C given f(1)=0f''(1)=0 and f(4)=30f'''(-4)=30. Choices: 154\frac{15}{4}, 0100-10, 52\frac{5}{2}, 516\frac{5}{16}, 152\frac{15}{2}, None.

See Solution

Problem 2118

Find the derivative of f(x)=4x2+11x2f(x)=4 x^{2}+11 x-2 at x=3x=3 using f(x)=limh0f(3+h)f(3)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}.

See Solution

Problem 2119

Find f(2π)+f(3π2)f^{\prime}(-2 \pi) + f^{\prime}\left(\frac{3 \pi}{2}\right) for the piecewise function: f(x)={2sin(x),x0;3cos(x),x>0}f(x)=\{2 \sin (x), x \leq 0; 3 \cos (x), x>0\}.

See Solution

Problem 2120

Calculate the average rate of change for f(x)=3x22x+5f(x)=3 x^{2}-2 x+5 over the interval [2,6][-2,6].

See Solution

Problem 2121

Find f(x)f^{\prime}(x) using the limit definition of the derivative for f(x)=4x26x+7f(x)=-4x^{2}-6x+7.

See Solution

Problem 2122

Find f(x)f^{\prime}(x) using f(x)=limh0f(x+h)f(x)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} for f(x)=22x3f(x)=\frac{-2}{2 x-3}.

See Solution

Problem 2123

Find the expression for the derivative of f(x)=4x2+11x2f(x)=4 x^{2}+11 x-2 at x=3x=3 using f(x)=limh0f(3+h)f(3)hf^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}.

See Solution

Problem 2124

Find the tangent line equation for f(x)=22x3f(x)=\frac{-2}{2x-3} at x=2x=2 using results from problem 3\neq 3.

See Solution

Problem 2125

Estimate the limit: limx0x8x4\lim _{x \rightarrow 0} \frac{x-8}{x-4}. If it doesn't exist, enter DNE.

See Solution

Problem 2126

Estimate the limit: limx2x25x2\lim _{x \rightarrow 2} \frac{x^{2}-5}{x-2}. If no limit exists, write DNE.

See Solution

Problem 2127

Estimate the limit as xx approaches -1 for x2+2x+1x+1\frac{x^{2}+2x+1}{x+1}. If none, enter DNE.

See Solution

Problem 2128

Estimate the limit numerically: limx99x9x\lim _{x \rightarrow 9^{-}} \frac{\sqrt{9-x}}{9-x}. If no limit, enter DNE.

See Solution

Problem 2129

Estimate the limit numerically: limx+7x2+6x62x26x\lim _{x \rightarrow+\infty} \frac{7 x^{2}+6 x-6}{2 x^{2}-6 x} (If none, enter DNE.)

See Solution

Problem 2130

Graph the function g(x)=4x28g(x)=\frac{4}{x^{2}-8} to check for continuity. List points of discontinuity or enter NONE.

See Solution

Problem 2131

Find the limit: limx2x+4x\lim _{x \rightarrow-2} \frac{x+4}{x}. What is the result?

See Solution

Problem 2132

Solve 3242x323dx=(32)42x3ln4\frac{3}{2} \int 4^{\frac{2 x}{3}} \frac{2}{3} d x=\left(\frac{3}{2}\right) \frac{4^{\frac{2 x}{3}}}{\ln 4}.

See Solution

Problem 2133

Find the terminal speed and time to reach the ground for a paratrooper with ρ=0.075\rho=0.075, g=32ft/s2g=32 \mathrm{ft/s}^2, and starting at 10,000 ft.

See Solution

Problem 2134

Differentiate x2+1x^{2}+1 with respect to xx.

See Solution

Problem 2135

Cho hàm số liên tục y=f(x)y=f(x) với bảng xét dấu đạo hàm. Hỏi hàm có bao nhiêu điểm cực trị? A. 1 B. 4 C. 2 D. 3

See Solution

Problem 2136

Differentiate x2+1x^{2}+1 with respect to yy.

See Solution

Problem 2137

Find the value of limx0f(x)\lim _{x \rightarrow 0^{-}} f(x) where f(x)=x1f(x)=\sqrt{-x}-1 for x<0x<0, x+1-\sqrt{x}+1 for x>0x>0, and 00 for x=0x=0.

See Solution

Problem 2138

Simplify limx0f(x)\lim _{x \rightarrow 0} f(x) for the function f(x)=1x1xf(x)=\frac{1}{x-\frac{1}{x}}.

See Solution

Problem 2139

Find limx2f(x)\lim _{x \rightarrow-2} f(x) where g(x)=cos(πx)g(x)=\cos (\pi x) and h(x)=3x417x34x2+92x+113h(x)=-3 x^{4}-17 x^{3}-4 x^{2}+92 x+113 for 3<x<2-3<x<2.

See Solution

Problem 2140

A crossbow bolt is shot upward from y=2y=2 at t=0t=0 with initial velocity v0=45 m/sv_{0}=45 \mathrm{~m/s}. When does it reach a max height of about 108.47 m108.47 \mathrm{~m}? Use g=9.8 m/s2g=9.8 \mathrm{~m/s}^{2}.

See Solution

Problem 2141

Find the limit: limx2+x2+2xx3+2x24x8\lim _{x \rightarrow-2^{+}} \frac{x^{2}+2 x}{x^{3}+2 x^{2}-4 x-8}.

See Solution

Problem 2142

Check if the point M(-1, 1) is on the function f(x)=2+4xf(x) = 2 + 4x. Also, find the antiderivative F(x)F(x) that passes through M.

See Solution

Problem 2143

A lime is thrown up at 5m/s5 \, \mathrm{m/s}. Find its max height, time to reach it, total air time, and impact velocity.

See Solution

Problem 2144

Найдите первообразную F(x)F(x) для f(x)=sin(xπ4)f(x)=\sin \left(x-\frac{\pi}{4}\right), проходящую через M(3π2;2)M\left(\frac{3 \pi}{2} ; 2\right).

See Solution

Problem 2145

Calculate the integral (x761.25x4)dx\int\left(\frac{x^{-7}}{6}-1.25 x^{4}\right) d x.

See Solution

Problem 2146

Evaluate the integral: (15x242867x)dx\int\left(15 x^{24}-\frac{28}{\sqrt{6-7 x}}\right) d x

See Solution

Problem 2147

What is the velocity of an object dropped for 3.0 s? Use v=gtv = gt with g9.81m/s2g \approx 9.81 \, \text{m/s}^2.

See Solution

Problem 2148

A ball is thrown up at 16 m/s16 \mathrm{~m/s}. What is its velocity after 2.0 s2.0 \mathrm{~s}?

See Solution

Problem 2149

A stone is thrown down from a bridge at 5.6 m/s5.6 \mathrm{~m/s}. What is its velocity after 3 seconds?

See Solution

Problem 2150

An arrow is shot up at 12.6 m/s12.6 \mathrm{~m/s}. How long until it hits the ground?

See Solution

Problem 2151

Find the velocity function v(t)v(t) for s(t)=t27t+6s(t)=t^{2}-7t+6, and identify intervals for positive and negative motion.

See Solution

Problem 2152

Find the velocity function v(t)v(t) for s(t)=t311t2+7t210s(t)=t^{3}-11 t^{2}+7 t-210, and intervals for positive/negative motion.

See Solution

Problem 2153

A 25 ft ladder leans against a wall. If the base moves away at 2 ft/sec, find the top's velocity at 7, 15, and 20 ft from the wall. Also, find the angle change rate when 7 ft from the wall.

See Solution

Problem 2154

Find the initial speed of water shooting to a height of 171 m171 \mathrm{~m}.

See Solution

Problem 2155

Define f(2)f(2) to make f(x)=4x2+x+10x2f(x)=\frac{4-\sqrt{x^{2}+x+10}}{x-2} continuous at x=2x=2.

See Solution

Problem 2156

Determine the global min and max of the function f(x)=x4+x3+20x2f(x)=-x^{4}+x^{3}+20x^{2}.

See Solution

Problem 2157

Find the point of inflection for y=M(d)y=M(d) using R(d)=1200(d4+35d3411d2+1845d2686.5)R(d)=\frac{1}{200}(-d^{4}+35 d^{3}-411 d^{2}+1845 d-2686.5). Options: (A) 8.627 (B) 3.894, 13.728 (C) 5.911, 11.500 (D) 3.894, 8.627, 13.728.

See Solution

Problem 2158

An egg is dropped from a height of 61 m61 \mathrm{~m}. Find the time to hit the ground and the impact speed.

See Solution

Problem 2159

Find h(5)h^{\prime}(5) given that h(x)=f(x)g(x)h(x)=f(x) \cdot g(x) and f(5)=10f^{\prime}(5)=10, g(5)=10g^{\prime}(5)=10.

See Solution

Problem 2160

Find the local maxima and minima of the function hh, which peaks at (0,3) and decreases on both sides.

See Solution

Problem 2161

Find all local maximum values of the function hh that decreases from the point (0,3) and their corresponding x-values.

See Solution

Problem 2162

Differentiate x2+1x^{2}+1 with respect to xx. What is the result?

See Solution

Problem 2163

Find the derivative of g(x)=5xg(x)=\frac{5}{x} using the limit definition.

See Solution

Problem 2164

Find the derivative of g(x)=5xg(x)=\frac{5}{x} using the limit definition.

See Solution

Problem 2165

Identify the FALSE statement about the natural logarithmic function y=ln(x)y=\ln (x) from the options given.

See Solution

Problem 2166

Analyze the limits of f(x)=x8f(x) = -x^{8} as xx approaches -\infty and \infty. What do they approach?

See Solution

Problem 2167

Analyze the limits of f(x)=x3f(x)=-x^{3} as xx \rightarrow -\infty and xx \rightarrow \infty. What are the results?

See Solution

Problem 2168

Evaluate the integrals: dxsinxcosx\int \frac{dx}{\sin x \cos x} and 2dxsin2x\int \frac{2dx}{\sin 2x}.

See Solution

Problem 2169

Find the value of aa where the tangent to f(x)=2x2+x+6f(x)=2x^2+x+6 is parallel to y=5x+3y=5x+3.

See Solution

Problem 2170

Calculate the integral: x(x+4)1/3dx\int x(x+4)^{1 / 3} d x

See Solution

Problem 2171

Find the derivative f(4)f^{\prime}(4) for the function f(x)=x33+1xf(x)=-\frac{\sqrt{x^{3}}}{3}+\frac{1}{x}.

See Solution

Problem 2172

Find the derivative f(6)f^{\prime}(6) for the function f(x)=4x+x33f(x)=\frac{4}{\sqrt{x}}+\frac{\sqrt{x^{3}}}{3} as a simplified fraction.

See Solution

Problem 2173

Find the second derivative f(x)f^{\prime \prime}(x) of the function f(x)=3x13x4+x214x5f(x)=3x-\frac{1}{3}x^{4}+x^{2}-\frac{1}{4}x^{5}.

See Solution

Problem 2174

Find the derivative f(4)f^{\prime}(4) for the function f(x)=x35xf(x)=\frac{\sqrt{x^{3}}}{5}-\sqrt{x}.

See Solution

Problem 2175

Find the third derivative of the function f(x)=43x13x5+1f(x)=-\frac{4}{3} x-\frac{1}{3} x^{5}+1.

See Solution

Problem 2176

Find the second derivative f(x)f^{\prime \prime}(x) of the function f(x)=2x114x445x4f(x)=-2 x^{-1}-\frac{1}{4} x^{4}-\frac{4}{5} x^{-4}.

See Solution

Problem 2177

Find the second derivative of the function y=16x42525xy=\frac{1}{6} x^{4}-\frac{2}{5}-\frac{2}{5} x.

See Solution

Problem 2178

Find a value for a a such that the solution to dydx=(y212y+27)sin2(2πy17) \frac{d y}{d x}=(y^{2}-12y+27) \sin^2(\frac{2\pi y}{17}) with y(0)=a y(0)=a is non-constant and limxy(x)=172 \lim_{x \to \infty} y(x) = \frac{17}{2} .

See Solution

Problem 2179

Find the coefficients cnc_{n} for the heat flow problem given u(x,t)=n=1cnen2tsin(nx)u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-n^{2} t} \sin (n x) and u4(x,0)=f(x)u_{4}(x, 0)=f(x).

See Solution

Problem 2180

Calculate the integral: sin(t)1+cos(t)dt\int \sin (t) \sqrt{1+\cos (t)} \, dt

See Solution

Problem 2181

Find the integral of x21+x4\frac{x^{2}}{1+x^{4}} with respect to xx.

See Solution

Problem 2182

Is it true or false that the derivative of a sum is the sum of the derivatives? Explain your answer. Options: A, B, C, D.

See Solution

Problem 2183

Is the statement true or false? The derivative of f(x)=1x4f(x)=\frac{1}{x^{4}} is f(x)=14x3f^{\prime}(x)=\frac{1}{4 x^{3}}. Choose A-E.

See Solution

Problem 2184

Find the derivative of the function y=x313x2+48x+5y=x^{3}-13 x^{2}+48 x+5. What is dydx\frac{d y}{d x}?

See Solution

Problem 2185

Find the derivative of the function f(u)=2u0.88u2.6f(u)=2 u^{0.8}-8 u^{2.6}. What is f(u)f^{\prime}(u)?

See Solution

Problem 2186

Find the derivative of the function y=6x+8x15y=6 \sqrt{x}+8 x^{\frac{1}{5}}. What is dydx\frac{d y}{d x}?

See Solution

Problem 2187

Find the derivative of the function y=11x29x7x2y = 11 x^{2} - 9 x - 7 x^{-2}. What is dydx\frac{d y}{d x}?

See Solution

Problem 2188

Find the derivative of the function y=7x49x y=\frac{7}{x^{4}}-\frac{9}{x} . What is dydx \frac{d y}{d x} ?

See Solution

Problem 2189

Find the derivative of the function p(x)=28x27+10x15p(x)=-28 x^{-\frac{2}{7}}+10 x^{-\frac{1}{5}}. What is p(x)p^{\prime}(x)?

See Solution

Problem 2190

Find the derivative of the function y=10x3y=\frac{-10}{\sqrt[3]{x}}. What is dydx=?\frac{d y}{d x}=?

See Solution

Problem 2191

Find the derivative of y=x5+6x2y=\frac{x^{5}+6}{x^{2}} after simplifying to y=y= by dividing each term by x2x^{2}.

See Solution

Problem 2192

Find the derivative of y=x5+6x2y=\frac{x^{5}+6}{x^{2}} after simplifying it to y=y=.

See Solution

Problem 2193

Find the derivative of y=x5+8xy=\frac{x^{5}+8}{x} after simplifying it. What is yy?

See Solution

Problem 2194

Find the derivative of the function y=x5+11xy=\frac{x^{5}+11}{x}. What is dydx=?\frac{d y}{d x}=?

See Solution

Problem 2195

Find the derivative of h(x)=(x52)3h(x)=(x^{5}-2)^{3}. What is h(x)=?h^{\prime}(x)=?

See Solution

Problem 2196

Identify the correct type of derivative function f(x)f^{\prime}(x) for a quadratic function f(x)f(x): Constant, Quadratic, Linear, or Cubic?

See Solution

Problem 2197

Explain how the slope and derivative of f(x)f(x) at x=ax=a relate. Choose the correct answer from A, B, C, or D.

See Solution

Problem 2198

Find the derivative of the function: Dx(9x12+2x32)D_{x}\left(9 x^{-\frac{1}{2}}+\frac{2}{x^{\frac{3}{2}}}\right).

See Solution

Problem 2199

Find f(3)f^{\prime}(-3) for f(x)=x435xf(x)=\frac{x^{4}}{3}-5x. What is f(3)f^{\prime}(-3)?

See Solution

Problem 2200

Find the slope of the tangent line for y=x42x3+8y=x^{4}-2x^{3}+8 at x=2x=2 and its equation. How to find the slope? A, B, C, or D?

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord