Calculus

Problem 25301

A cylindrical coffeepot with radius 5 in has volume change rate 5πh-5 \pi \sqrt{h}. Find the height change rate equation in terms of hh.

See Solution

Problem 25302

Evaluate the integral from 1 to e8e^{8} of (lnx)4x\frac{(\ln x)^{4}}{x} dx.

See Solution

Problem 25303

Find the area between f(x)=e5xf(x)=e^{5 x} and g(x)=12xg(x)=\frac{1}{2 x} from x=1x=1 to x=5x=5.

See Solution

Problem 25304

Find the indefinite integral of sec2θ+9\sec^{2} \theta + 9 with respect to θ\theta.

See Solution

Problem 25305

Evaluate the integrals given: a. 258f(x)dx=48\int_{2}^{5} 8 f(x) d x=48 b. 27(f(x)g(x))dx=\int_{2}^{7}(f(x)-g(x)) d x=\square

See Solution

Problem 25306

Evaluate the integrals given:
a. 258f(x)dx=48\int_{2}^{5} 8 f(x) d x=48
b. 27(f(x)g(x))dx=5\int_{2}^{7}(f(x)-g(x)) d x=5
c. 25(f(x)g(x))dx=\int_{2}^{5}(f(x)-g(x)) d x=\square

See Solution

Problem 25307

Find the integral of tan5θsec7θ\tan^{5} \theta \sec^{7} \theta with respect to θ\theta: tan5θsec7θdθ\int \tan^{5} \theta \sec^{7} \theta d \theta.

See Solution

Problem 25308

Find h(2)h^{\prime}(2) for h(x)=f(x)g(x)h(x)=f(x) \cdot g(x) given f(2)=3f(2)=3, f(2)=4f^{\prime}(2)=4, g(2)=2g(2)=-2, g(2)=4g^{\prime}(2)=-4.

See Solution

Problem 25309

Evaluate the integrals based on given functions ff and gg over [2,7][2,7] with specific integral values.
a. 258f(x)dx=48\int_{2}^{5} 8 f(x) d x=48 b. 27(f(x)g(x))dx=5\int_{2}^{7}(f(x)-g(x)) d x=5 c. 25(f(x)g(x))dx=4\int_{2}^{5}(f(x)-g(x)) d x=4 d. 57(g(x)f(x))dx=\int_{5}^{7}(g(x)-f(x)) d x=\square

See Solution

Problem 25310

Evaluate the integrals based on given conditions:
a. 258f(x)dx\int_{2}^{5} 8 f(x) d x b. 27(f(x)g(x))dx\int_{2}^{7}(f(x)-g(x)) d x c. 25(f(x)g(x))dx\int_{2}^{5}(f(x)-g(x)) d x d. 57(g(x)f(x))dx\int_{5}^{7}(g(x)-f(x)) d x e. 575g(x)dx\int_{5}^{7} 5 g(x) d x

See Solution

Problem 25311

Evaluate the following integrals given 27f(x)dx=11\int_{2}^{7} f(x) d x=11, 27g(x)dx=6\int_{2}^{7} g(x) d x=6:
b. 27(f(x)g(x))dx=5\int_{2}^{7}(f(x)-g(x)) d x=5 c. 25(f(x)g(x))dx=4\int_{2}^{5}(f(x)-g(x)) d x=4 d. 57(g(x)f(x))dx=1\int_{5}^{7}(g(x)-f(x)) d x=-1 e. 575g(x)dx=20\int_{5}^{7} 5 g(x) d x=20 f. 523f(x)dx=\int_{5}^{2} 3 f(x) d x=\square

See Solution

Problem 25312

Find the water velocities at points 2 and 3 in a hydroelectric plant with a 100 cm tube and 50 cm nozzle.

See Solution

Problem 25313

Evaluate 72g(x)dx\int_{7}^{2} g(x) d x given 24f(x)dx=4\int_{2}^{4} f(x) d x=4, 27f(x)dx=8\int_{2}^{7} f(x) d x=8, 27g(x)dx=5\int_{2}^{7} g(x) d x=5.

See Solution

Problem 25314

Calculate the total income over 15 years from a continuous income stream with a rate of flow f(t)=3500f(t) = 3500. What is the total earned? \ \square$

See Solution

Problem 25315

At age 35, you deposit \$2000 annually into an IRA earning 5\% interest, compounded continuously. What's the total at age 65?

See Solution

Problem 25316

Given 24f(x)dx=4\int_{2}^{4} f(x) d x=4, 27f(x)dx=8\int_{2}^{7} f(x) d x=8, and 27g(x)dx=5\int_{2}^{7} g(x) d x=5, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x
2. 276g(x)dx=\int_{2}^{7} 6 g(x) d x=\square

See Solution

Problem 25317

Approximate 311exdx\int_{3}^{11} e^{x} d x using 4 equal subintervals and right endpoints for the Riemann Sum.

See Solution

Problem 25318

Calculate the total income from the function f(t)=500e0.05tf(t)=500 e^{0.05 t} over the first 2 years. Total income: \$ \square (round to nearest dollar).

See Solution

Problem 25319

Given 24f(x)dx=4\int_{2}^{4} f(x) d x=4, 27f(x)dx=8\int_{2}^{7} f(x) d x=8, and 27g(x)dx=5\int_{2}^{7} g(x) d x=5, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x
2. 276g(x)dx\int_{2}^{7} 6 g(x) d x
3. 27[g(x)f(x)]dx=\int_{2}^{7}[g(x)-f(x)] d x=\square

See Solution

Problem 25320

A student makes quarterly payments of \3,000intoaretirementaccountwith3,000 into a retirement account with 6\%$ interest compounded continuously. Find the total after 40 years.

See Solution

Problem 25321

Calculate the future value of a continuous income stream f(t)=1550e0.02tf(t)=1550 e^{-0.02 t} at 5.75%5.75\% interest over 7 years. What is the amount? \$ \square

See Solution

Problem 25322

You deposit \2000yearlyintoanIRAfromage30to65ata52000 yearly into an IRA from age 30 to 65 at a 5% continuous compound interest. What's the total value at 65? \$\square (Round to the nearest dollar.)

See Solution

Problem 25323

Use the value of the first integral to evaluate the two integrals:
1. 01(10x2x3)dx=\int_{0}^{1}(10 x-2 x^{3}) dx=\square
2. 10(5xx3)dx\int_{1}^{0}(5 x-x^{3}) dx

See Solution

Problem 25324

An object is launched upward at 39.2 m/s39.2 \mathrm{~m/s}. How long is it at or above 34.3 meters?

See Solution

Problem 25325

Evaluate the integrals using II: a. 01(10x2x3)dx\int_{0}^{1}(10x-2x^{3})dx b. 18(5xx3)dx\int_{1}^{8}(5x-x^{3})dx a. 01(10x2x3)dx=92\int_{0}^{1}(10x-2x^{3})dx=\frac{9}{2} b. 10(5xx3)dx=\int_{1}^{0}(5x-x^{3})dx=\square

See Solution

Problem 25326

Given 24f(x)dx=4\int_{2}^{4} f(x) d x=4, 27f(x)dx=8\int_{2}^{7} f(x) d x=8, and 27g(x)dx=5\int_{2}^{7} g(x) d x=5, find:
1. 72g(x)dx\int_{7}^{2} g(x) d x
2. 276g(x)dx\int_{2}^{7} 6 g(x) d x
3. 27[g(x)f(x)]dx\int_{2}^{7}[g(x)-f(x)] d x
4. 27[7g(x)f(x)]dx=\int_{2}^{7}[7 g(x)-f(x)] d x=\square

See Solution

Problem 25327

Mickey jumps from a 1000 ft cliff at 3 ft/s. Without a parachute, when will he hit the ground? Calculate the time.

See Solution

Problem 25328

Find the integral of the function: (2x7x8)dx\int\left(2 \sqrt{x}-\frac{7}{x^{8}}\right) dx.

See Solution

Problem 25329

What is the total value of \$30,000/year for 25 years at a 6% continuous compounding rate?

See Solution

Problem 25330

A satellite of mass m=2,140 kgm = 2,140 \mathrm{~kg} orbits Earth (M=5.97×1024 kgM = 5.97 \times 10^{24} \mathrm{~kg}) at r=9,325 kmr = 9,325 \mathrm{~km}. Find the orbital period.

See Solution

Problem 25331

Calculate the future value of a continuous income stream f(t)=1500e0.02tf(t)=1500 e^{-0.02 t} at 5.5%5.5\% interest for 4 years. What is the value? \$ \square

See Solution

Problem 25332

Find the derivative dydx\frac{d y}{d x} for the function y=5x3cosxsinxy=5 x^{3} \cos x \sin x.

See Solution

Problem 25333

An investor has two options: a furniture store with income f(t)=12,000f(t)=12,000 and a book store with g(t)=11,000e0.06tg(t)=11,000 e^{0.06 t}. Find their future values over 4 years.

See Solution

Problem 25334

Calculate the integral from aa to bb of 13x4\frac{1}{3} x^{4}: ab13x4dx=\int_{a}^{b} \frac{1}{3} x^{4} d x=\square

See Solution

Problem 25335

Find the total cost of producing 220 dresses using the marginal cost function C(x)=425x+56C^{\prime}(x)=-\frac{4}{25} x+56. Total cost is \$\square.

See Solution

Problem 25336

Evaluate the series n=1(1)n+1n23n6+2n3\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^{2}}{3 n^{6}+2 n^{3}}.

See Solution

Problem 25337

Evaluate the integral: exex5+4exdx\int \frac{e^{x}}{e^{x}-5+4 e^{x}} d x

See Solution

Problem 25338

Find the derivative of the function f(x)=7xx2+49f(x)=\frac{7 x}{x^{2}+49}.

See Solution

Problem 25339

Find the tangent line equation to y=x3x28y=x \sqrt{3 x^{2}-8} at the point (2,4)(2,4).

See Solution

Problem 25340

Evaluate the integral from 1 to 4: 14t56t2t4dt\int_{1}^{4} \frac{t^{5}-6 t^{2}}{t^{4}} d t.

See Solution

Problem 25341

Find the area between f(x)=xf(x)=x and g(x)=x1/ng(x)=x^{1/n} for x0x \geq 0, in terms of positive integer n2n \geq 2. Area: \square.

See Solution

Problem 25342

Find the critical points of the function f(x)=7xx2+49f(x)=\frac{7 x}{x^{2}+49}.

See Solution

Problem 25343

Find the derivative dydx\frac{d y}{d x} for the function y=5x3cosxsinxy=5 x^{3} \cos x \sin x.

See Solution

Problem 25344

Evaluate the integral from 5 to 6: 564x2492x7dx\int_{5}^{6} \frac{4 x^{2}-49}{2 x-7} d x

See Solution

Problem 25345

Find the relative rate of change of f(x)=110x0.4x2f(x)=110 x-0.4 x^{2}. The answer is \square.

See Solution

Problem 25346

Find the limit: limx8x3x21+xx2\lim _{x \rightarrow-\infty} \frac{8 x^{3}-x^{2}}{1+x-x^{2}}

See Solution

Problem 25347

Find the cost of installing 55ft255 \mathrm{ft}^{2} of countertop using C(x)=x23C^{\prime}(x)=x^{\frac{2}{3}} and then for an extra 14ft214 \mathrm{ft}^{2}.

See Solution

Problem 25348

Find the relative rate of change of the function f(x)=120x0.3x2f(x)=120 x-0.3 x^{2}. What is it?

See Solution

Problem 25349

Find the absolute extrema of f(x)=(x+1)23f(x)=(x+1)^{\frac{2}{3}} on the interval [0,3][0,3].

See Solution

Problem 25350

Find the center, radius, and interval of convergence for the series: n=0(12)n(x45)nn!\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)^{n}\left(x-\frac{4}{5}\right)^{n}}{n !}

See Solution

Problem 25351

Verify the Mean Value Theorem for f(x)=4x3f(x)=\sqrt{4x-3} on [1,3][1,3] and find a suitable cc.

See Solution

Problem 25352

Find values of aa for which f(x,y,z)=x2+y2+z2xz+ayzf(x, y, z)=x^{2}+y^{2}+z^{2}-x z+a y z is convex for all (x,y,z)(x, y, z).

See Solution

Problem 25353

Differentiate 4x2y34 x^{2} y^{3} and 9x+9y9 x + 9 y with respect to xx or yy.

See Solution

Problem 25354

Find the relative rate of change of f(x)=2343xf(x)=234-3x at x=22x=22. Answer: \square (round to three decimal places).

See Solution

Problem 25355

What direction does aa approach -4 from in the limit: lima4(a31(x+4)2/3dx)\lim _{a \rightarrow-4}\left(\int_{a}^{-3} \frac{1}{(x+4)^{2 / 3}} d x\right)?

See Solution

Problem 25356

Calculate the relative rate of change of the function f(x)=14+9lnxf(x)=14+9 \ln x. The answer is \square.

See Solution

Problem 25357

Evaluate the integral 02(4x+5)dx\int_{0}^{2}(4 x+5) \mathrm{dx} using right Riemann sums. Simplify your answer to \square.

See Solution

Problem 25358

What direction does aa approach 4-4 from? lima(2a1(x+5)2/3dx)\lim _{a \rightarrow \infty}\left(\int_{-2}^{a} \frac{1}{(x+5)^{2 / 3}} d x\right)

See Solution

Problem 25359

Evaluate the integral using geometry: 84324xx2dx=\int_{-8}^{4} \sqrt{32-4 x-x^{2}} d x=\square (Use π\pi if needed.)

See Solution

Problem 25360

Quelles sont les dimensions du rectangle d'aire maximale inscrit sous la courbe f(x)=16x2f(x)=\sqrt{16-x^{2}} ?

See Solution

Problem 25361

Find the direction of aa as it approaches \infty in the limit: lima(5a1(x+9)3/2dx)\lim _{a \rightarrow \infty}\left(\int_{-5}^{a} \frac{1}{(x+9)^{3 / 2}} d x\right)

See Solution

Problem 25362

Find the direction of aa as it approaches \infty for the limit: lima(2a1(x+5)2/3dx).\lim _{a \rightarrow \infty}\left(\int_{-2}^{a} \frac{1}{(x+5)^{2 / 3}} d x\right).

See Solution

Problem 25363

Find bb in terms of cc and dd such that c(x+b)dx=0\int_{c}(x+b) dx=0 for 0<c<d0<c<d. b= (Type an exact answer.)  b=\square \text { (Type an exact answer.) }

See Solution

Problem 25364

Evaluate the integral 17f(x)dx\int_{1}^{7} f(x) d x where f(x)=2xf(x)=2x for 1x51 \leq x \leq 5 and f(x)=122xf(x)=12-2x for 5<x75<x \leq 7.

See Solution

Problem 25365

Find the rate of change of the base area of a cone when its radius is 6 ft and increasing at 14ft/hr\frac{1}{4} \mathrm{ft/hr}.

See Solution

Problem 25366

What direction does aa approach 7 from in the limit: lima7(a101(x7)3/2dx)\lim _{a \rightarrow 7}\left(\int_{a}^{10} \frac{1}{(x-7)^{3 / 2}} d x\right)?

See Solution

Problem 25367

The function ff is continuous and strictly increasing on (0,1)(0,1) with f(0)=f(12)=f(1)f(0)=f\left(\frac{1}{2}\right)=f(1). Which statement is true? (A) Minimum and maximum on [0,1][0,1]. (B) Minimum but no maximum on [0,1][0,1]. (C) Maximum but no minimum on [0,1][0,1]. (D) Neither minimum nor maximum on [0,1][0,1].

See Solution

Problem 25368

Find ddxaxf(t)dt\frac{d}{d x} \int_{a}^{x} f(t) d t and ddxabf(t)dt\frac{d}{d x} \int_{a}^{b} f(t) d t, with constants aa and bb.

See Solution

Problem 25369

Show that the sequence defined by a1=2a_{1}=2 and an+1=12(an+6)a_{n+1}=\frac{1}{2}(a_{n}+6) is nondecreasing and bounded by 6. Find limnan\lim_{n \to \infty} a_n.

See Solution

Problem 25370

Déterminez l'équation de la tangente à la courbe 4x2y3=9x+9y4 x^{2} y^{3}=9 x+9 y au point (3,1)(3,1).

See Solution

Problem 25371

How high must a rocket go above Earth for its weight to be half? Use F=Gm1m2r2F = G \frac{m_1 m_2}{r^2} to find hh.

See Solution

Problem 25372

Calculate the area between the curve f(x)=1x3f(x) = \frac{1}{x^{3}} and the xx-axis over the interval [3,2][-3,-2]. Area ==\square.

See Solution

Problem 25373

Determine if the series n=1(1)n+1n2n3+1\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+1} converges or diverges. Show your work.

See Solution

Problem 25374

Calculate the area between the curve f(x)=sinxf(x)=\sin x and the xx-axis from [2π/3,3π/4][-2 \pi / 3,3 \pi / 4]. Area = \square.

See Solution

Problem 25375

Simplify the expression: ddxx5t2+3dt=\frac{d}{d x} \int_{x}^{5} \sqrt{t^{2}+3} d t = \square

See Solution

Problem 25376

Simplify the expression: ddxxx4+t2dt=\frac{d}{d x} \int_{-x}^{x} \sqrt{4+t^{2}} dt = \square

See Solution

Problem 25377

Calculate the relative rate of change of f(x)=3x2lnxf(x) = 3x^2 - \ln x at x=5x = 5. Answer: \square.

See Solution

Problem 25378

Find all values of cc that satisfy the Mean Value Theorem for f(x)=x33x2f(x)=x^{3}-3x^{2} on the interval [0,3][0,3].

See Solution

Problem 25379

Is the function f(x)=n=0xenx2f(x)=\sum_{n=0}^{\infty} x e^{-n x^{2}} continuous at x=0x=0? Justify your response.

See Solution

Problem 25380

Derive the position equation s=a2t2+v0t+s0s = \frac{a}{2} t^{2} + v_{0} t + s_{0} from the differential equation d2sdt2=a\frac{d^{2} s}{d t^{2}} = a with initial conditions v0v_{0} and s0s_{0}.

See Solution

Problem 25381

Find the elasticity of demand using p+0.001x=42p + 0.001x = 42 at p=$22p = \$22. What is the percentage change in demand if pp decreases by 10%?

See Solution

Problem 25382

Find the area function A(x)=1x1t4dtA(x)=\int_{1}^{x} \frac{1}{t^{4}} dt using the Fundamental Theorem. What is A(x)A(x)?

See Solution

Problem 25383

Find the 102nd derivative of f(x)=ln(4x)f(x) = \ln(4x).

See Solution

Problem 25384

Is the function f(x)=n=0xenx2f(x)=\sum_{n=0}^{\infty} x e^{-n x^{2}} continuous at x=0x=0? Justify your response.

See Solution

Problem 25385

Find the area function A(x)=1x1t3dtA(x)=\int_{1}^{x} \frac{1}{t^{3}} dt using the Fundamental Theorem. What is A(x)A(x)?

See Solution

Problem 25386

Find the 45th derivative of f(x)=ln(6x)f(x)=\ln(6x).

See Solution

Problem 25387

Find the derivative f(x)f^{\prime}(x) of f(x)=2x2+3x2f(x)=2 x^{2}+3 x-2 and compute f(1)f^{\prime}(1), f(4)f^{\prime}(4), f(5)f^{\prime}(5).

See Solution

Problem 25388

Free fall on a planet: Derive s=12gt2+v0t+s0s=-\frac{1}{2} g t^{2}+v_{0} t+s_{0} from an initial value problem. Explain your steps.

See Solution

Problem 25389

Given f(x)=1x2f(x)=\frac{1}{x^{2}} with a=1,b=5,c=6a=1, b=5, c=6, find A(x)=1xf(t)dtA(x)=\int_{1}^{x} f(t) dt. What is A(x)A(x)?

See Solution

Problem 25390

Is the integral 0e6xdx\int_{0}^{\infty} e^{6 x} d x convergent or divergent? If convergent, find its value.

See Solution

Problem 25391

Calculate the present value of a continuous income stream at rate R(t)=$132,000R(t)=\$ 132,000, over T=20T=20 years with k=3%k=3\%.

See Solution

Problem 25392

Differentiate f(x)=ax21f(x)=a x^{21} with respect to xx, where aa is a constant.

See Solution

Problem 25393

Find the area function A(x)=1x1t3dtA(x)=\int_{1}^{x} \frac{1}{t^{3}} dt using the Fundamental Theorem. What is A(x)A(x)?

See Solution

Problem 25394

Find the sales function S(t)=9t+1S(t)=9 \sqrt{t+1}. Calculate S(t)S^{\prime}(t), S(15)S(15), S(15)S^{\prime}(15), and estimate sales for 16 and 17 months.

See Solution

Problem 25395

Differentiate f(x)=ax21f(x)=a x^{21} with respect to xx, where aa is a constant.

See Solution

Problem 25396

Check if the integral 24x4dx\int_{2}^{\infty} \frac{4}{x^{4}} d x converges or diverges, and find its value if it converges.

See Solution

Problem 25397

Is it true or false that if nNan\sum_{n \in \mathbb{N}} a_{n} is conditionally convergent, then nNnkan\sum_{n \in \mathbb{N}} n^{k} a_{n} diverges for each k(1,+)k \in(1,+\infty)? Prove or provide a counterexample.

See Solution

Problem 25398

Find the ozone level function P(t)=170+15tt2P(t)=170+15t-t^{2}, then calculate P(t)P^{\prime}(t) and evaluate P(5)P(5) and P(5)P^{\prime}(5).

See Solution

Problem 25399

Find the derivative p(t)p^{\prime}(t) of the tungsten consumption function p(t)=140t2+1,075t+14,911p(t)=140 t^{2}+1,075 t+14,911. Then, calculate p(12)p(12) for 2022 and p(12)p^{\prime}(12) for the rate of change. Interpret these results.

See Solution

Problem 25400

Find the derivative P(t)P^{\prime}(t) of P(t)=40+19t4t2P(t)=40+19t-4t^{2} and calculate P(2)P(2) and P(2)P^{\prime}(2).

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord